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Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest
computed tomography~CT! are presented. The segmentation methods are based on adaptively
thresholding attenuation levels and use measures of nodule shape. The segmentation methods were
first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule
characteristics. The segmentation methods were also tested on sequential CT scans of patients. The
methods’ estimation of nodule growth were compared to the volume change calculated by a chest
radiologist. The best method segmented nodules on average 43% smaller or larger than the actual
nodule when errors were computed across all nodule variations on the phantom. Some methods
achieved smaller errors when examined with respect to certain nodule properties. In particular, on
the phantom individual methods segmented solid nodules to within 23% of their actual size and
nodules with 60.7 mm3 volumes to within 14%. On the clinical data, none of the methods examined
showed a statistically significant difference in growth estimation from the radiologist. ©2004
American Association of Physicists in Medicine.@DOI: 10.1118/1.1656593#
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volume effects, computed tomography, image segmentation
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I. INTRODUCTION

Lung cancer remains the leading cause of cancer death in
United States, with mortality of 160 000 people a year.1 The
overall 5-year survival rate is 15%,2 but early detection and
resection can improve patient prognosis. Low-dose CT
currently being evaluated as a possible screening metho
the identification of early lung cancer.3,4 Chest CT has been
used to diagnose pulmonary metastases in oncology pat
and evaluate the disease during treatment.5

A large number of patients undergoing screening for lu
cancer have non-calcified nodules; approximately half of
nodules aresmall, usually defined to be less than 5 mm
diameter.6 They are commonly benign but may also repres
early malignancy.6 Small nodules are therefore followed ov
time to determine potential size changes and evaluate gro
rates.7 Since the doubling time in nodule size is typical
used as a measure of nodule malignancy in small nodu8

measurement accuracy is important for characterizing n
ules as benign or malignant. To obtain accurate meas
ments of doubling times, methods for accurately segmen
nodules are needed.

The task of accurately segmenting nodules is challeng
To approximate nodule volume, radiologists typically rep
the size of a nodule in terms of its diameter in the ax
plane, or in terms of its major and minor axes. The dim
sion of a nodule in the craniocaudal direction is genera
overlooked. The partial volume effect makes it difficult f
humans to classify voxels along tissue boundaries leadin
large inter- and intra-observer variations in measuremen9

especially in the volume calculation of small nodules. Tab
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demonstrates that over- or underestimating the diameter
nodule by a single voxel can have large consequences in
volume calculation of the nodule. The errors compou
when volume growth is estimated. A small object whose v
ume is overestimated in an initial scan and underestimate
a follow-up scan could actually be shown to shrink ev
though it doubled in volume.

Several techniques for nodule segmentation in the lu
have been suggested.10–13They were applied after a radiolo
gist had located the nodules and placed a region of inte
around each. Zhaoet al. examined two- and three
dimensional@~2D! and~3D!# nodule shape measures11,12 and
proposed the use of morphological filters to deal with vess
within the region of interest.13 Ko et al. developed various
methods to determine representative lung and nodule att
ation values.10 A threshold halfway between these values w
used to classify voxels in the region of interest as nodule
lung voxels.

Several papers have documented the use of phanto
plastic materials that simulate how tissue is imaged
CT.7,8,10,14The true volumes of nodules in the phantom a
known and can thus be compared to measurements obta
by visual inspection or automated methods.

Other works have focused on automatic nodule detec
where nodules were delineated as part of the detec
process.15–22One common approach to extract nodule can
date regions automatically was to impose multiple thresho
on the attenuation values within CT images.16,19,21 Brown
et al.used a threshold range to segment objects in the lun17

Gurcanet al. used a weightedk-means clustering algorithm
839…Õ839Õ10Õ$22.00 © 2004 Am. Assoc. Phys. Med.
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840 Mullally et al. : Segmentation of nodules on chest computed tomography 840
to separate nodules and vessels from background
material.20 Nodules were segmented slice by slice and
sembled as 3D objects if the 2D components met sev
shape criteria.

In our work, we automated, extended, and compared s
eral segmentation methods by Koet al.10 and Zhaoet al.11,12

In a preliminary study,23 we extended the segmentatio
methods of Zhaoet al. by selecting the region of interes
automatically. In the current work, we further investigat
this automated region-of-interest placement and applied
2D and 3D shape-based methods of Zhaoet al. and to seg-
mentation methods that extend the work of Koet al. In par-
ticular, regions of interest were automatically created aro
all objects in the lung that were detected based upon t
attenuation levels. The segmentation of these objects
then performed as if they were nodules even though man
them were composed partially or completely of other str
tures, for example, vessels. The strategy of our work wa
separate the task of nodule segmentation from the tas
nodule identification. Our methods segmented all lung
jects and the task of identifying the nodules among them
then performed manually.

The focus of our work is automated analysis of nod
growth. There has been some preliminary work with clinic
data by Ko and Betke,21 Kawataet al.,24 and Kostiset al.25

The measurement of growth of small nodules is difficult
verify in vivo in humans, as the majority of these small no
ules are not resected, and their true volumes and growth r
are therefore unknown. The use of a chest phantom prov
us with an excellent scientific control for the case where
nodule growth rate was zero. For this important base c
we examined how the accuracy of automated growth esti
tion methods depended on nodule size and density. Phan
nodules of two densities, simulating solid and ground-gl
nodules, were evaluated. Our tests on clinical data focu
on solid nodules, which were mostly isolated. Some nodu
were attached to vessels. We did not examine ground-g
or partially solid nodules.

The goal of our work is to develop a system that can
used for examining the growth rate of nodules in the clini
work flow. Such a system must be at least as reliable as
radiologist in measuring growth.

II. METHODS

Contiguous regions of soft tissue voxels in the lung
called ‘‘nodule candidates’’ in this paper. Nodule candida

TABLE I. Comparison of volume to diameter of nodule measured on vox
of dimension 0.55 mm by 0.55 mm by 1.25 mm.

Diameter
of object
in voxels

Volume
in

mm3

Diameter
of object
in voxels

Volume
in

mm3

1 0.20 6 42.76
2 1.58 7 67.91
3 5.35 8 101.37
4 12.67 9 144.33
5 24.75 10 197.99
Medical Physics, Vol. 31, No. 4, April 2004
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are three-dimensional regions that can be segmented
the lung using a variety of techniques. Since the lung
composed of soft tissue and air, one way to identify nod
candidates is to impose some threshold, above which vo
can be considered to belong to a nodule candidate. The m
ner in which this threshold is selected affects the size
shape of nodule candidates. Additionally, because of the
tial volume effect, voxels that fall above or below suc
thresholds cannot be assumed to correspond entirely to
ule or surrounding lung material.

The methods examined here used three different crit
for threshold selection and were classified as fixed thresh
variable threshold, and shape-based methods.

A. Fixed threshold segmentation

The simplest threshold method used a fixed thresholdTf

throughout the entire lung. All voxels with a value great
thanTf were considered for nodule candidacy. Voxels we
defined to belong to the same nodule candidate if they w
4-connected26 to other voxel nodule candidates in the sam
axial slice. Voxels on different slices were considered co
nected if they were adjacent in the slices immediately ab
or below. The method tended to generate many small ca
date regions that did not correspond to true nodules, s
filter was applied to remove small isolated groups of pix
from consideration.

The fixed threshold was used as a ‘‘seed value’’ that
termined the initial nodule candidates for the variable thre
old and shape-based methods detailed in the following
range of seed thresholds was tested to discover how reli
the methods were given the choice of this seed value.

B. Variable threshold segmentation

Given the initial nodule candidates found by the fix
threshold method, a new thresholdTv was computed by find-
ing representative nodule and lung tissue values and se
the new threshold halfway between these two valu
ThresholdTv was then used to adjust which of the previous
selected voxels belong to nodule candidates.

The variable threshold method presented here was b
on a method by Koet al.10 They obtained representative no
ule values by examining the slice image on which the nod
was most conspicuous and averaged the values of at lea
voxels from the nodule’s central region. For the small
nodules where this was not possible, at least 5 voxels in
center were sampled. Five sample points were drawn fr
the lung and averaged to serve as the representative
value. Two variants of extracting representative lung a
nodule values were proposed by Koet al. In the first variant,
a representative nodule value was only drawn from the la
est nodule found in the scan and the resulting threshold
applied to all nodules. A second variation extracted nod
values from each nodule so that each nodule’s threshold
set independent of the other nodules in the scan.

It is important to note that the method by Koet al. relied
on hand-selected values. In our work, the approach was f

ls
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841 Mullally et al. : Segmentation of nodules on chest computed tomography 841
automated. Several variations in the automatic measurem
of nodule and lung attenuation values were developed
tested. ‘‘Global values’’ were extracted based on the inf
mation in the entire lung region and applied to all nodules
the lung. ‘‘Local values’’ were extracted from each nodu
candidate and its neighborhood and were only applied
each respective nodule candidate. The neighborhood of
nodule candidate was created by computing a minim
bounding box around the candidate and extending it by
voxel in all directions. Methods choosing average values
methods choosing the extreme minimum lung and maxim
nodule candidate values were examined.

Two global lung values were automatically drawn fro
the entire lung by examining all non-nodule candidate vox
within the lung, i.e., voxels below the seed threshold. Lu
value l min,g was the lowest non-nodule voxel value found
the lung;l av,g was the average of all non-nodule voxel valu
in the lung. Two global nodule values were also extrac
from the largest nodule candidate within the lung. Nod
value nmax,g was the largest voxel value within this large
nodule candidate;nav,g was the average of all voxel values
the nodule candidate core. Local nodule valuesnmax,l and
nav,l were drawn in the same manner from each nodule c
didate individually. Similarly, two local measures for lun
values were taken. Lung valuel min,l was the lowest value
found within the nodule candidate neighborhood. Lung va
l av,l was the average of non-candidate voxels within the n
ule candidate neighborhood.

Eight thresholds are derived from these representa
values: T15( l min,g1nmax,g)/2, T25( l min,g1nav,g)/2, T3

5( l av,g1nmax,g)/2, T45( l av,g1nav,g)/2, T55( l min,l

1nmax,l)/2, T65( l min,l1nav,l)/2, T75( l av,l1nmax,l)/2, andT8

5( l av,l1nav,l)/2. The notationTi
( f ) is used in the following

to indicate which seed thresholdf was applied before repre
sentative lung and nodule values were extracted by methi.

C. Shape-based segmentation

Given an initial nodule candidate found by the fixe
threshold method, a new thresholdTsh was computed on the
basis of shape information. This threshold was then use
delineate the nodule.

Zhaoet al.11,12used ‘‘gradient strength’’ and compactne
criteria to refine the segmentation from an initial boundi
box manually set around a nodule. The measures were a
matically observed over a range of thresholds and served
basis for choosing an optimal threshold with which to se
ment a nodule candidate. We re-implemented the tw
dimensional approach of Zhaoet al.11 substituting their
manually cropped regions of interest with regions autom
cally segmented with a seed threshold. We also impleme
a variant of their 3D algorithm, using two measures, diff
ences in 3D density values along the nodule border
sphere occupancy, to refine the segmentation we obta
from applying the seed threshold.
Medical Physics, Vol. 31, No. 4, April 2004
nt
nd
-
n

to
he

e
d

m

ls
g

d
e

n-

e
-

e

to

to-
s a
-
-

i-
ed
-
d
ed

1. 3D Density difference measure

In this work, the two-dimensional measure of ‘‘gradie
strength’’ proposed by Zhaoet al.11 was generalized to thre
dimensions and called ‘‘contour strength.’’ It was defined
the average magnitude of density differences across the
ule contour for every voxel on the nodule candidate’s co
tour. The contour of a nodule candidate was defined to c
tain all voxels with at least one neighbor that was not par
the nodule candidate. This neighborhood was defined by
connections in three dimensions.

At each voxelVi under consideration, if a voxelVj on one
side ofVi was part of the nodule candidate and the voxelVk

on the opposite side ofVi was not part of the nodule cand
date, then the contour strength ofVi was defined as the av
erage of the absolute values of density differences betw
all such pairs of opposing voxelsVj andVk . There are thir-
teen such possible pairs around each voxelVi ~see Fig. 1!.

2. Sphere occupancy measure

The radiusr of a nodule candidate was defined to be t
distance from the candidate’s centroid to its furthest po
This radius was then used to define a sphere that comple
encompasses the nodule candidate. By comparing the
ume of an object with the volume of the sphere encompa
ing it, the portion of the sphere the object occupied w
computed. In particular, given the volumeV of the nodule
candidate, the sphere occupancy of the candidate was de
as c53V/(4pr 3), where 0,c<1 ~see Fig. 2!. A nodule
with spherical shape has an occupancy value of one. We
cmin50.25 as a desirable lower bound on the occupa
value of a nodule. This value represents a strong requ

FIG. 2. Sphere occupancy: The radiusr of an object can define a sphere t
contain it. The ratio of this sphere to the volumeV of the object is the sphere
occupancy of that object.

FIG. 1. Contour strength: Example of a voxelX on the nodule border illus-
trated in two dimensions. Only corresponding pairs 1, 2, and 4 contribut
the contour strength measure.
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842 Mullally et al. : Segmentation of nodules on chest computed tomography 842
ment. Consider, for example, adding a one-voxel protrus
to a perfectly spherical object of diameter 4 voxels and v
ume 12.67 mm3 ~see Table I!. This would increase the ob
ject’s diameter by 1 voxel, and the sphere occupancy of
encompassing sphere would decrease from 1 to 0.296
the other hand, vessel structures were often found to h
sphere occupancies close to 0.

3. Combining 3D measures for determining final
shape-based segmentation

To find thresholdTsh both the contour strength and th
sphere occupancy of the nodule candidate were comp
over a range ofn threshold levelsTs1 ,...,Tsn , beginning at
the lowest valueTs1 . In some cases a single object se
mented with a low threshold broke into several objects a
higher threshold. When this happened, the shape-b
methods operated on each object separately to produce a
mentation for each such object. At the low threshold wh
the objects were not distinct, the segmentations consid
were the same for both objects. The segmentations con
ered for each object were only different at higher thresho
where the objects were distinct~see Fig. 6!. In these cases
the shape-based method returned a segmentation for
object found in the candidate region based on the con
strengths and sphere occupancies of each object consid
individually as described in the following. Because such o
jects were treated separately, the best segmentations of
objects could be at different thresholds.

For each object, the thresholdTsk that contained the maxi
mal contour strength was considered first. If the object ha
sphere occupancy value greater thancmin at Tsk , then Tsh

was assigned to beTsk . Otherwise a sequence of increa
ingly higher thresholds was checked until a threshold w
found at which the object had a sphere occupancy va
greater thancmin . If no threshold satisfied this constraint, th
threshold at which the highest sphere occupancy was fo
was considered to beTsh. When multiple objects were foun
in a region of interest, if the best segmentation of each ob
was chosen at the threshold after which objects have bec
distinct, then these objects would not overlap. However
the best segmentation of one or more of these objects
chosen at the threshold where objects were not yet dist
then such segmentations would completely engulf the obj
segmented at an equal or higher threshold. Where over
ping segmentations resulted, spurious segmentations
detected easily by visual inspection and removed.

D. Error measures

To measure which ofm methods performed best in est
mating nodule growth, the least-squares error between
growthGi , j ,k of a nodulei measured by a methodj in the CT
scan reconstructionk and its true growthGi

true was com-
puted:

min
j P$1,...,m%

(
k51

s

(
i 51

n

~Gi , j ,k2Gi
true!2, ~1!
Medical Physics, Vol. 31, No. 4, April 2004
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wheres is the number of CT scan reconstructions andn the
number of nodules. The growth of a nodulei was defined by
comparing its volumeV1,i , j ,k in scan 1 with its volume
V2,i , j ,k in scan 2:

Gi , j ,k5
V2,i , j ,k2V1,i , j ,k

V1,i , j ,k
. ~2!

The growth was not expressed as an absolute volume di
ence~as, for example, in Ref. 10!, but instead as a relative
measure, the ratio of the volume difference and the ini
volume. This simplified the comparison of volume chang
for nodules of different sizes and gave the same importa
to small nodules as to large nodules in the error analysis

1. Error measure on phantom data

Since the true growthGi
true of the phantom nodules wa

zero, the least-squares measure in Eq.~1! reduces to
minj(k51

s (i51
n (Gi,j,k)

2, whereGi , j ,k , defined in Eq.~2!, was
computed by substituting the volume measured in a phan
scan forV2,i , j ,k and the corresponding true nodule volum
for V1,i , j ,k . Any method that minimizes the sum of squar
errors can be considered an optimal method.27 For conve-
nience, the rms error

E~ j ,n,s!5A 1

ns (
k51

s

(
i 51

n

~Gi , j ,k!
2 ~3!

was computed for methodsj 51,...,m to compare the perfor-
mance of them methods in estimating that no change
volume occurred.

2. Error measure on clinical data

The least-squares measure in Eq.~1! applied to the clini-
cal data compared the growth estimateGi , j of a nodulei
computed by methodj with the growth estimateGi

(r ) of this
nodule provided by the radiologist. In particular,

min
j

(
i 51

n

~Gi , j2Gi
~r !!2

5min
j

(
i 51

n S V2,i , j ,k82V1,i , j ,k

V1,i , j ,k
2

V2,i ,k8
~r !

2V1,i ,k
~r !

V1,i ,k
~r ! D 2

, ~4!

where the volumeV1,i , j ,k of a nodule i measured with
method j in scan 1, taken with imaging parametersk, was
compared to its volumeV2,i , j ,k8 measured with methodj in
scan 2, taken with imaging parametersk8. VolumesV2,i ,k8

(r )

andV1,i ,k
(r ) were defined correspondingly.

We followed the analysis in Ref. 28 for comparison
observer studies to compare the radiologist’s estimates
the automated methods. Assuming an approximately nor
distribution of the difference in growth estimates, the 95
bounds of agreement between a method and the radiolo
show the bounds between which 95% of the differences
measurements fall.

Radiologists have been shown to have bias and varia
in their own measurements. The rms error might only rev
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a bias that is readily accounted for in practice. The bound
agreement are better measures of an automated method’
formance than its rms error because they can both captur
bias and offer a means of comparison to the variance.

III. MATERIALS

A. Chest phantom

A 5-cm-thick chest phantom fabricated with plastic ma
rials that simulate lung, muscle, fat, and bone when ima
on CT was used. This phantom was designed, construc
measured, and imaged at New York University Medic
Center.10 The phantom contained 20 spherical plastic nodu
in each lung~Fig. 3!. Solid and ground-glass nodules we
simulated by using two materials, composed of epoxy res
and urethanes, with respective specific gravities of 1.02
0.63 g/cm3. Ko et al.10 report that the attenuation of th
phantom’s lung parenchyma was2780 Hounsfield Units
~HU!, the attenuation of the plastic ground-glass nodules
approximately2360 HU, and of the solid nodules 50 HU
They obtained the nodule volumes by multiplying the sp
cific gravity of the materials with the measured nodu
weight. The volume measurements were determined to
accurate within 0.5%. Nodule volumes were 7.5, 18, 35,
60.7 mm3. Corresponding nodules diameters were 2.4, 3
4.0, and 4.9 mm. Five solid and five ground-glass nodule
each size category were used. The nodules were sepa
from each other by at least 1 cm. Except for six of the no
ules, three of each density, that were located adjacent to
lung wall, the nodules did not contact other structures.

In this work, the phantom was scanned four times. T
phantom was moved after each scan was completed. E
scan was reconstructed both with a low-frequency~B40f!
and high-frequency~B60f! reconstruction algorithm, result
ing in 8 data sets. The phantom scans were taken on a m
detector row Siemens Somatom Volume Zoom Plus 4
using a 1 mmcollimator for the entire study and were reco
structed in 1.25 mm sections at 1.0 mm increments usin
5123512 matrix~Table II!. Images were quantized using 1
bits per pixel.

FIG. 3. CT scan of chest phantom.
Medical Physics, Vol. 31, No. 4, April 2004
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B. Clinical data

Five patients were selected from patients with thoracic
scans taken for clinical evaluations at New York Universi
Each patient was evaluated in both an initial and a follow-
study. The studies occurred between January 2000 and
tember 2001. The number of days between scans was 26
average. Studies were performed on a multi-detector row
emens Somatom Volume Zoom Plus 4 CT in full inspirati
using a 1 mmcollimator and reconstructed with a 5123512
matrix in 1.25 mm sections at 1.0 mm intervals~Table II!. A
thoracic radiologist hand segmented 29 solid nodules. Th
hand segmentations were converted into nodule volumes~see
Table III!. Twenty of these were either isolated, which mea
that they were not connected to other structures in the l
such as blood vessels or lung fissures, or were adjacent t
pleural surface. None of these nodules were ground-g
nodules. Six of the nodules were less than 10 mm3, seven-
teen were less than 60 mm3. Six of the nodules larger than 6
mm3 were attached to other structures. Figure 4 shows a
image of a nodule used in testing.

IV. RESULTS

We tested the fixed-threshold, variable-threshold, a
shape-based segmentation methods over a broad rang
nodule variations on both phantom and clinical data.

A. Segmentation results for phantom data

On the phantom data, we testedm529 variations of the
segmentation methods onn540 nodules ins58 CT scan
reconstructions. The fixed threshold method was tested
2700, 2600, and2500 HU. These thresholds were als
used as seed thresholds to compute the thresholds o
variable threshold methods. The shape-based methods
tested over the range2700 to2500 HU with 50 HU incre-
ments.

The performance of each method across all and with
spect to particular nodule size and density variations w
evaluated using Eq.~3!. The performance of the method

TABLE II. Experimental data.

Patient Scan

Kernel indicator
of reconstruction

algorithm

Pixel
size

~mm!
Exposure

~mAs!

Number
of nodules

tested

1 First B60f 0.66 120 2
1 Second B60f 0.61 60 2
2 First B70f 0.62 20 3
2 Second B60f 0.62 120 4
3 First B70f 0.57 20 2
3 Second B60f 0.55 60 3
4 First B50f 0.51 20 3
4 Second B60f 0.52 100 2
5 First B60f 0.68 120 5
5 Second B60f 0.70 120 3

Phantom B40f B40f 0.74 20 40
Phantom B60f B60f 0.74 20 40
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844 Mullally et al. : Segmentation of nodules on chest computed tomography 844
overall and the performance with respect to solid nodules
shown as examples in Table IV.

The variable threshold methodT4
(2600), computed with

globally average lung and nodule values, is the overall b
method with a root mean squared error of 0.43. The varia
threshold methods based on the global measures~except
T1

(2700)), the 3D shape-based method, and the fix
threshold method with the highest threshold2500 HU per-
formed at similar levels. Variable threshold methodT1 ,
based on averaging the voxels with the globally lowest lu
and highest nodule attenuation, performed consiste
across all seed thresholds. The other global variable meth
did not perform as well at the lowest seed threshold. Me
ods using a low fixed threshold and methods using lo
variable thresholds with low seed thresholds (T(2700) and
T(2600)) did not perform well in general.

The phantom tests showed that taking size and den
properties into account when segmenting nodules yiel
better results than the overall best method. For exam
most segmentation methods, especiallyT7 , performed sig-
nificantly better on larger nodules than on smaller nodu
The 3D shape-based segmentation performed the best

TABLE III. Volumes of nodules according to radiologist.

Patient Nodule

Days
between

scans

Volume
~mm3!

in
initial
scan

Volume
~mm3!

in
follow-up

scan

1 1 294 118.76 122.24
1 2 28.33 22.57

2 1 294 8.25 12.70
2 2 19.89 31.74
2 3 28.63 4.88
2 4 a 58.59

3 1 394 57.75 42.69
3 2 a 8.85
3 3 3.21 3.85

4 1 116 381.98 203.39
4 2 5.80 a
4 3 40.62 31.57

5 1 241 328.28 a
5 2 640.79 a
5 3 61.92 161.35
5 4 100.47 286.45
5 5 67.17 166.19

aAn accurate segmentation from the radiologist for this nodule instance
not obtained and so cannot be included in the growth estimation ex
ments.
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and 18 mm3 nodules with respective rms errors of 0.50 a
0.45.

For the variable threshold method, global thresholds w
generally more accurate than local measures, however, l
variable-threshold methodT7

(2600) performed the best for 35
mm3 nodules with a rms error of 0.18 and local variab
threshold methodT7

(2700) performed the best for 60.7 mm3

nodules with a rms error of 0.14.
Most of the segmentation methods were more accurate

solid nodules than on groundglass nodules as should be
pected because the attenuation values of solid nodules
more distinct from the attenuation values of lung tissue th
the attenuation values of ground-glass nodules are. On s
nodules, variable threshold methodT1

(2600), based on aver-
aging the voxels with the globally lowest lung and highe

as
ri-

TABLE IV. Root mean squared error by method on phantom data for
nodules whereE( j ,n,s)5E( j ,40,8) and for solid nodules whereE( j ,n,s)
5E( j ,20,8).

Method

Rms error
over

all nodules

Rms error
over

solid nodules

2D shape 1.55 0.58
3D shape 0.54 0.32
Tf52700 HU 9.79 9.52
T1

(2700) 0.56 0.41
T2

(2700) 1.83 1.91
T3

(2700) 0.72 0.44
T4

(2700) 0.63 0.75
T5

(2700) 26.35 8.95
T6

(2700) 31.81 16.36
T7

(2700) 23.30 8.47
T8

(2700) 23.91 9.39

Tf52600 HU 1.05 1.38
T1

(2600) 0.50 0.23
T2

(2600) 0.60 0.80
T3

(2600) 0.68 0.31
T4

(2600) 0.43 0.29
T5

(2600) 2.95 1.32
T6

(2600) 3.15 1.56
T7

(2600) 2.53 1.19
T8

(2600) 2.54 1.22

Tf52500 HU 0.49 0.55
T1

(2500) 0.52 0.25
T2

(2500) 0.49 0.55
T3

(2500) 0.69 0.31
T4

(2500) 0.51 0.25
T5

(2500) 1.99 1.53
T6

(2500) 2.04 1.59
T7

(2500) 1.80 1.46
T8

(2500) 1.80 1.46
ce
FIG. 4. Isolated nodule near lung border: This sequen
is shown left to right from the top of the nodule.
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TABLE V. Difference in volume from radiologist of selected methods on clinical data.

Method

Isolated nodules including
nodules on lung surface All nodules

Mean
~mm3!

Width/2 of
95% confidence
interval ~mm3!

P
value

Mean
~mm3!

Width/2 of
95% confidence
interval ~mm3!

P
value

3D shape 217.3 12.7 0.010 13.8 47.1 0.55
Tf 2600 HU 65.0 73.1 0.078 306.3 212.7 0.00
Tf 2100 HU 241.1 26.2 0.003 237.3 29.3 0.017

T2
(2600) 34.2 52.4 0.188 213.9 163.0 0.01

T2
(2100) 217.8 13.3 0.011 16.2 35.7 0.366

T5
(2600) 6.8 28.1 0.619 99.9 92.7 0.040

T5
(2100) 214.9 18.4 0.107 5.9 29.6 0.690
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nodule attenuation, performed the best with a root m
squared error of 0.23. On ground-glass nodules, varia
threshold methodT2

(2600), based on the globally lowest lun
and average nodule attenuation, performed the best wi
root mean squared error of 0.25. Local measures perfor
especially poorly for ground-glass nodules. The smalles~7
and 18 mm3! ground-glass nodules were the most difficult
segment. This is likely due to the partial volume effect ha
ing a much greater impact on these nodules than on lar
more dense nodules. In contrast, the larger ground-glass
ules were segmented with errors comparable to solid n
ules.

Many of the methods performed better than the fix
threshold methods with statistical significance. For exam
on solid nodules, the 3D shape-based method performed
ter than all the fixed threshold methods~all p,0.001). Glo-
bal threshold methodT1 performed better than the fixe
threshold methods at each corresponding seed threshold~all
p,0.001). Local threshold methodT7 performed better than
the corresponding fixed-threshold methods~all p,0.001)
and better than the 3D shape-based method (p,0.05) on
60.7 mm3 nodules. The difference between the performan
of the methods on solid nodules in comparison to their p
formance on ground-glass nodules generally achieved st
tical significance. The difference between the performanc
many of the automated methods in comparison to othe
the automated methods did not achieve statistical sig
cance. Differences in performance in regards to reconst
tion filters generally did not achieve statistical significan
For calculations of statistical significance we conside
each of the eight reconstruction scans to be independen
only four scans are considered independent, most of the
ferences in method performance retain the same degre
statistical significance. Of the above-mentioned examp
only the differences between methodT7 and the 3D shape
based method on 60.7 mm3 nodules becomes statistically in
significant.

B. Segmentation results for clinical data

On clinical data, we testedm556 variations of the seg
mentation methods onn512 nodule pairs. We tested th
l. 31, No. 4, April 2004
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fixed threshold method at 100 HU increments over the ra
2600 to2100 HU. We tested the variable threshold metho
using all of these fixed thresholds as seed thresholds.
tested the shape-based methods over the same range w
HU increments. Note that the imaging parameters in ini
and follow-up scans were generally not the same, i.e.k
Þk8. As we followed the analysis in Ref. 28, we first test
to see if the differences in volume and growth estimat
between the methods and the radiologist were approxima
normal. For growth analysis of all nodules and volumet
analysis of isolated nodules we found this to be true. F
attached nodules the distribution of volume differences w
not normal because of effects relating to nodule size.

The 3D shape-based method had the smallest 95% li
of agreement for isolated nodules with a mean difference
growth of 20.0960.33. Neither the 3D shape-based meth
nor any of the other methods produced statistically sign
cant differences in growth estimates from the radiologis
estimates. Differences in many of the methods’volumeesti-
mates, however, were statistically significant. Table V p
sents volume differences for some of the methods tested

V. DISCUSSION

Characterizing small nodules~,1 cm! as malignant has
often relied on identifying nodule growth, most common
expressed in terms of volume doubling time,29 i.e., the time it
takes a nodule to double its size. We can compare the er
in estimates of zero growth in phantom tests with this 10
point of reference. Consider two spherical nodules that
roughly the extremes of nodule sizes tested in the phant
A one voxel increase in diameter for a nodule with a 6 voxel
diameter indicates a 59% increase in volume~see Table I!. A
one voxel increase in diameter for a nodule with a 3 voxel
diameter indicates a 137% increase in volume. Since the
method segmented nodules to within 43% of their act
size, this suggests that it was on average segmenting nod
to within one voxel of their surfaces and did not approa
this 100% mark by grossly overestimating growth on av
age.

On the clinical data, the 95% bounds of agreement
growth for the majority of methods fell near the positive a
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negative 0.5 marks, which indicates the number of meas
ments that will be 50% larger or 50% smaller than the ra
ologist’s segmentation. Consider a nodule that changed f
30 to 60 mm3 as determined by a hand segmentation of
radiologist. An automated method that underestimated
growth by 50% might show this nodule’s volume changi
from 30 to 45 mm3. Reliance on this automated metho
alone could significantly change the diagnosis of this nod
depending on the time between scans. Further testing n
to be done to determine the clinical significance of the au
mated methods’ difference in agreement with the radiolog
especially since none of the methods produced statistic
significant differences in growth estimates from the radio
gist.

Using segmentations from additional radiologists or
peated segmentations by the same radiologist would pro
a better model of what errors exist in current clinical pract
by which to compare the automated methods. Such a
tional data would reveal whether human variations are lar
than the difference between the average human observe
timates and the estimates by the automated methods.

Some of the error in the clinical tests can be attributed
the fact that the clinical images were not all taken with t
same imaging parameters. A useful next step would be
conduct further testing in the clinical setting that includ
enough cases to isolate imaging parameters. The differe
between growths calculated by the automated methods
those determined by the radiologist shows that more at
tion needs to be paid to accurate segmentation, especial
nodules connected to other structures in the lung. Nota
the consistently wide bounds of agreement with the radio
gist for the fixed threshold methods and the generally p
performance of these methods on the phantom show
fixed threshold methods are inadequate. They would req
too much specification to be useful under the wide variety
conditions that exist in a clinical setting.

The choice of the seed threshold did not effect all
methods in the same way. Some variable threshold meth
were less sensitive to changes in the seed value than ot
since these changes generally did not affect the maxim
nodule and minimum lung values. It should also be no
that the described methods segment nodules by choosi
single threshold and therefore cannot separate nodules
adjacent vessels if the density of the contact point is hig
than this threshold.

The global nodule measures drawn from the largest s
mented object may be drawn from a large vessel struc
and not from an actual nodule. The significance of this on
performance of the global threshold methods is unknown
avoid the issue, a nodule detection algorithm could be u
first and the segmentation methods could then be applie
the detected nodules only.

There was a difference between the seed thresholds
lected for use in the phantom experiments and those use
the experiments on clinical data. Six seed thresholds star
with 2600 HU were used for the clinical data, three thres
olds starting with2700 HU were used for the phantom dat
There were several reasons for this. First, because the p
Medical Physics, Vol. 31, No. 4, April 2004
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tom presented a known and fairly simple topology, expe
ments over a wider threshold range were not necessary
the clinical data, the presence of other structures in the l
that could connect to nodules and imaging artifacts due
motion presented problems if a low threshold was selecte
the seed threshold. From a few initial tests,Ts152600 HU
appeared to be a reasonable lower bound. This thres
vastly overestimates the size of nodules. This overestima
resulted in large 95% confidence intervals when results
the fixed threshold methodTf52600 HU were compared
with the radiologist’s segmentations as indicated in Table
Conversely, we chose an upper boundTsn50 HU for the
shape-based methods because large thresholds were like
create very small objects that would satisfy the sphere oc
pancy constraint and produce an incorrect, drastically un
estimated segmentation. This was especially true for nod
with strong connections to other structures. We only tes
the shape-based method in increments of 50 HU. A sma
increment would provide somewhat better segmentations
some nodules, but would not greatly change the results of
experiments.

It should be noted that in some cases the shape-b
segmentation methods produced multiple solutions from
nodule candidate when only a single nodule was present.
choose the best solution available of each nodule in com
ing the error. These multiple solutions were produced
cause an object segmented with a low threshold broke
several objects at a higher threshold. In practice this wo
require a physician to check the segmentations offered by
shape-based segmentation methods. The choices off
however, would be significantly different from each oth
Correct segmentations could be easily noted and incor
segmentations rejected.

Figure 5 portrays in 2D the ideal case for segmentati
Here a nodule is spherical and the only change in segme
tion of the nodule as the threshold increases is in the siz
the segmented object and the strength of its contour. I
then reasonable to select the strongest contour as the
segmentation of that nodule. This ideal case represen
nodule with a fairly homogeneous density. Real nodul
however, can have a more heterogeneous density and
more difficult to segment. Figure 6 portrays a case in 2D
which a nodule is attached to another structure in the lun
blood vessel perhaps. A low threshold, if it can separate
nodule from the larger vessel structure at all, segments a
spiculated object with a large amount of the blood ves
included. A higher threshold manages to remove most,
not all, of the blood vessel. At an even higher thresho
however, the nodule breaks into two pieces, one small
circular at the junction of the nodule and the vessel, the ot
a rough core of the nodule.

While Fig. 6 is a schematic illustration, it portrays a sit
ation observed in the clinical data. There are many fact
that may contribute to the occurrence of split objects, fro
imaging noise and motion artifacts to the presence of ot
lung structures. To avoid missing nodules or providing
incorrect segmentation when a better one is available,
method produced one segmentation result for each dis
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piece of a candidate nodule that was found at a higher thr
old.

In a few cases, the 2D shape-based method appears
very accurate and vastly outperform its 3D variant. Su
results were misleading because the voxels included in
nodule segmentation by the 2D method were very differ
from those segmented by the radiologist, especially for n
ules connected to other structures in the lung. The errone
segmentations produced by this method provided a com
ling reason not to use 2D slice-based methods of examin
nodules. Figure 7 presents a visual comparison of segme
tions performed by the radiologist, by the 2D shape-ba
method, and by the 3D shape-based method for an isol
nodule, which resulted in somewhat similar, but clearly n
identical segmentations. Figure 7 also presents a nodule
nected to vessels in which the segmentations were all v
different. The radiologist could more readily segment t
central nodule connected to several vessels. The 3D sh
based method provided a poor segmentation that inclu
both the nodules and the vessels. Even worse, the 2D sh
based method presented a useless disconnected collecti
objects. This is because a single spiculated object may o
have several disconnected protrusions in any single s
Compactness measures are not well defined when trea
separate objects as a single entity. Any method that co

FIG. 5. The ideal nodule: As the segmenting threshold increases, the no
shrinks around a central point. The strongest contour~shown with solid line!
is chosen as the best segmentation.

FIG. 6. The realistic nodule: Nodules often have complicated density st
ture. At a high threshold, this nodule breaks into two parts. The shape-b
segmentation methods produce a segmentation for each of these parts
Medical Physics, Vol. 31, No. 4, April 2004
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consistently piece together appropriate segmentations f
collections of 2D objects is likely to be complex and a
benefit gained from using simpler 2D methods will be lo
For shape-based methods, fully 3D measures are cle
needed.

VI. CONCLUSIONS

We proposed several automated methods for segmen
nodules for the purposes of aiding physicians in the diag
sis of pulmonary metastasis of oncology patients and ev
ation of the disease during treatment. Nodule segmenta
and growth assessment are difficult tasks. Manual ass
ment is time consuming and prone to error. We showed
utilizing the full 3D nature of CT scans produced better se
mentations than slice-by-slice examinations. No meth
achieved better than 0.43 rms error in volume measurem
across all nodule variations on the phantom. However, w
nodule size and density were examined separately, the
shape-based method and a few parametrizations of the
able threshold method showed strong improvement. In
vidual methods gave a rms error of 0.23 for solid nodu
and 0.14 for nodules with volume 60.7 mm3 on the phantom.
On the clinical data the radiologist and the automated me
ods produced statistically significant differences in volum
estimation, but not in growth estimation.

The ultimate goal is to design a growth estimation meth
that is at least as reliable as any radiologist. Toward this g
future work would compare the growth estimates of seve
radiologists to the estimates of the automated methods.
contribution of the current work was to single out whic
methods perform best on specific nodule properties.
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