Segmentation of nodules on chest computed tomography
for growth assessment
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Several segmentation methods to evaluate growth of small isolated pulmonary nodules on chest
computed tomographyCT) are presented. The segmentation methods are based on adaptively
thresholding attenuation levels and use measures of nodule shape. The segmentation methods were
first tested on a realistic chest phantom to evaluate their performance with respect to specific nodule
characteristics. The segmentation methods were also tested on sequential CT scans of patients. The
methods’ estimation of nodule growth were compared to the volume change calculated by a chest
radiologist. The best method segmented nodules on average 43% smaller or larger than the actual
nodule when errors were computed across all nodule variations on the phantom. Some methods
achieved smaller errors when examined with respect to certain nodule properties. In particular, on
the phantom individual methods segmented solid nodules to within 23% of their actual size and
nodules with 60.7 mrhvolumes to within 14%. On the clinical data, none of the methods examined
showed a statistically significant difference in growth estimation from the radiologist20@4
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[. INTRODUCTION demonstrates that over- or underestimating the diameter of a

Lung cancer remains the leading cause of cancer death in tfi9dule by a single voxel can have large consequences in the
United States, with mortality of 160 000 people a ye@he Volume calculation of the nodule. The errors compound
overall 5-year survival rate is 158aut early detection and When volume growth is estimated. A small object whose vol-
resection can improve patient prognosis. Low-dose CT i¢/me is overestimated in an initial scan and underespmated in
currently being evaluated as a possible screening method fé follow-up scan could actually be shown to shrink even
the identification of early lung cancif.Chest CT has been though it doubled in volume.

used to diagnose pulmonary metastases in oncology patients Several techniques for nodule segmentation in the lung
and evaluate the disease during treatnient. have been suggested.**They were applied after a radiolo-

A large number of patients undergoing screening for lunggist had located the nodules and placed a region of interest
cancer have non-calcified nodules; approximately half of thé@round each. Zhaoet al. examined two- and three-
nodules aresmall usually defined to be less than 5 mm in dimensiona[(2D) and(3D)] nodule shape measutés*and
diametef They are commonly benign but may also represenproposed the use of morphological filters to deal with vessels
early malignancy.Small nodules are therefore followed over Within the region of interest Ko et al. developed various
time to determine potential size changes and evaluate growtiethods to determine representative lung and nodule attenu-
rates’ Since the doubling time in nodule size is typically ation values? A threshold halfway between these values was
used as a measure of nodule malignancy in small no§ulesyised to classify voxels in the region of interest as nodule or
measurement accuracy is important for characterizing nodung voxels.
ules as benign or malignant. To obtain accurate measure- Several papers have documented the use of phantoms,
ments of doubling times, methods for accurately segmentinglastic materials that simulate how tissue is imaged on
nodules are needed. CT./8104The true volumes of nodules in the phantom are

The task of accurately segmenting nodules is challengingsnown and can thus be compared to measurements obtained
To approximate nodule volume, radiologists typically reportby visual inspection or automated methods.
the size of a nodule in terms of its diameter in the axial Other works have focused on automatic nodule detection
plane, or in terms of its major and minor axes. The dimenwhere nodules were delineated as part of the detection
sion of a nodule in the craniocaudal direction is generallyprocess>-?One common approach to extract nodule candi-
overlooked. The partial volume effect makes it difficult for date regions automatically was to impose multiple thresholds
humans to classify voxels along tissue boundaries leading ton the attenuation values within CT imad&$®2! Brown
large inter- and intra-observer variations in measurententsgt al. used a threshold range to segment objects in thelling.
especially in the volume calculation of small nodules. Table IGurcanet al. used a weighte#--means clustering algorithm
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TasLE I. Comparison of volume to diameter of nodule measured on voxelsare three-dimensional regions that can be segmented from
of dimension 0.55 mm by 0.55 mm by 1.25 mm. the lung using a variety of techniques. Since the lung is

Diameter Volume Diameter Volume composed of soft tissue and air, one way to identify nodule
of object in of object in candidates is to impose some threshold, above which voxels
in voxels mn?’ in voxels mm® can be considered to belong to a nodule candidate. The man-
1 0.20 5 4276 ner in which this threshold is selected affects the size and
2 1.58 7 67.91 shape of nodule candidates. Additionally, because of the par-
3 5.35 8 101.37 tial volume effect, voxels that fall above or below such
4 12.67 9 144.33 thresholds cannot be assumed to correspond entirely to nod-
5 24.75 10 197.99

ule or surrounding lung material.
The methods examined here used three different criteria
for threshold selection and were classified as fixed threshold,

to separate nodules and vessels from background lungariable threshold, and shape-based methods.
material’® Nodules were segmented slice by slice and as-

sembled as 3D objects if the 2D components met several .
shape criteria. A. Fixed threshold segmentation

In our work, we automated, extended, and compared sev- The simplest threshold method used a fixed thresfigld
eral segmentation methods by Kbal’® and Zhacet al™**  throughout the entire lung. All voxels with a value greater
In a preliminary study® we extended the segmentation thanT; were considered for nodule candidacy. Voxels were
methods of Zhacet al. by selecting the region of interest defined to belong to the same nodule candidate if they were
automatically. In the current work, we further investigated4-connectetf to other voxel nodule candidates in the same
this automated region-of-interest placement and applied it taxial slice. Voxels on different slices were considered con-
2D and 3D shape-based methods of Zleaal. and to seg- nected if they were adjacent in the slices immediately above
mentation methods that extend the work of &wal. In par-  or below. The method tended to generate many small candi-
ticular, regions of interest were automatically created aroundate regions that did not correspond to true nodules, so a
all objects in the lung that were detected based upon thefiiter was applied to remove small isolated groups of pixels
attenuation levels. The segmentation of these objects wa&gom consideration.
then performed as if they were nodules even though many of The fixed threshold was used as a “seed value” that de-
them were composed partially or completely of other structermined the initial nodule candidates for the variable thresh-
tures, for example, vessels. The strategy of our work was teld and shape-based methods detailed in the following. A
separate the task of nodule segmentation from the task @finge of seed thresholds was tested to discover how reliable
nodule identification. Our methods segmented all lung obthe methods were given the choice of this seed value.
jects and the task of identifying the nodules among them was
then performed manually.

The focus of our work is automated analysis of noduleB- Variable threshold segmentation

growth. There has been some preliminary work with clinical  Gjyen the initial nodule candidates found by the fixed
data by Ko and Betké; Kawataet al,** and Kostiset al®>  {nreshold method, a new threshdig was computed by find-
The measurement of growth of small nodules is difficult t0ing representative nodule and lung tissue values and setting
verify in vivo in humans, as the majority of these small nod-the new threshold halfway between these two values.
ules are not resected, and their true volumes and growth rat%resholdTv was then used to adjust which of the previously
are therefore unknown. The use of a chest phantom providegh|ected voxels belong to nodule candidates.
us with an excellent scientific control for the case where the The variable threshold method presented here was based
nodule growth rate was zero. For this important base casgy, 3 method by Ket alX° They obtained representative nod-
we examined how the accuracy of automated growth estimgje values by examining the slice image on which the nodule
tion methods depended on nodule size and density. Phantog,s most conspicuous and averaged the values of at least 20
nodules of two densities, simulating solid and ground-glasgoxels from the nodule’s central region. For the smallest
nodules, were evaluated. Our tests on clinical data focusefodules where this was not possible, at least 5 voxels in the
on solid nodules, which were mostly isolated. Some noduleganter were sampled. Five sample points were drawn from
were attached to vessels. We did not examine ground-glasge lung and averaged to serve as the representative lung
or partially solid nodules. value. Two variants of extracting representative lung and
The goal of our work is to develop a system that can be,pgyle values were proposed by Kbal. In the first variant,
used for examining the growth rate of nodules in _the clinicaly representative nodule value was only drawn from the larg-
work flow. Such a system must be at least as reliable as anyst nodule found in the scan and the resulting threshold was
radiologist in measuring growth. applied to all nodules. A second variation extracted nodule
values from each nodule so that each nodule’s threshold was
Il. METHODS set independent of the other nodules in the scan.
Contiguous regions of soft tissue voxels in the lung are It is important to note that the method by ko al. relied
called “nodule candidates” in this paper. Nodule candidateson hand-selected values. In our work, the approach was fully
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automated. Several variations in the automatic measurement 7 7 Eodl(l)le \C/oxels go%ﬂe Voxels
of nodule and lung attenuation values were developed and - Ll(l)ltlg i isentenr Cgmrci’gltft’i‘;fg
tested. “Global values” were extracted based on the infor- Voxels |:| Voxels

mation in the entire lung region and applied to all nodules in
the lung. “Local values” were extracted from each nodule
candidate and its neighborhood and were only applied to
each respective nodule candidate. The neighborhood of the
nodule candidate was created by computing a minimum
bounding box around the candidate and extending it by one
voxel in all directions. Methods choosing average values anéic. 1. Contour strength: Example of a voxélon the nodule border illus-
methods choosing the extreme minimum lung and maximuntrated in two dimensions. Only corresponding pairs 1, 2, and 4 contribute to
nodule candidate values were examined. the contour strength measure.

Two global lung values were automatically drawn from
th.e gntire lung by examining all non-nodule candidate voxels; 3p Density difference measure
within the lung, i.e., voxels below the seed threshold. Lung ] . . . )
valuel ying Was the lowest non-nodule voxel value found in In th'f work, the two—dlmenslllonal measure of “gradient
the lung;l ,, 4 was the average of all non-nodule voxel valuesStrength” proposed by Zhaet al.™ was generalized to three

in the lung. Two global nodule values were also extractedlimensions and called “contour strength.” It was defined as
the average magnitude of density differences across the nod-

from the largest nodule candidate within the lung. Nodule | ; | h dul didate

value np,,g Was the largest voxel value within this largest uie cs)rrr]]tour or evefry voxde Ion t 3_30 ue cag fl at((jas con-

nodule candidaten,, g was the average of all voxel values in toyr. € °°”t°‘%f of a nodule cand ate was defined to con-
' tain all voxels with at least one neighbor that was not part of

the nodule candidate core. Local nodule valugg,, and . . i ! :
Nay, Were drawn in the same manner from each nodule cant-he nodule candidate. This neighborhood was defined by six

didate individually. Similarly, two local measures for lung ConAr:eeC;fhn\s,c;Qetl\r}reuengéTggigg;}aﬁon if 2 voxsl on one
values were taken. Lung valug,,, was the lowest value ! ' !

found within the nodule candidate neighborhood. Lung valuezf?hc;f\éi Wc?:itgasritdcg g;eVc;glﬂitca;?'gﬁﬁeaﬁgézfevgféi-
I w1 was the average of non-candidate voxels within the nod- PP ! P )
ule candidate neighborhood. date, then the contour strength \é¢f was defined as the av-

Eight thresholds are derived from these representativgrage of the absolute values of density differences between

) all such pairs of opposing voxelg andV, . There are thir-
values: T1=(lningTMmaxg)2:  T2=(mingtNavg)/2, T3 . . X
. ! ! teen such possible pairs around each vokelsee Fig.
:(lav,g+nmaxg)/2: T4:(|av,g+nav,g)/21 T5:(|min,l P P Me(l g .

Fmax))/2, Te= (Iming+Nav))/2, T7= (lay) + Nimax)/2, andTg

= (I ay) + Nayy)/2. The notationT(" is used in the following - Sphere occupancy measure

to indicate which seed thresholdvas applied before repre-  The radiusr of a nodule candidate was defined to be the

sentative lung and nodule values were extracted by method distance from the candidate’s centroid to its furthest point.
This radius was then used to define a sphere that completely
encompasses the nodule candidate. By comparing the vol-
ume of an object with the volume of the sphere encompass-
ing it, the portion of the sphere the object occupied was

C. Shape-based segmentation computed. In particular, given the volumé of the nodule

Given an initial nodule candidate found by the fixed candidate, the sphere occupancy of the candidate was defined

_ 3 H
threshold method, a new threshdig, was computed on the 25 €=3V/(47r”), where O<c<1 (see Fig. 2 A nodule

basis of shape information. This threshold was then used tWith spherical shape'has an occupancy value of one. We set
delineate the nodule. Cmin=0.25 as a desirable lower bound on the occupancy

Zhaoet al1*2used “gradient strength” and compactnessvalue of a nodule. This value represents a strong require-

criteria to refine the segmentation from an initial bounding
box manually set around a nodule. The measures were auto-
matically observed over a range of thresholds and served as a
basis for choosing an optimal threshold with which to seg-
ment a nodule candidate. We re-implemented the two-
dimensional approach of Zhaet al!* substituting their
manually cropped regions of interest with regions automati-
cally segmented with a seed threshold. We also implemented
a variant of their 3D algorithm, using two measures, differ-
ences in 3D density values along the nodule border an I6. 2. Sphere occupancy: The radiusf an object can define a sphere to

sphere occupancy, to refine the segmentation we obtaindnain it. The ratio of this sphere to the voluMef the object is the sphere
from applying the seed threshold. occupancy of that object.
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ment. Consider, for example, adding a one-voxel protrusionvheres is the number of CT scan reconstructions anithe
to a perfectly spherical object of diameter 4 voxels and vol-number of nodules. The growth of a nodulleas defined by
ume 12.67 mm (see Table )l This would increase the ob- comparing its volumeVy; j in scan 1 with its volume
ject’s diameter by 1 voxel, and the sphere occupancy of th&/,; ; . in scan 2:

encompassing sphere would decrease from 1 to 0.296. On v
the other hand, vessel structures were often found to have G; v 2
sphere occupancies close to 0. o Viijk

The growth was not expressed as an absolute volume differ-
ence(as, for example, in Ref. 30but instead as a relative
measure, the ratio of the volume difference and the initial
volume. This simplified the comparison of volume changes
To find thresholdT, both the contour strength and the for nodules of different sizes and gave the same importance

sphere occupancy of the nodule candidate were computed small nodules as to large nodules in the error analysis.
over a range of threshold levelsT,,...,T,, beginning at

the lowest valueTg;. In some cases a single object seg-

mented with a low threshold broke into several objects at ail - Error measure on phantom data
higher threshold. When this happened, the shape-based Since the true growtiG{"*® of the phantom nodules was
methods operated on each object separately to produce a s&§r0, the least-squares measure in Efj) reduces to
mentation for each such object. At the low threshold whereMin=;_ 3 1(G;j,)% whereG; ; x, defined in Eq.(2), was

the objects were not distinct, the segmentations consideregPmputed by substituting the volume measured in a phantom
were the same for both objects. The segmentations consigcan forVy; ;  and the corresponding true nodule volume
ered for each object were only different at higher thresholdgor Vi j . Any method that minimizes the sum of squared
where the objects were distinttee Fig. 6. In these cases, €rrors can be considered an optimal metfo&or conve-

the shape-based method returned a segmentation for eaBi¢nce, the rms error

3. Combining 3D measures for determining final
shape-based segmentation

object found in the candidate region based on the contour 15 7
strengths and sphere occupancies of each object consideredE(j n,s)= _2 2 (Gi, )2 3)
individually as described in the following. Because such ob- nSi=1i=1

jects were treated separately, the best segmentations of sug o computed for methogs=1,...m to compare the perfor-

objects could be at different thresholds. ~ mance of them methods in estimating that no change in
For each object, the threshaldy that contained the maxi- ,5jume occurred.

mal contour strength was considered first. If the object had a
sphere occupancy value greater thgp, at Tgy, thenTg,
was assigned to b&g,. Otherwise a sequence of increas-
ingly higher thresholds was checked until a threshold was The least-squares measure in EL. applied to the clini-
found at which the object had a sphere occupancy valueal data compared the growth estim&e; of a nodulei
greater tharc,,;,. If no threshold satisfied this constraint, the computed by methogwith the growth estimatei(') of this
threshold at which the highest sphere occupancy was foundodule provided by the radiologist. In particular,
was considered to bgy,. When multiple objects were found n
in a region of interest, if the best segmentation of each object,i, 2 (G, —G")2
was chosen at the threshold after which objects have becomg =1~ '/
distinct, then these objects would not overlap. However, if )
the best segmentation of one or more of these objects was o Vaiik —Vijjk V(zr,i),kr_V(lr,i),k
chosen at the threshold where objects were not yet distinct, ~™MN & Vie Yo ' (4)
then such segmentations would completely engulf the objects e Lik
segmented at an equal or higher threshold. Where overlapvhere the volumeVy;;, of a nodulei measured with
ping segmentations resulted, spurious segmentations wenaethodj in scan 1, taken with imaging parametégswas
detected easily by visual inspection and removed. compared to its volum&,; ; ,» measured with methodin
scan 2, taken with imaging parametdsr's VqumesV(eri)'k,
andV{?}  were defined correspondingly.

We followed the analysis in Ref. 28 for comparison of

To measure which ofn methods performed best in esti- observer studies to compare the radiologist's estimates with
mating nodule growth, the least-squares error between thge automated methods. Assuming an approximately normal
growthG; ; , of a nodulei measured by a methgdn the CT  distribution of the difference in growth estimates, the 95%
scan reconstructiol and its true growthG{"“® was com-  pounds of agreement between a method and the radiologist

2. Error measure on clinical data

D. Error measures

puted: show the bounds between which 95% of the differences in
s n measurements fall.
min E E (Gi k_Gitfue)Z, (1) Radiologists have been shown to have bias and variance
k=1i=1 o

jell,..m} in their own measurements. The rms error might only reveal
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TasLE Il. Experimental data.

Kernel indicator  Pixel Number
of reconstruction size  Exposure of nodules
Patient Scan algorithm (mm) (mAs) tested
1 First B60f 0.66 120 2
1 Second B60f 0.61 60 2
2 First B70f 0.62 20 3
2 Second B60f 0.62 120 4
3 First B70f 0.57 20 2
: =, o 3 Second B60f 0.55 60 3
3 R 4 First B50f 0.51 20 3
. ; : o ey 4 Second B60f 0.52 100 2
h¥ _ ____d 5 First B6Of 068 120 5
s : 5 Second B60f 0.70 120 3
Fic. 3. CT scan of chest phantom. Phantom  B40f B40f 0.74 20 40
Phantom  B60f B60f 0.74 20 40

a bias that is readily accounted for in practice. The bounds of
agreement are better measures of an automated method's pgr-

formance than its rms error because they can both capture the ) ) ) )
bias and offer a means of comparison to the variance. Five patients were selected from patients with thoracic CT

scans taken for clinical evaluations at New York University.
Each patient was evaluated in both an initial and a follow-up
study. The studies occurred between January 2000 and Sep-
tember 2001. The number of days between scans was 268 on
A. Chest phantom average. Studies were performed on a multi-detector row Si-
emens Somatom Volume Zoom Plus 4 CT in full inspiration

Clinical data

[ll. MATERIALS

A 5-cm-thick chest phantom fabricated with plastic mate-

rials that simulate lung, muscle, fat, and bone when imageHs"tg_ a 11mzn;colllmatotr_ and rteio;struc_tetd W'EP SI 5>]|£|51A2
on CT was used. This phantom was designed, constructema rxin d lmr_ntsr(]ac |gns at L. t”:jngl erl\_/gtsa del ). Th
measured, and imaged at New York University Medical oracic radiologist hand segmente solidnodules. These

Center! The phantom contained 20 spherical plastic nodule and segmentations were conver.ted mto nodule V(.)IL(S =
in each lung(Fig. 3. Solid and ground-glass nodules were able 1ll). Twenty of these were either isolated, WhI.Ch means
simulated by using two materials, composed of epoxy resinghat they were not connected to other structures in the lung

and urethanes, with respective specific gravities of 1.02 anaUCh as blood vessels or lung fissures, or were adjacent to the
0.63 g/cn. Ko et all® report that the attenuation of the pleural surface. None of these nodules were ground-glass

phantom’s lung parenchyma was780 Hounsfield Units nodules. Six of the nO(Z:I%HES_ were less than 10mseven-
(HU), the attenuation of the plastic ground-glass nodules waEee‘; were less than 60 ninix of the nodu!es larger than 60
approximately—360 HU, and of the solid nodules 50 HU. mnT were attached to other stryctures. Figure 4 shows a CT
They obtained the nodule volumes by multiplying the spe-'mage of a nodule used in testing.
cific gravity of the materials with the measured nodule
weight. The volume measurements were determined to b
accurate within 0.5%. Nodule volumes were 7.5, 18, 35, an(!i - RESULTS
60.7 mni. Corresponding nodules diameters were 2.4, 3.2, We tested the fixed-threshold, variable-threshold, and
4.0, and 4.9 mm. Five solid and five ground-glass nodules o§hape-based segmentation methods over a broad range of
each size category were used. The nodules were separatgddule variations on both phantom and clinical data.
from each other by at least 1 cm. Except for six of the nod-
ules, three of each density, that were located adjacent to tH%‘
lung wall, the nodules did not contact other structures. On the phantom data, we testet=29 variations of the

In this work, the phantom was scanned four times. Thesegmentation methods an=40 nodules ins=8 CT scan
phantom was moved after each scan was completed. Eachconstructions. The fixed threshold method was tested for
scan was reconstructed both with a low-frequeiByO0f) —700, —600, and—500 HU. These thresholds were also
and high-frequencyB60f) reconstruction algorithm, result- used as seed thresholds to compute the thresholds of the
ing in 8 data sets. The phantom scans were taken on a multiariable threshold methods. The shape-based methods were
detector row Siemens Somatom Volume Zoom Plus 4 CTested over the range 700 to —500 HU with 50 HU incre-
using a 1 mmcollimator for the entire study and were recon- ments.
structed in 1.25 mm sections at 1.0 mm increments using a The performance of each method across all and with re-
512x512 matrix(Table Il). Images were quantized using 16 spect to particular nodule size and density variations was
bits per pixel. evaluated using Eq(3). The performance of the methods

Segmentation results for phantom data
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TasLE lll. Volumes of nodules according to radiologist. TaBLE IV. Root mean squared error by method on phantom data for all
nodules wheré=(j,n,s)=E(j,40,8) and for solid nodules wheE(j,n,s)
Volume Volume =E(j,20,8).
(mm®) (mm’)
Days in in Rms error Rms error
between initial follow-up over over
Patient Nodule scans scan scan Method all nodules solid nodules
1 1 294 118.76 122.24 2D shape 1.55 0.58
1 2 28.33 22.57 3D shape 0.54 0.32
T;=—700HU 9.79 9.52
2 1 294 8.25 12.70 T(-700) 0.56 0.41
2 2 19.89 31.74 T(277oo) 1.83 1.91
2 4 a 58.59 {700 0.63 0.75
3 1 394 57.75 42.69 TS 70 26.35 8.95
3 2 a 8.85 T 700 31.81 16.36
3 3.21 3.85 (- 700) 23.30 8.47
T 700 23.91 9.39
4 1 116 381.98 203.39
4 2 5.80 a T¢=—600 HU 1.05 1.38
4 3 40.62 31.57 T{~600) 0.50 0.23
T, 600 0.60 0.80
5 2 640.79 a Tg—eoo) 0.43 0.29
: Q% me g
: : T 600 3.15 1.56
5 5 67.17 166.19 T-600 oes o
@An accurate segmentation from the radiologist for this nodule instance was Th o 2.54 122
nmo;n?stalned and so cannot be included in the growth estimation experi- T,= —500 HU 0.49 0.55
T{ 500 0.52 0.25
T4 500 0.49 0.55
T 50 0.69 0.31
overall and the performance with respect to solid nodules are TEEZEZ; 051 0.25
shown as examples in Table IV. I{:soo) ;'gi i:g
The variable threshold metho®y ®°?, computed with T(-500 180 146
globally average lung and nodule values, is the overall best (500 1.80 1.46

method with a root mean squared error of 0.43. The variable=
threshold methods based on the global meas(easept
T{"79), the 3D shape-based method, and the fixed-
threshold method with the highest threshet$00 HU per- and 18 mm nodules with respective rms errors of 0.50 and
formed at similar levels. Variable threshold methdd, 0.45.
based on averaging the voxels with the globally lowest lung For the variable threshold method, global thresholds were
and highest nodule attenuation, performed consistentlgenerally more accurate than local measures, however, local
across all seed thresholds. The other global variable methodgrriable-threshold methodl, %) performed the best for 35
did not perform as well at the lowest seed threshold. Methmm?® nodules with a rms error of 0.18 and local variable
ods using a low fixed threshold and methods using locathreshold method °® performed the best for 60.7 nim
variable thresholds with low seed threshold& (" and  nodules with a rms error of 0.14.
T(=69) did not perform well in general. Most of the segmentation methods were more accurate on
The phantom tests showed that taking size and densitgolid nodules than on groundglass nodules as should be ex-
properties into account when segmenting nodules yieldegected because the attenuation values of solid nodules are
better results than the overall best method. For examplenore distinct from the attenuation values of lung tissue than
most segmentation methods, especidlly, performed sig- the attenuation values of ground-glass nodules are. On solid
nificantly better on larger nodules than on smaller nodulesnodules, variable threshold metha 600) ' pased on aver-
The 3D shape-based segmentation performed the best onaging the voxels with the globally lowest lung and highest

Fic. 4. Isolated nodule near lung border: This sequence
is shown left to right from the top of the nodule.
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TasLE V. Difference in volume from radiologist of selected methods on clinical data.

Isolated nodules including

nodules on lung surface All nodules
Width/2 of Width/2 of
Mean 95% confidence P Mean 95% confidence P
Method (mm) interval (mm®) value (mn) interval (mm®) value
3D shape -17.3 12.7 0.010 13.8 47.1 0.55
T¢ —600 HU 65.0 73.1 0.078 306.3 212.7 0.008
T¢ —100 HU —-41.1 26.2 0.003 —37.3 29.3 0.017
T4 600 34.2 52.4 0.188 213.9 163.0 0.015
T, 100 -17.8 13.3 0.011 16.2 35.7 0.366
T{ 600 6.8 28.1 0.619 99.9 92.7 0.040
T{ 100 -14.9 18.4 0.107 5.9 29.6 0.690

nodule attenuation, performed the best with a root meafixed threshold method at 100 HU increments over the range
squared error of 0.23. On ground-glass nodules, variable—600 to—100 HU. We tested the variable threshold methods
threshold method, %%, based on the globally lowest lung using all of these fixed thresholds as seed thresholds. We
and average nodule attenuation, performed the best with ested the shape-based methods over the same range with 50
root mean squared error of 0.25. Local measures performedU increments. Note that the imaging parameters in initial
especially poorly for ground-glass nodules. The small@ést and follow-up scans were generally not the same, ke.,
and 18 mm) ground-glass nodules were the most difficult to #k’. As we followed the analysis in Ref. 28, we first tested
segment. This is likely due to the partial volume effect hav-to see if the differences in volume and growth estimation
ing a much greater impact on these nodules than on largelbetween the methods and the radiologist were approximately
more dense nodules. In contrast, the larger ground-glass nodermal. For growth analysis of all nodules and volumetric
ules were segmented with errors comparable to solid nodanalysis of isolated nodules we found this to be true. For
ules. attached nodules the distribution of volume differences was

Many of the methods performed better than the fixednot normal because of effects relating to nodule size.
threshold methods with statistical significance. For example, The 3D shape-based method had the smallest 95% limits
on solid nodules, the 3D shape-based method performed besf agreement for isolated nodules with a mean difference in
ter than all the fixed threshold metho@dl p<0.001). Glo- growth of —0.09+£0.33. Neither the 3D shape-based method
bal threshold methodr; performed better than the fixed nor any of the other methods produced statistically signifi-
threshold methods at each corresponding seed threghibld cant differences in growth estimates from the radiologist’s
p<0.001). Local threshold methdd, performed better than estimates. Differences in many of the methodsumeesti-
the corresponding fixed-threshold metho@dl p<0.001) mates, however, were statistically significant. Table V pre-
and better than the 3D shape-based methed {.05) on  sents volume differences for some of the methods tested.
60.7 mn? nodules. The difference between the performance
of the methods on solid nodules in comparison to their per;
formance on ground-glass nodules generally achieved statis\,/-' DISCUSSION
tical significance. The difference between the performance of Characterizing small nodulgs<1l cm) as malignant has
many of the automated methods in comparison to other offten relied on identifying nodule growth, most commonly
the automated methods did not achieve statistical signifiexpressed in terms of volume doubling tiffé.e., the time it
cance. Differences in performance in regards to reconstrud¢akes a nodule to double its size. We can compare the errors
tion filters generally did not achieve statistical significance.in estimates of zero growth in phantom tests with this 100%
For calculations of statistical significance we consideredooint of reference. Consider two spherical nodules that are
each of the eight reconstruction scans to be independent. tbughly the extremes of nodule sizes tested in the phantom.
only four scans are considered independent, most of the difA one voxel increase in diameter for a nodulehnét 6 voxel
ferences in method performance retain the same degree dfameter indicates a 59% increase in volufsee Table). A
statistical significance. Of the above-mentioned examplegne voxel increase in diameter for a nodulehndt 3 voxel
only the differences between methdd and the 3D shape- diameter indicates a 137% increase in volume. Since the best
based method on 60.7 nimodules becomes statistically in- method segmented nodules to within 43% of their actual
significant. size, this suggests that it was on average segmenting nodules
to within one voxel of their surfaces and did not approach
this 100% mark by grossly overestimating growth on aver-
age.

On clinical data, we testeth=56 variations of the seg- On the clinical data, the 95% bounds of agreement for
mentation methods om=12 nodule pairs. We tested the growth for the majority of methods fell near the positive and

B. Segmentation results for clinical data
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negative 0.5 marks, which indicates the number of measurégem presented a known and fairly simple topology, experi-
ments that will be 50% larger or 50% smaller than the radi-ments over a wider threshold range were not necessary. In
ologist’s segmentation. Consider a nodule that changed frorthe clinical data, the presence of other structures in the lung
30 to 60 mm as determined by a hand segmentation of thethat could connect to nodules and imaging artifacts due to
radiologist. An automated method that underestimated thenotion presented problems if a low threshold was selected as
growth by 50% might show this nodule’s volume changingthe seed threshold. From a few initial testg; = —600 HU

from 30 to 45 mm. Reliance on this automated method appeared to be a reasonable lower bound. This threshold
alone could significantly change the diagnosis of this nodulerastly overestimates the size of nodules. This overestimation
depending on the time between scans. Further testing needssulted in large 95% confidence intervals when results of
to be done to determine the clinical significance of the autothe fixed threshold method;= —600HU were compared
mated methods’ difference in agreement with the radiologistyith the radiologist's segmentations as indicated in Table V.
especially since none of the methods produced statisticallZonversely, we chose an upper boufig,=0 HU for the
significant differences in growth estimates from the radiolo-shape-based methods because large thresholds were likely to
gist. create very small objects that would satisfy the sphere occu-

Using segmentations from additional radiologists or re-pancy constraint and produce an incorrect, drastically under-
peated segmentations by the same radiologist would providestimated segmentation. This was especially true for nodules
a better model of what errors exist in current clinical practicewith strong connections to other structures. We only tested
by which to compare the automated methods. Such addihe shape-based method in increments of 50 HU. A smaller
tional data would reveal whether human variations are largeincrement would provide somewhat better segmentations for
than the difference between the average human observer essme nodules, but would not greatly change the results of the
timates and the estimates by the automated methods. experiments.

Some of the error in the clinical tests can be attributed to It should be noted that in some cases the shape-based
the fact that the clinical images were not all taken with thesegmentation methods produced multiple solutions from a
same imaging parameters. A useful next step would be toodule candidate when only a single nodule was present. We
conduct further testing in the clinical setting that includedchoose the best solution available of each nodule in comput-
enough cases to isolate imaging parameters. The differendeg the error. These multiple solutions were produced be-
between growths calculated by the automated methods arwhuse an object segmented with a low threshold broke into
those determined by the radiologist shows that more atterseveral objects at a higher threshold. In practice this would
tion needs to be paid to accurate segmentation, especially oéquire a physician to check the segmentations offered by the
nodules connected to other structures in the lung. Notablyshape-based segmentation methods. The choices offered,
the consistently wide bounds of agreement with the radiolohowever, would be significantly different from each other.
gist for the fixed threshold methods and the generally pooCorrect segmentations could be easily noted and incorrect
performance of these methods on the phantom show thaegmentations rejected.
fixed threshold methods are inadequate. They would require Figure 5 portrays in 2D the ideal case for segmentation.
too much specification to be useful under the wide variety oHere a nodule is spherical and the only change in segmenta-
conditions that exist in a clinical setting. tion of the nodule as the threshold increases is in the size of

The choice of the seed threshold did not effect all thethe segmented object and the strength of its contour. It is
methods in the same way. Some variable threshold methodken reasonable to select the strongest contour as the best
were less sensitive to changes in the seed value than othesggmentation of that nodule. This ideal case represents a
since these changes generally did not affect the maximumodule with a fairly homogeneous density. Real nodules,
nodule and minimum lung values. It should also be notechowever, can have a more heterogeneous density and are
that the described methods segment nodules by choosingnaore difficult to segment. Figure 6 portrays a case in 2D in
single threshold and therefore cannot separate nodules fromhich a nodule is attached to another structure in the lung, a
adjacent vessels if the density of the contact point is higheblood vessel perhaps. A low threshold, if it can separate the
than this threshold. nodule from the larger vessel structure at all, segments a very

The global nodule measures drawn from the largest segpiculated object with a large amount of the blood vessel
mented object may be drawn from a large vessel structuracluded. A higher threshold manages to remove most, but
and not from an actual nodule. The significance of this on theaot all, of the blood vessel. At an even higher threshold,
performance of the global threshold methods is unknown. Tdthowever, the nodule breaks into two pieces, one small and
avoid the issue, a nodule detection algorithm could be usedircular at the junction of the nodule and the vessel, the other
first and the segmentation methods could then be applied @ rough core of the nodule.
the detected nodules only. While Fig. 6 is a schematic illustration, it portrays a situ-

There was a difference between the seed thresholds sation observed in the clinical data. There are many factors
lected for use in the phantom experiments and those used that may contribute to the occurrence of split objects, from
the experiments on clinical data. Six seed thresholds startinignaging noise and motion artifacts to the presence of other
with —600 HU were used for the clinical data, three thresh-ung structures. To avoid missing nodules or providing an
olds starting with—700 HU were used for the phantom data. incorrect segmentation when a better one is available, the
There were several reasons for this. First, because the phamethod produced one segmentation result for each distinct
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Ideal Case |

s N - Threshold Too Low

! wmm Correct Threshold ‘
: at Strongest Contour

\ /=== Threshold Too High

shrinks around a central point. The strongest contslwown with solid ling
is chosen as the best segmentation. o

. 4
Fic. 5. The ideal nodule: As the segmenting threshold increases, the nodule p b ; 4 A ”ﬂ I

piece of a candidate nodule that was found at a higher thresh- _ )
old Fic. 7. Segmentation of isolated noditep) and nodule attached to vessels

bottom): radiologist(left), 2D method(middle), 3D method(right).
In a few cases, the 2D shape-based method appears to E:)e m gist(lef) ( ) (right)

very accurate and vastly outperform its 3D variant. Such

results were misleading because the voxels included in th@onsistenﬂy piece together appropriate segmentations from
nodule segmentation by the 2D method were very differentollections of 2D objects is likely to be complex and any
from those segmented by the radiologist, especially for nodbenefit gained from using simpler 2D methods will be lost.
ules connected to other structures in the Iung. The erroneoysor Shape-based methods, fu||y 3D measures are C|ear|y
segmentations produced by this method provided a compeheeded.

ling reason not to use 2D slice-based methods of examining

qodules. Figure 7 presents a visgal comparison of segment 1. CONCLUSIONS

tions performed by the radiologist, by the 2D shape-base

method, and by the 3D shape-based method for an isolated We proposed several automated methods for segmenting
nodule, which resulted in somewhat similar, but clearly nothodules for the purposes of aiding physicians in the diagno-
identical segmentations. Figure 7 also presents a nodule cofils of puimonary metastasis of oncology patients and evalu-
nected to Vesse's in Wthh the segmentaﬁons were a” Ver?tion of the disease during treatment. Nodule Segmentation
different. The radiologist could more readily segment theand growth assessment are difficult tasks. Manual assess-
central nodule connected to several vessels. The 3D shap@ent is time consuming and prone to error. We showed that
based method provided a poor segmentation that includedtilizing the full 3D nature of CT scans produced better seg-
both the nodules and the vessels. Even worse, the 2D shap@entations than slice-by-slice examinations. No method
based method presented a useless disconnected collection@sihieved better than 0.43 rms error in volume measurement
objects. This is because a single spiculated object may ofte?cross all nodule variations on the phantom. However, when
have several disconnected protrusions in any single slicdlodule size and density were examined separately, the 3D
Compactness measures are not well defined when treatirffl@pe-based method and a few parametrizations of the vari-

separate objects as a single entity. Any method that coul@ble threshold method showed strong improvement. Indi-
vidual methods gave a rms error of 0.23 for solid nodules

Realistic Case and 0.14 for nodules with volume 60.7 mion the phantom.

On the clinical data the radiologist and the automated meth-

ods produced statistically significant differences in volume

estimation, but not in growth estimation.

——  Low Threshold The ultimate goal is to design a growth estimation method

that is at least as reliable as any radiologist. Toward this goal,

future work would compare the growth estimates of several

----  High Threshold radiologists to the estimates of the automated methods. The
contribution of the current work was to single out which
methods perform best on specific nodule properties.

=== Medium Threshold

Extracted Objects
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