
Blink and Wink Detection for Mouse Pointer Control

Eric Missimer and Margrit Betke
Image and Video Computing Group

Computer Science Department
Boston University

{missimer, betke}@bu.edu

ABSTRACT
A Human-Computer Interaction (HCI) system that is de-
signed for individuals with severe disabilities to simulate
control of a traditional computer mouse is introduced. The
camera-based system monitors a user’s eyes and allows the
user to simulate clicking the mouse using voluntary blinks
and winks. For users who can control head movements and
can wink with one eye while keeping their other eye visibly
open, the system allows complete use of a typical mouse,
including moving the pointer, left and right clicking, dou-
ble clicking, and click-and-dragging. For users who cannot
wink but can blink voluntarily the system allows the user
to perform left clicks, the most common and useful mouse
action. The system does not require any training data to
distinguish open eyes versus closed eyes. Eye classification
is accomplished online during real-time interactions. The
system had an accuracy of 8027/8306 = 96.6% in classifying
sub-images with open or closed eyes and successfully allows
the users to simulate a traditional computer mouse.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human factors

General Terms
Human Factors

Keywords
Assistive technology, video based human computer interface,
eye image analysis, mouse replacement system

1. INTRODUCTION
In recent years, there has been an effort to design assis-

tive technology that provides individuals with severe disabil-
ities a tool for communication and access to the computer.
Such technology may augment traditional human-computer
interfaces like the keyboard and mouse. These traditional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PETRA’10, June 23 - 25, 2010, Samos, Greece.
Copyright 2010 ACM 978-1-4503-0071-1/10/06 ...$10.00.

human-computer interfaces demand good manual dexterity
and refined motor control, which may be absent or unpre-
dictable for people with severe disabilities.

The motivation of our research is to provide an alterna-
tive communication tool for non-verbal individuals whose
motor abilities are extremely limited by conditions rang-
ing from traumatic brain injuries to degenerative diseases
such as multiple sclerosis (MS), muscular dystrophy (MD),
or amyotropic lateral sclerosis (ALS). These individuals may
only be able to control their head and eyes. Our goal was
to develop a computer vision system that replaces the tradi-
tional computer mouse with a system that can be completely
controlled with the head and eyes.

We propose an algorithm that allows a user to interact
with the computer by using their eyes to simulate clicking
a traditional mouse. The algorithm is able to automatically
locate the user’s eyes and learn the appearance of the user’s
open and closed eyes. Online learning provides a level of ro-
bustness that allows the algorithm to work consistently for
various individuals and has also shown success for individu-
als wearing glasses.

Work on camera-based blink detection has focused on spe-
cific tasks such as human-computer interaction [4, 7] or fa-
tigue detection [5]. Blink detection modules have been part
of more general systems on eye motion analysis [1, 10, 11,
12]. Some research efforts in camera-based blink detection
use infrared lighting [8, 13]. The advantage of an infrared
system is that the pupils of the user are highlighted when ex-
posed to infrared lighting. While infrared systems make the
problem of detecting the eyes easier, the typical user does
not have access to infrared lighting and there are safety con-
cerns about long-term exposure to infrared lighting. Our
system uses standard lighting with a typical USB camera
that is easily available to users. Other systems [1] use active
appearance models to locate and track the eyes of the user
and make assumptions about the shape, color, and lighting
of the user’s eyes. The online templates of the users’ eyes
that our system automatically captures eliminate the need
for us to make such assumptions.

Previous interaction systems for people with disabilities
[4, 7] interpret a user blink as a trigger for binary switch
applications. By tracking and interpreting both eyes of the
user (for users who are capable of winking both eyes), our
system allows interaction with a computer on a level that
is closer to using a traditional mouse. Our system enables
users to move the mouse pointer on the screen and issue
mouse-clicking commands hands-free. For individuals who
are not able to control the muscles around their eyes to a

Figure 1: Flowchart of Algorithm.

degree that they can wink, the system still enables them to
simulate the left-click command of a traditional mouse. This
is an improvement over current assistive mouse-replacement
systems such as Camera Mouse [2, 3], which limits the user
to left-click commands by hovering over a certain location
for a predetermined amount of time. This is counterintuitive
as the lack of action on the part of the user causes a click to
occur. It can lead the system to issue a click command that
was not intended by the user if the user is not moving the
mouse within the threshold of hovering time. Our system
provides a more intuitive method for controlling the mouse,
as it requires a specific action by the user to simulate a
mouse click.

2. METHODS
The algorithm used to detect blinks has a three-stage ini-

tialization phase. Stage one involves detecting the eyes by
looking for the involuntary or voluntary blinks of the user. In
stage two, appropriate tracking points are obtained. Stage
three involves obtaining online template images of the eyes.
The online templates are then used to detect closed and open
eyes and two finite state machines are used to control click-
ing. A flowchart depicting the main stages of the algorithm
is shown in Figure 1.

2.1 Initialization: Detecting Eyes and Learn-
ing Appearance of Open and Closed Eyes

The first step of the algorithm is to locate the eyes of
the user. This is accomplished by looking for the motion
that occurs when the user blinks. First, three consecutive
images are obtained. No computations occur while obtain-
ing these images so they are as close together in time as
determined by the frame rate of the camera. Two differ-
ence images are obtained using the three consecutive frames
and then thresholded to produce two binary images. Ero-
sion with a cross-shaped structure element [9] is applied to
both binary images to reduce noise and then a union oper-
ation [9] merges the images into a final motion image. The

Figure 2: Examples of users during automated ini-
tialization. Outlined rectangles depict the search
areas for the tracking points (white disks).

algorithm then finds the largest connected component [9] of
the motion image and the second largest connected compo-
nent that is a minimum distance away from the first. The
minimum distance requirement is necessary because some-
times the motion of a single eye blinking can create two
separate connected components and, by requiring that the
two connected components are located sufficiently apart, the
algorithm can avoid misinterpreting these two components
as two blinking eyes.

The two connected components are now the candidate eye
locations and are tested against common properties that
hold for all individuals. These include neither component
is exceptionally large, the width is greater than the height
of each component, the two components have approximately
the same vertical position and the sub-images at each loca-
tion are mirror images of each other. Determining whether
the sub-images s and m are mirrored images of each other
is accomplished using the normalized correlation coefficient

1

n

∑
i

[
(si − s̄)(mi − m̄)

σsσm

]
,

where n is the number of pixels, si and mi are the brightness
values at pixel i in images s and m, s̄ and m̄ are the average
brightness values of images s and m, and σs and σm are
the standard deviations of the brightness values of images s
and m. If the candidate eye locations pass all of these tests
the algorithm assumes these are the location of the user’s
eyes.

Next, the algorithm obtains tracking points that will be
used throughout the use of the program (Figure 2). Three
tracking points are obtained; one is located near the upper
lip and is used to control the mouse pointer. The other
two tracking points are on each eyebrow of the user and are
used to track the eyes indirectly. All the tracking points are
obtained by finding the point with the highest summations
of Sobel gradient magnitudes [9] in an 11 × 11 pixel region
within a specific search region (Figure 2). For the mouse
tracking point, the search region is the area between and
below the eyes with a height equal to 0.6 times the distance
between the eyes. The fraction 0.6 was chosen as a conser-
vative value since obtaining a tracking point below the face

and on the neck or clothing is very undesirable. This results
in the tracking point near the upper lip, which is a desirable
point for tracking because of the intensity changes. For the
eye tracking points, the search region is the area directly
above the eye. This results in the tracking point being on
the eyebrows. Finally, the offset vectors −→p left and −→p right

between each eye and the tracking point on the correspond-
ing eyebrow are calculated. These vectors will be used later
to approximate the locations of the eyes. Tracking is per-
formed with the Lucas-Kanade optical flow algorithm, which
has been tested for mouse-replacement systems [6].

The third and final stage of the initialization is obtain-
ing the online templates of the user’s open and closed eyes
(Figure 3).

We observed that, right after a user blinks, their eyes are
open for a few seconds. This gives us a time window to
identify a template of each eye while the eye is open. We
collect m consecutive frames of the eyes, assuming that the
sub-images to be mostly sub-images of open eyes (in prac-
tice, m = 20 works well). For each left eye sub-image, the
correlation coefficient ci,j between sub-image i and j is cal-
culated. The image that is chosen as the open-eye template
of the left eye is the sub-image i∗left such that

i∗left = arg max
i

∑
j

ci,j .

Image i∗left is the most representative of the m left-eye im-
ages. The open-eye template i∗right of the right eye is cho-
sen similarly by correlating right-eye subimages. If the user
blinked once or twice while sub-images were being collected
these sub-images would not be chosen as the most represen-
tative sub-images, because they correlate poorly with the
open-eye images.

After the open-eye templates are learned, the system ob-
tains closed-eye templates by looking for a sub-image that
is significantly different from the open-eye sub-image. More
specifically, the system again collects m sub-images of the
user’s eyes. All are compared to the open-eye templates us-
ing the normalized correlation coefficient. If the sub-image
most unlike the open-eye template has a normalized corre-
lation coefficient value below a threshold it is chosen as the
closed-eye template. If no sub-image below the threshold
exists, the system would start to collect m new sub-images
and repeat the process until such a sub-image was found.
In practice, a correlation threshold of 0.8 worked well. Af-
ter the system found closed-eye templates for both eyes, the
initialization phase is complete.

2.2 Control of Mouse Pointer Movement
The tracking point located near the upper lip is used

to control the location of the mouse (lowest disk in Fig-
ure 2). Movement in the image is mapped to movement of
the mouse. Smoothing is applied to the sequence of mouse
pointer locations, so that the mouse pointer is easier to con-
trol. The distance the pointer moves on the screen that
one-pixel movement of the tracking point maps to can be
adjusted to the user’s preference.

2.3 Blink Detection
The algorithm, on a frame by frame basis, determines if

the user’s eyes are open or closed. This is accomplished by
performing a normalized correlation search with both tem-
plates. The center of each search is the approximate loca-

Figure 3: Examples of eye templates automatically
collected from various users.

tion of the respective eye, which is obtained by using the
respective eyebrow tracking point and offset vector −→p left or
−→p right. To allow the template search area to be sufficiently
large to always contain the actual eye location and to allow
real-time use, we do not employ a pixel-by-pixel search. In-
stead an initial search is performed by skipping over every k
pixels vertically and horizontally (e.g., k = 4). Then a pixel-
by-pixel search is performed around the three best-matched
locations. This allows the search area to be large enough
and does not sacrifice any significant accuracy. The final
decision of whether the eye is open or closed is determined
by which template has a higher correlation.

2.4 Interpretation of Mouse Commands with
Finite State Machines

The algorithm uses two finite state machines (FSM), one
for each eye, to control the clicking of the mouse (Figure 7).
The FSMs are used to determine if a blink is voluntary or
involuntary, filter out false detections, and determine which
type of mouse command the user is attempting. False de-
tections are filtered out by comparing a single detection to
the detections around it and taking a majority vote. The al-
gorithm allows the user two modes of control for simulating
mouse commands. If a user is able to wink, the algorithm
simulates a double-click when a user blinks and a left or right
click when the user winks with their left or right eye. The
algorithm simulates a left-drag action which occurs when
the user closes their left eye and keeps it closed while they
move the mouse pointer. When the user opens their left
eye, the algorithm sends a left-release signal to the operat-
ing system. If a user is only able to blink and cannot wink
the same FSMs can be used with a slight modification. In-
stead of double clicking when the user blinks, the algorithm
sends a left-click signal to the operating system. All other
transitions and states can still exist but do not perform any
mouse commands.

2.5 System Feedback to Users
The system presents the user with feedback so the user

knows if the system is working properly. This is especially
important right after initialization. The algorithm moves a
semi-transparent feedback window (Figure 4) along with the
mouse pointer so the user can be informed about whether
the system is detecting a closed or open eye. The window

Figure 4: Feedback window used to indicate to user
or caregiver the detected status of the eyes, here a
closed left eye and an open right eye, which is inter-
preted as a command to click the left mouse button.
The feedback window is positioned above the mouse
pointer and follows the mouse pointer throughout
the tracking. The window is semi-transparent to al-
low the user to see the interface below.

also contains a mouse image that changes as the user initi-
ates mouse commands so the user knows when a command
has been executed. In addition to the window, the algo-
rithm also performs a beep to signal that it has detected a
voluntary blink. This is helpful since the user is not able to
see the window when their eyes are closed.

3. EXPERIMENTS AND RESULTS
Two types of tests were performed. The first was to de-

termine the accuracy of the template matching for open-eye
versus closed-eye classification. The second was to test the
usability of the click interface system. Tests were performed
with a 640×480 resolution camera with the test subjects sit-
ting approximately 60 cm away from the camera (Figure 6).
The camera was a built-in laptop camera and the computer
had a 2.16 GHz Intel Core 2 processor with 2 gigabytes of
RAM.

Tests were conducted with a total of 20 subjects (13 males
and 7 females). Test subjects had various ethnicities and
included individuals wearing glasses (Figure 6).

3.1 Eye Classification Accuracy
To test the accuracy of the template matching system in

an environment similar to how the entire system would be
used, we asked test subjects to move the mouse pointer to
a region on the screen that was highlighted. The test sub-
ject opened and closed their eyes with the mouse pointer
in the region and then proceeded to the next region. The
positions of the regions included all edges and corners of the
screen. The images received by the camera were recorded
by the system. Each eye was then manually marked as open
or closed. Images in which eyes appeared in between being
open or closed were not considered. A total of 8306 left and
right eye sub-images were tested. An overall accuracy of
8027/8306 = 96.6% was obtained with the template match-
ing classification method (Table 1).

3.2 Mouse Pointer Clicking
The mouse-click functionality of the system was tested

by simulating the typical tasks that a user performs with
a computer mouse. For left, right and double clicking this
involved moving the mouse pointer to a specific location of
the screen and performing the desired task. To simulate
a left click and drag command, this involved moving the
pointer to a desired location, performing a left-down-click

Image Number Successful Success
Type of Classifi- Rate

Images cations
Open Eye Images 4987 4796 96.8%
Closed Eye Images 3319 3231 97.5%

All Images 8306 8027 96.6%

Table 1: Results of classification tests: Left and right
eye images, automatically segmented from videos of
8 test subjects, were classified to contain an open or
closed eye.

command, moving the pointer to another location and per-
forming a left-release command.

During testing the user was presented with a white screen
in which circles appeared one at a time (Figure 5). The
user’s task was to move the mouse pointer inside each circle
and send a mouse command. The color of the circle indi-
cated the mouse command the user was asked to perform.

We added an intermediate task between every mouse com-
mand that the user was asked to perform. This task only
required the user to move the pointer to a new location.
This intermediate task added rigor to our testing protocol.
It increased the period of time during which the user was not
supposed to perform a mouse command and thus allowed us
to measure occurrences of false-positive detections of mouse
commands.

The tests that required users to wink had fewer subjects
because not all test subjects were able to wink both their left
and right eyes while keeping the other eye visibly open. The
success rate for sending left-click commands via blinking was
91.8% = 201/219. This is significant because left-clicking
is the command most commonly used to interact with a
computer. The success rates for each mouse command is
presented in Table 2.

A successful action required the user to perform the cor-
rect type of mouse command in the target circle within a
10-second time limit. We imposed the time limit so if the
system was not detecting a blink or wink, our tests would
record this. Failed actions included performing the wrong
type of mouse command, performing the mouse command
while the pointer was outside the target circle, and failing
to issue the mouse command within the time limit.

4. DISCUSSION AND CONCLUSION
The system presented here extends the functionality of the

camera-based binary-switch systems by Grauman et al. [7]
and Chau and Betke [4] and thus provides a more versatile
system for users. By interpreting the motion of three facial
regions, including both eyes, the system enables a user to
control the mouse pointer on a level similar to a traditional
mouse. Also, during system development we observed that
by using both an open-eye and closed-eye template, instead
of one template, the system was more accurate in classifying
the eye state during head turns. As a user’s head turned and
their eyes were open, the correlation coefficient for the open-
eye template dropped. However, since a slightly-turned open
eye looks more like the open-eye template than the closed-
eye template, the system still registered it as an open-eye.
The same is true for when the user’s eye or eyes were closed
and their head turned. A system that uses a single-eye tem-
plate has difficulty in interpreting the eye state when the

Figure 5: Six screenshots of the testing environment taken while a user was performing mouse commands. At
the beginning of the test (frame 1), a blue circle appeared in a white screen and the user was asked to move the
mouse pointer into the blue circle. The location of the mouse is underneath the feedback window (Figure 4).
When the mouse pointer reached the blue circle, a red circle appeared at another location on the screen, as
shown in frame 2. The user moved the mouse pointer to the red circle and sent a click command. The screen
changed to contain a blue circle, again in a different location, as shown in frame 3. This process was repeated
until a total of 20 red and 20 blue circles had appeared. The user issued a mouse command whenever a red
circled was reached and just passed through the blue circles without sending a mouse command. We used
the blue circles in our test, because they provided an opportunity for us to evaluate if the system made any
false-positive interpretations of the eye state that resulted in unintended mouse commands.

Click Type Number Total Number Successful Incorrect Click Outside Failed to Success
of Tests of Clicks Clicks Command of Circle Click in Time Rate

Double Click 14 277 239 17 19 2 86.3%
Left and Right Click 4 77 63 6 4 4 81.8%

Dragging 3 84 80 2 2 0 95.2%

Blinking Left Click 14 260 239 N/A 19 2 91.9%

Table 2: Results of mouse command tests with 15 subjects. Success rates are computed from 21 tests. Five
individuals, who were able to wink, performed multiple tests involving different commands (top three rows).
Fourteen subjects used blinking to initiate left-click commands (bottom row).

Figure 6: Examples of users interacting with our system to move the mouse pointer with their head and send
click commands with their eyes.

Figure 7: Finite state machines (FSM) used to control mouse commands. The top FSM determines the
state of the left eye and the bottom FSM the state of the right eye. Input to the FSMs comes from the eye
classification section of the algorithm. Mouse commands are indicated in bold. Ellipses indicate states that
require communication with the other FSM.

head is turned significantly. The second template did not
result in a significant decrease in speed of our system be-
cause we implemented a fast two-state template search as
described in Section 2.3.

The system does not require any equipment beyond a
standard USB camera. It makes no assumptions about the
shape or skin color of the user’s face. Some tests were also
conducted with users wearing glasses and the system has
shown success with individuals with glasses. Lighting was
sometimes required to be moved so there was not a glare on
the user’s glasses, but after this precaution was taken the
system was able to detect the location of the users eyes and
accurately classify open and closed eyes.

The tests for evaluating the success of the left-and-right-
click and dragging commands had fewer subjects because
not everybody was able to wink with one eye while keeping
the other eye open.

Another issue with wink detection was that winking and
blinking eyes may appear different which impacted the ini-
tialization phase. Before the system could be fully used,
the online templates might have to be reinitialized to detect
winking eyes. Also when a user winks their other eye invol-
untarily begins to close which the system might interpret as
a blink. This fact would sometimes require the eye templates
to be reinitialized during testing. The user feedback window
allowed the user to quickly know when new templates needed
to be obtained. When being used by individuals with severe
motion impairments, the feedback window would indicate to
a caregiver that new eye templates should be acquired. If
the user was only performing left-click commands via blinks,
the eye templates would rarely need to be reinitialized.

Future work will include efforts to improve the perfor-
mance of wink detection. An improved system could auto-
matically detect when new templates needed to be obtained
so the assistance of a caregiver would not be necessary. We
also plan to transition this system from a basic research envi-
ronment into a web accessible technology. This has shown to
be effective for the Camera Mouse system which had started
as a research system and is now a popular assistive technol-
ogy. A large user base providing feedback would be benefi-
cial to the improvement of the system.

Acknowledgments
The authors thank the test subjects for their time and grate-
fully acknowledge NSF funding (HCC grant IIS-0713229).
The first author also acknowledges the NSF Scholar Award
to Attend Doctoral Consortium of PETRA 2010.

5. REFERENCES
[1] I. Bacivarov, M. Ionita, and P. Corcoran. Statistical

models of appearance for eye tracking and eye-blink
detection and measurement. IEEE Transactions on
Consumer Electronics,, 54(3):1312–1320, August 2008.

[2] M. Betke, J. Gips, and P. Fleming. The camera
mouse: Visual tracking of body features to provide
computer access for people with severe disabilities.
IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 10:1–10, 2002.

[3] Camera mouse, January 2010.
http://www.cameramouse.org.

[4] M. Chau and M. Betke. Real time eye tracking and
blink detection with USB cameras. Department of

Computer Science Technical Report BUCS-2005-012,
Boston University, April 2005.

[5] M. Divjak and H. Bischof. Eye blink based fatigue
detection for prevention of computer vision syndrome.
In Proceedings of the IAPR Conference on Machine
Vision Applications (MVA 2009), pages 350–353, May
2009.

[6] C. Fagiani, M. Betke, and J. Gips. Evaluation of
tracking methods for human-computer interaction. In
Proceedings of the Sixth IEEE Workshop on
Applications of Computer Vision (WACV ’02), pages
121–126, December 2002.

[7] K. Grauman, M. Betke, J. Lombardi, J. Gips, and
G. R. Bradski. Communication via eye blinks and
eyebrow raises: Video-based human-computer
interfaces. Universal Access in the Information
Society, 2(4):359–373, 2003.

[8] A. Haro, M. Flickner, and I. Essa. Detecting and
tracking eyes by using their physiological properties
dynamics and appearance. In Proceedings of the IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition, Vol. 1, pages 163–168, 2000.

[9] R. Jain, R. Kasturi, and B. Schunk. Machine Vision.
McGraw Hill, 1995.

[10] T. Moriyama, T. Kanade, J. F. Cohn, J. Xiao,
Z. Ambadar, J. Gao, and H. Imamura. Automatic
recognition of eye blinking in spontaneously occurring
behavior. In Proceedings of the 16th International
Conference on Pattern Recognition (ICPR 2002, pages
78–81, 2002.

[11] D. Torricelli, M. Goffredo, S. Conforto, and
M. Schmid. An adaptive blink detector to initialize
and update a view-based remote eye gaze tracking
system in a natural scenario. Pattern Recognition
Letters, 30(12):1144–1150, 2009.

[12] J. Wu and M. M. Trivedi. Simultaneous eye tracking
and blink detection with interactive particle filters.
EURASIP Journal on Advances Signal Processing,
2008:1–17, 2008.

[13] Z. Zhu, K. Fujimura, and Q. Ji. Real-time eye
detection and tracking under various light conditions.
In Proceedings of the Eye Tracking Research &
Applications Symposium (ETRA), pages 139–144.
ACM Press, 2002.

