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Abstract. A long-term research effort to support data mining appli-
cations for video databases of human motion is described. Due to the
spatio-temporal nature of human motion data, novel methods for in-
dexing and mining databases of time series data of human motion are
required. Further, since data mining requires a significant sample size
to accurately model patterns in the data, algorithms that automatically
extract motion trajectories and time series data from video are required.
A preliminary system for estimating human motion in video, as well as
indexing and data mining of the resulting motion databases is described.

1 Introduction

In the last decade, there has been an explosive growth in the number of com-
puter systems that gather data about human motion via video cameras, magnetic
trackers, eye trackers, motion capture body suits and gloves, etc. These systems
generate streams of 3D motion trajectories or other time series data about hu-
man motion that are used in computer human interfaces, computer animation
and special effects, analysis of human biomechanics, and surveillance of human
activity. Recently, new efforts have formed around the issue of creating archives
of human motion data for use as “standard data sets” in the development of
new algorithms in the computer science community, as well as for use in studies
conducted by researchers from other disciplines (e.g., [22,33,35]).

As these datasets grow, there will be an opportunity to analyze this massive
data archive to gain new insights that can be used to improve our understand-
ing and models of human motion. Insights gained through motion mining could
lead to improved methods for computer-assisted physical rehabilitation, occupa-
tional safety, and ergonomics, as well as improved methods for sports training,
medicine, and diagnosis. Furthermore, motion mining could lead to improved
computer vision and pattern recognition algorithms that are specially tuned to
basic patterns or clusters found in human motion databases. It could also enable
algorithms that automatically recognize anomalous motions because they are
outliers when considered as part of the motion database.

Data mining has emerged as an important discipline in the database field
during the last few years. Two reasons can be identified: (1) a huge amount
of data is available today and (2) traditional approaches to analyze such data
from statistics and machine learning are inadequate to cope with it. The goal of
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data mining is to efficiently find and describe structures and patterns in large
datasets. These patterns are previously unknown and not stored explicitly in the
database. Examples of data mining tasks include clustering, identifying patterns,
and detecting outliers. Data mining of image databases or databases that store
encodings of visual events has received only a small amount of attention [17,30].

Database and data mining methods can be used to discover patterns in
databases of human motion data. Such data has a spatio-temporal aspect that
must be dealt with, and therefore a major issue here is to develop methods for in-
dexing and mining databases of motion trajectories and time series data. Another
important problem is to automatically extract and analyze motion data given
motion capture or video sequences. Another promising direction is to develop
tracking/recognition algorithms that can learn from the clusters or patterns of
motion found in data mining [40]. Through a tight coupling between computer
vision and data mining modules, more reliable tracking and recognition algo-
rithms can be achieved. In this paper, we describe a preliminary system for
estimating human motion in video, trajectory-based encoding of human activ-
ity, as well as trajectory-based retrieval and data mining. This work represents
the first step towards our long-term goal of an automatic system for mining
databases of human motion data.

2 Related Work

In one approach to motion mining, we can assume that each object’s motion is
represented as a sequence of multidimensional points that we call a trajectory.
For instance, the trajectory might consist of the position of the object centroid
at each time step. The main reason for using this representation is its simplicity
and generality: every motion pattern can be represented as a time series of points
moving in a low-dimensional space. Another reason is that simple representa-
tions will allow the design of more efficient and robust algorithms. This is very
important when working with large datasets. Given trajectories represented in
this way, a method for measuring similarity between trajectories is needed.

Perhaps the simplest approach to define the similarity between two sequences
is to map each sequences into a vector and then use a p-norm distance to define
the similarity measure. The p-norm distance between two n-dimensional vec-
tors x̄ and ȳ is defined as Lp(x̄, ȳ) = (

∑n
i=1(xi − yi)p)

1
p . For p = 2 is the well

know Euclidean distance and for p = 1 the Manhattan distance. The advantage
of this simple model is that it allows efficient indexing by a dimensionality re-
duction technique [1,48,19,15]. On the other hand the model cannot deal well
with outliers and is very sensitive to small distortions in the time axis. There
are a number of interesting extensions to the above model to support various
transformations such as scaling [12,37], shifting [12,21], normalization [21] and
moving average [37]. Other recent works on indexing time series data for simi-
larity queries assuming the Euclidean model include [27,26].

Another approach is based on the time warping technique that first has been
used to match signals in speech recognition [41]. Berndt and Clifford [3] proposed
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to use this technique to measure the similarity of time-series data in data mining.
The idea is to allow stretching in time in order to get a better distance. Recently,
indexing techniques for this similarity measure have been proposed [28,34].

Other techniques to define time series similarity extract certain features
(Landmarks [36] or signatures [14]) from each time-series and then use these
features to define the similarity. An interesting approach to represent a time
series using the direction of the sequence at regular time intervals is presented in
[46]. Ge and Smyth [18] present an interesting alternative approach for sequence
similarity that is based on probabilistic matching. A domain independent frame-
work for defining queries in terms of similarity of objects is presented in [25].

Note that all the above work deals mainly with one dimensional time-series.
An approach to indexing two-dimensional moving object trajectories in video
databases was proposed in [11]. The system also provides a sketched-based user
interface for formulating trajectory-based queries, but provides no data min-
ing component. Moving blobs are automatically segmented, given a motion-
stabilized video sequence as input. Moving blobs are indexed using color and/or
texture features. In addition, the series of positions of a blob’s centroid in each
video frame is stored as a motion trail. This system employs variants of the
Euclidean distance metric to enable time-normalized retrieval of similar tra-
jectories. As mentioned earlier, the Euclidean distance measure is sensitive to
outliers, and nonlinear distortions of the time axis.

The most related paper to our work is the Bozkaya, et al. [7]. They discuss
how to define similarity measures for sequences of multidimensional points using
a restricted version of the edit distance. Also, they present two efficient methods
to index the sequences for similarity retrieval. However, they focus on sequences
of feature vectors extracted from images and not trajectories and they do not
discuss transformations or approximate methods to compute the similarity. In
another recent work, Lee et al. [31] propose methods to index sequences of mul-
tidimensional points. They extend the ideas presented by Faloutsos et al. in [16]
and the similarity model is based on the Euclidean distance.

A recent work that proposes a method to cluster trajectory data is due to
Gaffney and Smyth [17]. They use a variation of the EM (expectation maximiza-
tion) algorithm to cluster small sets of trajectories. However, their method is a
model based approach that usually has scalability problems. Also, it implicitly
assumes that the data (trajectories) follow some basic models which are not easy
to find and describe in real datasets.

3 Estimating Human Motion Trajectories

Spatio-temporal indexing of trajectories relies on algorithms that can detect, esti-
mate, and encode relevant information about human motion in image sequences.
Since data mining requires a significant sample size to accurately model patterns
in the data, algorithms that automatically extract motion trajectories and time
series data from video are required. Therefore, a first concern in building our
system will be detecting and segmenting changing or moving blobs in video.
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Fig. 1. Trajectory estimation example: Two bodies walking along different trajectories,
occluding each other. The estimated minimum bounding boxes (MBRs) for each moving
object are shown overlaid on the input video images. The graphs show the recovered
trajectories (top view) for the two moving bodies. Note that motion of Body 1 is from
right to left. Body 2 goes left to right. Trajectory estimates improve over time, as the
extended Kalman Filter converges given more video frames.

We will assume that the time-varying image sequences have been registered
and rectified to correct for motion of the camera, as well as normalized for
differences in imaging conditions. Given a set of registered images, we can make
use of change detection and moving blob segmentation methods that rely on first
and second order statistics [39,47] or adaptive mixture models [43]. A connected
components analysis is then applied to the resulting image. Initial segmentation
is usually noisy, so morphological operations and size filters are applied.

To estimate the motion trajectory for each blob, we can use a predictive
tracker [39], which is based on a first order Extended Kalman Filter (EKF) [42].
The EKF has proven to be very useful in recovery of rigid motion and struc-
ture from image sequences [9,2,8,38]. Most of these approaches assume rigid
motion. One of the first important results on recursive structure and motion
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estimation was the work of [9]. The formulation of [2] yields improved stability
and accuracy of the estimates. In both methods, image feature tracking and
correspondence are assumed. In this paper, we present a method that automat-
ically tracks multiple moving objects, and use this information to estimate 3D
translational trajectories (up to a scale factor).

To model trajectories, [8] assumed that the surface on which the motions
occur was known, and also that this surface was a plane. Each object was rep-
resented as a point moving in the plane, partially avoiding problems related to
changes in shape. It is also possible to reducing tracking to a plane, if the projec-
tive effect is avoided through the use of a top, distant view [24]. It is also possible
to use some heuristics about body part relations and motion on image plane like
[23]. In our work, we do not assume planar motion or detailed knowledge about
the object and our formulation can handle some changes in shape.

In our approach, each blob’s tracker Ti contains information about object lo-
cation, a binary support map, blob characteristics, minimum bounding rectangle
(MBR), etc. For this application, we can choose an EKF state x that models
the blob’s MBR moving along a piece-wise linear trajectory:

x = (x0, y0, x1, y1, zβ, ẋ0, ẏ0, ẋ1, ẏ1, ˙zβ). (1)

In the state vector (x0, y0) and (x1, y1) are the corners of the MBR, z is the
relative distance from the camera, and β = 1

f is the inverse camera focal length.
Note that if the focal length is unknown, this formulation does not provide a
unique solution in 3D space. However, the family of allowable solutions all project
to a unique solution on the image plane. We can therefore estimate objects’
future positions on the image plane and their image trajectories given their
motion in (x, y, zβ) space. It is therefore assumed that although the object to be
tracked is highly non-rigid, the 3D size of the object’s bounding box will remain
approximately the same, or at least vary smoothly. This assumption might be
too strong in some cases; e.g., if the internal motion of the object’s parts cannot
be roughly self contained in a bounding box. However, when analyzing basic
human locomotion, we believe that these assumptions are a fair approximation.

For our representation a 3D central projection model similar to [44,2] is used:
[
u
v

]
=

[
x
y

]
1

1 + zβ
, (2)

where (x, y, z) is the real 3D feature location in the camera reference frame,
(u, v) is the projection of it to the camera plane, and β = 1

f is the inverse focal
length. The origin of the coordinate system is fixed at the image plane. This
model has proven to be useful when estimating focal length and structure in the
structure from motion problem [2]. One important property of this model is that
it is numerically well defined even in the case of orthographic projection.

Our EKF process is guided by the following linear difference equation:

xk+1 = Akxk + wk, (3)
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where xk is our state at time k, wk is the process noise and Ak, the system
evolution matrix, is based on first order Newtonian dynamics and assumed time
invariant (Ak = A). If additional prior information on dynamics is available,
then A can be changed to better describe the system evolution [38]. In our case,
we use the assumption that trajectories are locally linear in 3D.

Our measurement vector is zk = (u0k, v0k, u1k, v1k), where uik, vik are the
image plane coordinates for the observed feature i at time k. The measurement
vector is related to the state vector via the measurement equation: zk = h(xk +
vk). Measurement noise is assumed to be additive in our model. The EKF time
update equation becomes:

x̂k+1 = Akx̂k (4)
P−

k+1 = AkPkAT
k + WQkWT (5)

where A represent the system evolution transformation, Qk is the process noise
covariance. The matrix W is the Jacobian of the transformation A with respect
to w. Finally, the measurement update equations become:

Kk = P−
k HT

k (HkP−
k HT

k + VRkVT )−1 (6)

x̂k = x̂−
k + Kk(zk − h(x̂k

−
, 0)) (7)

Pk = (I − KkHk)P−
k , (8)

where Hk is the Jacobian of h(•) with respect to the estimate of x at time k:

Hk =




1
λ 0 0 0 − x0

λ2 0 0 0 0 0
0 1

λ 0 0 − y0
λ2 0 0 0 0 0

0 0 1
λ 0 − x1

λ2 0 0 0 0 0
0 0 0 1

λ − y1
λ2 0 0 0 0 0


 , (9)

where λ = 1+zβ. The matrix V is the Jacobian of h(•) with respect to v, and Rk

is our measurement noise covariance at time k. In this formulation, the general
assumptions are: w is a Gaussian random vector with p(wk) ∼ N(0,WQkWT ),
and v is also Gaussian p(vk) ∼ N(0,VRkVT ). For more detail, see [39,42].

Another problem is occlusion, a problem that cannot be ignored in the seg-
mentation of multiple moving objects. Occlusion can occur when another object
partially (or completely) obstructs a camera’s view of the human; e.g., two peo-
ple’s paths cross in the image yielding a temporary occlusion of one person from
that camera’s viewpoint. Therefore, any general system must include algorithms
that can reliably detect and maintain the tracking of moving objects before,
during, and after an occlusion. Fortunately, given our EKF-based approach, oc-
clusion time can be estimated using the EKF predictions and estimates of MBR’s
velocity and position.

3.1 Estimating Trajectories of Human Body Components

Estimation of trajectories of locomotion is one possible source of human mo-
tion databases. Trajectories of different components of the human body are also
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important in applications ranging from computer human interfaces to motion
studies. Methods for automatic and robust detection, tracking, and interpreta-
tion of human body components and their motion in video under normal lighting
conditions have been developed [4,5,20]. The goal is to reliably estimate the mo-
tion trajectories of, for example, a finger, foot, or facial feature in real-time and
interpret them as a communication of the computer user.

(a) (b) (c)

Fig. 2. (a) Thirty-month old Camera-Mouse user with cerebral palsy. (b) The vision
system’s view of the user. (c) The user playing with educational software (video camera
is below the user computer’s monitor).

One application of this approach is found in the “Camera Mouse” system [20],
which has been developed to provide computer access for people with severe
disabilities. The system tracks the computer user’s movements with a video
camera and translates them into the movements of the mouse pointer on the
screen. Fig. 2 shows a thirty-month old user of the Camera Mouse system and
her tracked face on the monitor of the vision computer. Here the vision algorithm
is tracking her lower lip.

In Fig. 3 we show an example of three trajectories of mouse pointer move-
ments that correspond to human facial movements tracked with Camera Mouse
system. These trajectories were obtained from a non-handicapped user of the
system. The Camera Mouse was used with a spelling program. The three tra-
jectories were created when the computer user spelt out some words by moving
the mouse pointer to an area on the screen that corresponds to a particular
letter and selecting the letter (“clicking” the mouse) by lingering over the area
for about a second. The figure represents the output of vision algorithms (data
sets) used in evaluating preliminary versions of a data mining system.

4 Motion Mining

Given various types of human motion trajectories, our attention now returns to
the issue of data mining. Many data mining tasks require a similarity model (or
a distance function) for the objects stored in the database. The problem is non-
trivial. Most of the current methods in the data mining community are based on
mapping the time-series with n elements to a vector in an n-dimensional space.



Motion Mining 23

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200 1400

Trajectories on the X-axis

Athens-1
Athens-2
Berlin-1

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400

Trajectories on the Y-axis

Athens-1
Athens-2
Berlin-1

Fig. 3. Trajectories of mouse pointer movements that correspond to human facial
movements tracked with Camera Mouse system. The motion on X and Y axis
during the spelling of two words – Athens (twice) and Berlin (once) are shown.

They then use a p-norm distance function to define the similarity measure. As
explained in Sec. 2, the p-norm is inadequate to deal with trajectories.

A general way to address these issues is to use the Longest Common Sub-
Sequence (LCSS) model [6]. The basic idea is to try to match two sequences
by allowing them to stretch without rearranging the sequence of values. The
LCSS is a variation of the Time Warping model [3,41], which has been proved
very effective in other domains, for example in speech and gesture recognition,
robotics, medicine, etc. In addition, the LCSS model is more robust than time
warping with respect to outliers. Next we present some simple similarity models
and then we proceed with a discussion on how to use these model to index and
cluster sets of trajectories. For this discussion, we assume that objects are points
that move on the (x, y)-plane and time is discrete. However, our techniques are
general and can be applied to objects moving in an n-dimensional space.

Let A = ((ax,1, ay,1), . . . , (ax,n, ay,n)) and B = ((bx,1, by,1), . . . , (bx,m, by,m))
be two trajectories of moving objects with size n and m respectively. For a
trajectory A, let Head(A) = ((ax,1, ay,1), . . . , (ax,n−1, ay,n−1)).

Definition 1. Given an integer δ and a real number 0 < ε < 1, we define the
LCSSδ,ε(A,B) as follows:

LCSSδ,ε(A,B) =




1 + LCSSδ,ε(Head(A), Head(B)) if |ax,n − bx,m| < ε and
|ay,n − by,m| < ε and
|n−m| ≤ δ

max(LCSSδ,ε(Head(A), B),
LCSSδ,ε(A,Head(B))) otherwise

The constant δ controls how far in time we can go in order to match a given
point from one trajectory to a point in the another trajectory. The constant ε is
the match threshold.
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Definition 2. We define the similarity function S1 between two trajectories A
and B, given δ and ε, as follows:

S1(δ, ε, A,B) =
LCSSδ,ε(A,B)

min(n,m)

This first similarity function is based on the LCSS and the idea is to allow time
stretching. Then, objects that are close in space at different time instants can
be matched if the time instants are also close.

We use this function to define two new similarity measures that are more
suitable for trajectories. The first one is based on approximating the trajectory
with a signature, which is similar to the Landmarks model [36]. Given a time
period τ we compute the location of the object every τ time instants (0, τ ,
2τ , etc.) Then, we approximate the trajectory with a piecewise-linear curve by
connecting the consecutive points with a line segment. Next, we compute the
direction of each line segment by projecting the segment on to the (x, y)-plane
and find the angle of the segment with respect to the x-axis. If φ is the angle of a
segment s and i ∗ 2π

k ≤ φ < (i+ 1) ∗ 2π
k , we replace the segment s with the value

i. Doing the same for every segment, we get a sequence of symbols, one for each
segment. Thus, we represent the trajectory of a moving object as a sequence of
symbols. We only need k+1 symbols, one for each angle range and one more to
represent static object. We call the above sequence the motion signature of the
trajectory. An example of a motion signature for a trajectory is shown in Fig. 4.
In the example k is equal to 4. Using the motion signatures we now define the
similarity of two trajectories by computing the LCSS of the signatures.

Fig. 4. Motion Signature of A.
Fig. 5. Translation of Trajectory
B.

Definition 3. Let A and B be two trajectories with motion signatures A′ =
(a′1, . . . , a

′
n′) and B′ = (b′1, . . . , b

′
m′), where a′i, b

′
j ∈ (0, . . . , k). Then, given an
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integer δ we define the similarity function S2 as follows:

S2(δ, A,B) =
LCSSδ(A′, B′)
min(|A′|, |B′|)

where,

LCSSδ(A′, B′) =




1 + LCSSδ(Head(A′), Head(B′)) ifa′n′ = b′m′ and
|n′ −m′| ≤ δ

max(LCSSδ(Head(A′), B′),
LCSSδ(A′, Head(B′))) otherwise

Using the above method we can detect objects with similar movements even if
these objects move in different locations and their movement is not synchro-
nized. Another interesting point is that we can use only log2k bits to represent
each symbol and the signature is usually much smaller in size than the original
trajectory. Therefore, the computation of the similarity is very efficient.

To create a more accurate measure, we define similarity based on exact
trajectories. First, we consider the set of translations. A translation simply
shifts a trajectory in space by a different constant in each dimension. Let F
be the family of translations. Then a function fc,d belongs to F if fc,d(A) =
((ax,1 + c, ay,1 + d), . . . , (ax,n + c, ay,n + d)). Next, we define a second notion of
the similarity based on the above family of functions.

Definition 4. Given δ, ε and the family F of translations, we define the simi-
larity function S3 between two trajectories A and B, as follows:

S3(δ, ε, A,B) = max
fc,d∈F

S1(δ, ε, A, fc,d(B))

By allowing translations, we can detect similarities between movements that
are parallel in space, but not identical. In addition, the LCSS model allows
stretching and displacement in time, so we can detect similarities in movements
that happen with different speeds, or at different times. In Fig. 5 we show an
example where a trajectory B matches another trajectory A after a translation is
applied. Note that the value of parameters c and d are also important since they
give the distance of the trajectories in space. That can be a useful information
when we analyze trajectory data.

To compute the similarity functions S1 and S2 we have to run a LCSS
computation to the two sequences. The LCSS can be computed by a dynamic
programming algorithm in O(n2) time. However, we only allow matchings when
the difference in the indices is at most δ, and this allows the use of a faster
algorithm. We can show that given two trajectories A and B, with |A| = n and
|B| = m, we can compute the S1 and S2 distances in O(δ(n + m)) time. For
the S3 distance we use an approximation algorithm that can find the distance
between two trajectories A and B with error smaller than β in O((m+n)δ3/β2)
time. Given trajectories A,B with lengths n,m respectively, and constants δ, β,
ε, the approximation algorithm is as follows:
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1. Using the projections of A,B on the two axes, find the sets of all
different translations on the x and y axis.

2. Find the iβ(n+m)
2 -th quantiles for each set, 1 ≤ i ≤ 4δ

β .
3. Run the LCSSδ,ε algorithm on A and B, for each of the (4δ

β )2 pairs
of translations.

4. Return the highest result.

4.1 Indexing Trajectories of Moving Objects

Given some distance measure, we need to design new index methods to store
and retrieve trajectories of moving objects using this method. Indexing methods
play a very important role in exploratory data mining, where the analyst makes
hypotheses about the data and asks queries for validation. Considering the size
of the datasets and the on-line nature of the analysis, a system with no indexing
capabilities will be of limited use.

An important observation for the S2 distance measure is that for trajectories
of equal size it is actually a metric (that is, the triangle inequality holds). A
metric distance function is important for indexing, because we can prune a large
part of the dataset during the query phase based on the triangle inequality.
Therefore, our method is to divide first the different trajectories into groups
of equal (or almost equal) length and then index each group separately. One
approach is to use indexing methods for general metric spaces, e.g., the M-
tree [13] or the vp-tree [45].

Another approach to index a set of trajectories is to embed them into a
normed space D and try to keep the pairwise distances as close as possible to
the original ones. Ideally, D will be a low dimensional Euclidean space 
d, where
d is small. An interesting embedding method is presented in [32]. The basic idea
is to select a set of subsets of S. Let X be a subset of S. Then we find the
minimum distance of a given trajectory t to X , D(t,X) = minx∈Xd(x, t). This
number defines the coordinate of t for the dimension that corresponds to X .
Using d number of subsets, X1, X2, . . . , Xd, we map each trajectory t ∈ S to
a vector [D(t,X1), D(t,X2), . . . , D(t,Xd)]. The distance between two vectors is
defined using the l1 or l2 norm. However, the problem with this approach is that
the distortion in the pairwise distances can be large and we may have many false
negatives.

For the S3 distance, indexing is more challenging since this measure is not a
metric. However, we can still use the embedding approach and get approximate
answers. Another alternative is to cluster the set of trajectories and then use
the clusters to answer nearest neighbor queries. That is, given the clusters and
a query trajectory, find the clusters that have a representative point closer to
the query trajectory and then report the trajectories in these clusters, possibly
sorted by the distance to the query.

Another type of useful query is the subsequence match query, where we specify
a part of a trajectory Sp and we ask the system to find the trajectories that
have a similar subsequence. To solve this problem we can partition the original
trajectories into smaller ones and we can index these subsequences.
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4.2 Motion Clustering and Outlier Detection

A very important data mining task is to cluster set of objects in a large dataset.
Therefore, it is important to design clustering methods for large sets of trajec-
tories using various distance functions. The results of a clustering task can be
used directly to characterize different groups of objects and summarize their
main characteristics. The clusters will be used for re-training the classification
and prediction algorithms in the Computer Vision sub-system. Also, hierarchi-
cal clustering algorithms can be used for indexing large datasets for similarity
queries as we mentioned above.

One of the few methods to cluster trajectory data taking into account the
special properties of trajectories has been proposed in [17]. They use a variation
of the EM (expectation maximization) algorithm to cluster small sets of trajec-
tories. A problem with this approach is its scalability. Also, the distance measure
is based on the probabilistic model which may not be the most appropriate for
some specific applications.

Another important task in a data mining system is to identify outliers. An
outlier is an object that behaves in an unusual and unpredictable manner. Outlier
mining has been used in fraud detection, by detecting unusual usage of credit
cards or telecommunication services [10]. In our type of applications we are
interested to find unusual or strange motion patterns. Actually, these patterns
are sometimes more interesting for further analysis.

The first issue in outlier detection is to define what data is considered as an
outlier for a given dataset. The statistical approach to define outliers is to assume
that the distribution of the objects in the dataset follows a specific model and
then try to identify objects that deviate from this model. Unfortunately, finding
an appropriate model for datasets of trajectories is very difficult and usually real
datasets do not follow general statistical models. Another definition of outliers
uses a different approach that extends the distance based outlier definition by
[29]. In particular, given a function that describes a distance between any two
objects in the database, we say that an object O is a DT (k, ξ) outlier, if there
are at most k objects in the database the have a distance to O smaller than ξ.
The challenge then is to find efficiently all the outliers, given some values for k
and ξ. An alternative approach is to find the distance of each object to its k-th
closest object and report a list of the objects ordered by this distance. Clearly,
objects that are “far” from the others will appear first in the list.

5 Conclusion

We have described preliminary work towards amotion mining system for content-
based retrieval and pattern discovery in video databases of human motion. The
proposed methods are tailored to capture the spatio-temporal nature of human
motion data. Two approaches to automatic estimation of human motion trajec-
tories were described and tested. Since data mining requires a significant sample
size to accurately model patterns in the data, algorithms that automatically
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extract motion trajectories and time series data from video are required. We
defined trajectory representations that can be used in computing similarity be-
tween motion trajectories based on the LCSS method. This preliminary system
enables ongoing and future work in the areas of spatio-temporal indexing, clus-
tering, and outlier detection for large databases of human motion. A key issue
in the immediate future will be evaluating the retrieval and mining methods on
large video databases.

In future work, we plan to investigate alternative representations for tra-
jectories. In particular, the use of a probabilistic model, e.g., Hidden Markov
Models (HMMs) or Semi-Markov Models [18]), seems like a promising direction
to pursue. However, in this case distance measures needed for indexing, mining,
and retrieval are more difficult to compute in an efficient manner given current
techniques. The embedding approaches described in Sec. 4.1 should prove quite
useful in this regard.
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