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Abstract We propose using machine learning techniques
to analyze the shape of living cells in phase-contrast micros-
copy images. Large scale studies of cell shape are needed to
understand the response of cells to their environment. Man-
ual analysis of thousands of microscopy images, however,
is time-consuming and error-prone and necessitates auto-
mated tools. We show how a combination of shape-based and
appearance-based features of fibroblast cells can be used to
classify their morphological state, using the Adaboost algo-
rithm. The classification accuracy of our method approaches
the agreement between two expert observers. We also address
the important issue of clutter mitigation by developing a
machine learning approach to distinguish between clutter and
cells in time-lapse microscopy image sequences.
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1 Introduction

Phase-contrast microscopy is a well-established tool to image
living cells in research concerning the engineering of bio-
materials. Studies of in vitro cell behavior typically involve
thousands of cells. Interpreting these vast amounts of data
via manual analysis is time-consuming, costly, and prone to
human error.

In response to the growing need for automated image
analysis tools, machine vision methods have recently been
developed for detection and tracking of cells in time-lapse
microscopy video (e.g. [1,10,14,15]). Segmentation of cells
can be extremely challenging and has been addressed by
many authors (e.g. [5,16,19,21,26]).

In early work on classification of cell shape, Olson et al.
[20] showed how machine learning techniques known at that
time, i.e., hierarchical clustering and nearest neighbor anal-
ysis, could be used to classify cells into three classes by
interpreting various shape descriptors. More recent classi-
fication techniques, in particular, support vector machines,
have been applied by Han et al. [8] to the problem of detecting
cell nuclei and by Ruusuvuori et al. [23] for classifying rod,
spherical and spiral bacteria. Bradhurst et al. [3] evaluated
four machine learning algorithms, naïve Bayes, multi-layer
perceptrons, radial basis function networks, and support
vector machines, to evaluate bone marrow stromal cell
culture quality. There is also an extensive literature regard-
ing the use of automated classification techniques to identify
sub-cellular structures in fluorescence microscopy images
[2,12,17,18].

Our contributions are as follows:

– We present a method based on the machine learning tech-
nique Adaboost [6] to classify cell shape in the presence
of significant intra-class variation.
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660 D. H. Theriault et al.

Fig. 1 Two cells undergoing changes in shape. The time stamps of the images are 0:00, 1:00, and 2:00 h (top) and 0:00, 0:50, and 1:15 h (bottom)

– We show that we can distinguish living cells from sub-
strate clutter using an Adaboost classifier.

– We illustrate the relationship between segmentation and
classification accuracy.

– We provide a solution to the particular problem of analyz-
ing living Balb/c mouse fibroblast cells on tissue-culture
plastic substrates imaged using phase-contrast micros-
copy.

In a dataset containing over 800 cells in 125 images,
we demonstrate classification accuracy comparable to the
agreement achieved between expert human observers when
applied on manually segmented images, and a 3–9 percentage
point reduction in performance when automatic segmenta-
tion is applied. We have also applied our technique to 30 time-
lapse sequences to identify clutter and classify cell shape.
We show a significant reduction in the number of erroneous
detections, with only a small reduction in true detections. We
demonstrate that even though our segmentation technique has
known limitations, our downstream analysis of cell morphol-
ogy classification produces reliable results.

2 Methods

2.1 Challenges in analyzing cell morphology

Living cells respond to environmental signals that regu-
late behaviors, such as cell differentiation, division, and
migration. Biomaterial scientists and engineers study cell

migration and changes in cell morphology to understand the
influence of different environmental signals. The behavior
of vascular smooth muscle cells and fibroblast cells is of
particular interest to engineers who investigate cell-substrate
interactions in vitro [25]. The morphological characteristics
of a fibroblast cell depend on its current state and can change
during its lifetime (Fig. 1).

Initially, cells are defined to be “non-spread.” Their image
is characterized by a small area, rounded cell perimeter, and
high contrast due to reflection of light off of the spherical
membrane (Fig. 2, top left). This appearance is also typical
for cells that are undergoing cellular division or apoptosis
(programmed cell death). The transition from the “non-
spread” to the “spread” state of a cell involves the poly-
merization of cytoskeletal elements that push out against
the cell membrane, increasing the area of the cell in the
image. The transition process yields a cell that has an either
“polarized” or “non-polarized” morphology. Non-polarized
cells are characterized by a smooth (rounded) cell membrane
(Fig. 2, top right), whereas polarized cells have extended pro-
trusions supported by elements of the internal cytoskeleton
(Fig. 2, bottom left). Cells in a polarized state can further be
subdivided into cells with and without orientation. When the
protrusions are evenly distributed around the cell, the cell
has no orientation. If the cell is strongly polarized in one
direction and thereby shows a significant level of bilateral
symmetry, it may be defined as “oriented” (Fig. 2, bottom
right).

The appearance of cells belonging to a single morpholog-
ical class varies significantly (Fig. 3). This makes the problem
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Analysis of cell morphology and clutter mitigation 661

Fig. 2 Examples of different cell shapes: non-spread (top left), spread
and non-polarized (top right), spread and polarized (bottom left) and
polarized with orientation (bottom right)

of automatically recognizing the state of a cell in an image
very challenging.

Another difficulty in designing automated tools for cell
image analysis is the fact that non-cell objects may appear
in phase-contrast microscopy images. These clutter objects
may be contaminations of the substrate and may or may not
move and change appearance (Fig. 4).

Fig. 4 Several examples of non-cell clutter objects (boxes)

2.2 Creation of cell morphology library

Studying the behavior of slow-moving cells requires obser-
vations of many cells over long periods of time (18–24 h)
at a granularity that permits observation of the nuances of
how the cells are moving and changing shape. Fibroblast
cells of the Balb/c 3T3 mouse strain (American Type Culture
Collection, Manassas, VA, USA) were cultured at 37◦C in
5% CO2 in Dulbecco’s modified Eagles medium (Invitrogen,
Grand Island, NY, USA) supplemented with 50 µg mL−1

penicillin, 50 U mL−1 streptomycin, 200 mM L-glutamine
and 10% bovine calf serum (Hyclone, Logan, UT, USA). In
each experiment, we seeded the fibroblast cells onto a tissue
culture plastic substrate at a density of 10,000 cells per cm2

and allowed them to adhere for 24 h.

Fig. 3 Examples of cells in the spread and non-polarized (top) and spread and polarized (bottom) states
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Imaging was carried out using an Zeiss Axiovert S100
phase-contrast microscope (Carl Zeiss, Thornwood, NY,
USA) equipped with a motorized stage (Ludly, Hawthorne,
NY, USA), a custom incubator box designed to maintain 5%
CO2 and a humidified environment, a cooled CCD camera
(Princeton Instruments, Trenton, NJ, USA) and Metamorph
Imagine software. Image dimensions were 1,030 by 1,300
pixels, and pixel size was 0.6614 µm2.

Substrates with cells were imaged at 30-s intervals for
16–24 h. We used the first 600 images (5 h) from each of
30 resulting image sequences to create a “time-lapse migra-
tion library”. A cell biologist manually tracked the 258 cells
contained in these 30 sequences, using every tenth frame
(5 min). In every annotated frame, each cell was labeled with
a set of attribute labels indicating whether the cell was spread,
polarized, and/or oriented.

We also assembled a “cell morphology library” with the
goal of representing the variation of cell shape within each
morphological class. Two cell biologists localized and classi-
fied cells in 125 images. We used labels of cells identified by
the biologists to establish benchmarks for our machine learn-
ing experiments. One of the two biologists also manually
traced the boundary of 883 of the cells, providing “ground-
truth” manual segmentation of cells in the images.

2.3 Image segmentation

Automated segmentation of cells in microscopy images is
a challenging task, and various approaches have been pro-
posed (e.g., [5,16,19,21]). One of the challenges of seg-
menting cells in phase-contrast microscopy images is that
the intensity values of the pixels representing the inside
of the cell are very similar to the values representing the
outside of the cell, and so applying intensity thresholds
is not effective. Fortunately, cells are often at least par-
tially surrounded by a “halo” (e.g., the bright vertical lines
along the cell in Fig. 3, top right), and so edge-based
methods, such as active contours, are useful. Since seg-
mentation is not the focus of this paper, we use a simple
segmentation approach, which we briefly discuss here for
completeness.

Our segmentation method uses a multi-scale approach.
The input image I (x, y) is downsampled by a factor of 2−k ,
where k = {1, 2, 3}. The magnitudes of the intensity gradi-

ent ∇ I =
(

∂ I (x,y)
∂x ,

∂ I (x,y)
∂y

)
are computed at each scale and

upsampled to create gradient magnitude images Gk at the
original image size. The magnitude of the intensity gradient
is then approximated by

G∗(x, y) = max
k

{ Gk(x, y) | k ∈ {1, 2, 3} }, (1)

by the value of the intensity change that is largest among
the original image and the two downsampled versions. The

motivation for this approach is that it automatically selects
the resolution scale in which an edge is most pronounced.
An adaptive threshold is then applied [7] to G∗(x, y) which
produces a binary mask MG(x, y) that defines image loca-
tions with significant intensity changes.

To supplement the edge-based technique, we adopted the
“standard-deviation transform” used by Bradhurst et al. [3]
for segmenting bone marrow cells. This method uses the
observation that, while the background of the image is fairly
uniform, regions inside of cells have a varied appearance. The
standard-deviation transform S(x, y) is computed by calcu-
lating the standard deviation of intensity values in the region
I (x ± m, y ± m) of L1-distance m surrounding pixel (x, y).
Using the “integral image” [24], we compute the transform
S(x, y) efficiently. For our experiments, we chose m = 5.

A threshold is automatically computed using the p-tile
thresholding method [13] with p = 92% and applied to
S(x, y) to yield a binary mask MS(x, y) that indicates the
locations in the image that are surrounded by pixels of high
intensity variations.

A final segmentation mask M(x, y) is formed by combin-
ing binary masks MG(x, y) and MS(x, y) with an OR opera-
tion. If M(x, y) = 1, the corresponding pixel I (x, y) belongs
to an object of interest. We then apply connected component
labeling [9], for which M(x, y) = 1 and fill holes. These
regions correspond to segmented objects of interest, i.e., cells
or clutter. We denote a segmented region by r and the set of
segmented regions by R.

Our segmentation method is vulnerable to the halo effect
commonly found in phase-contrast microscopy images and
there is also a tendency to cut off thin, extended protrusions
(Fig. 5). However, we show in the remainder of this paper
that we are still able to obtain good classification results.

2.4 Feature extraction

To apply our classification method, we compute 18 shape-
based and 21 appearance-based features for each segmented
image region r ∈ R. The shape-based features are computed
using only the binary mask M(x, y), whereas the appearance-
based features use the intensity image I (x, y). The first 13
shape-based features are functions of image moments [9].
We use the first two moments, i.e., object area A and cen-
troid (x̄, ȳ), and a circularity measure C that is based on the
central moments

υpq =
∑

(x,y)∈r

(x − x̄)p(y − ȳ)q , (2)

where p, q ∈ {0, 1, 2}. We define circularity by C = m −
n/(m + n), where m = 1

2 (υ20 + υ02) and

n = 1
2 (

√
4υ2

11 + (υ20 − υ02)2). We also use the first seven
Hu moments [11], which are functions of the normalized
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Fig. 5 Manual (left) and automatic (right) segmentation of three cells.
Left to right the automatic segmentation method identified 49.0, 94.1,
and 99.4% of the pixels included in the manual segmentation, and 65.4,

63.6 and 51.8% of the pixels identified by the automatic segmentation
were not included in the manual segmentation

moments ηpq = υpq/A(1+ p+q
2 ), p, q ∈ {0, 1, 2, 3}. In addi-

tion, we incorporate measures of extension, dispersion, and
elongation [4], which are functions of the first two Hu
moments.

The remaining five shape-based features are derived from
characteristics of the boundary B, the set of pixels in region r
that have neighboring pixels not belonging to r . Boundary B
is defined using an 8-connected neighborhood definition:

B =
⎧⎨
⎩(x, y) ∈ r |

1∑
dx =−1

1∑
dy=−1

M(x + dx , y + dy) < 9

⎫⎬
⎭.

(3)

The Euclidean distance between the j th point of the bound-
ary B and the centroid of the region is given by d j =√

(x j − x̄)2 + (y j − ȳ)2. We include the mean, standard
deviation, minimum, and maximum of the distances, com-
puted for all points on the boundary, in the shape-based
feature vector.

The length of a cell boundary can be represented by |B|,
the sum of L1-distances between consecutive pixels on the
boundary, or by the perimeter P , the sum of the L2-distances.
Because some consecutive pixels on the boundary may be
diagonal to each other, P �= |B|, in general. We use P to
compute the “shape factor,” or isoperimetric quotient, 4π A

P2 ,
which is the ratio of the area of the region and that of a circle
with the same perimeter, i.e., A

P2 / 1
4π

.
The appearance-based features are statistics of the image

I (x, y), approximations of the intensity gradient Gk(x, y),
as computed by our multi-scale approach (Sect. 2.3), and
approximations of the Laplacian

L(x, y) ≈ ∂2 I (x, y)

∂x2 + ∂2 I (x, y)

∂y2 (4)

of the image, which are also computed by a multi-scale
approach. In particular, the appearance-based feature vector
for each region r includes the mean, standard deviation, and

skew of I (x, y), Gk(x, y), and Lk(x, y) with k = {1, 2, 3},
such that (x, y) ∈ r .

2.5 Design of machine learning methods
and analysis methodology

Adaboost [6] is a popular machine learning algorithm that
combines weak classifiers to create a strong classifier. The
training phase of the Adaboost algorithm requires as input a
set of labeled feature vectors, a set of weak classifiers, and a
parameter that determines the number of weak classifiers to
be used. During training, Adaboost produces as output a set of
chosen classifiers and associated weights. In the prediction
phase, the Adaboost algorithm takes as input an unlabeled
feature vector, computes a score, and applies a threshold to
produce a binary label for the vector. A threshold of zero is
used when it can be assumed that class labels are equally
likely.

We have chosen to use a bank of binary naïve Bayes clas-
sifiers, one for each element of the feature vector, as weak
classifiers. Each classifier in the bank operates on a single
element vi of the feature vector. Given the data, the proba-
bility that a sample belongs to a particular class c is given by
Bayes rule: p(c|vi ) = p(vi |c)p(c)

p(vi )
. A class label is applied

using the likelihood ratio test. We chose to model p(vi |c) as
a univariate Gaussian probability density, and we assigned
equal prior probabilities to the class labels. To train the i th
naïve Bayes classifier, we computed the parameters of the
model for p(vi |c) for each class, i.e., mean and standard
deviation.

As described in Sect. 2.1, the classification of the shape
of a cell may be characterized by a set of three labels, indi-
cating whether the cell is “spread” or “non-spread”, “polar-
ized” or “non-polarized”, and “oriented” or “non-oriented”.
We trained separate, independent classifiers for each attribute
label, and then combined the three predicted labels to produce
the final classification. When testing our automated classifi-
cation technique, we used the labels applied by one of the
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expert observers. Accuracy metrics and receiver operating
curves (ROC) were computed using tenfold cross validation.

We compute 2×2 confusion matrices for each attribute, in
addition to an 8×8 confusion matrix for the final, combined
classification. We report “accuracy” for each attribute as the
sum of the diagonal of each 2 × 2 confusion matrix. We also
report the “overall accuracy” as the sum of the diagonal of
the 8 × 8 confusion matrix. For the final classification label,
we compute a “weighted accuracy” score which gives credit
for partially correct answers. Given N labeled examples, L
different attributes for each example (L = 3), and T and C,
the sets of true and predicted labels, respectively, we define
a weighted accuracy function

W8 = 1

N · L

N∑
i=1

L∑
l=1

δ(Ci (l), Ti (l)), (5)

where δ(α, β) = 1 if α = β and zero otherwise. For exam-
ple, if the true class of a single cell is (spread/ non-polarized/
non-oriented), but it is classified as (spread/ polarized/ non-
oriented), W8 = 2

3 .

2.6 Tracking applied to time-lapse migration library

After segmentation, a simple tracker that uses a greedy data
association method is used to link detected objects across
frames to create tracked objects. The tracker does not use state
estimation but represents each object track by the sequence
of centroids of the detected objects. At each frame, the matrix
that represents the costs of associations between the existing
tracks and new detections is computed. No gating is used
because there are no more than a few dozen tracks or detec-
tions at any one time. We use a sigmoidal cost function whose
argument is the distance between the centroid of the detection
and the previous position of the track.

For each track, the detection with the lowest association
cost is identified. Similarly, for each detection, the track with
the lowest association cost is identified. If the results match,
the track is appended with the new detection. If not, no asso-
ciation is made. If a detection does not match any track, it is
used to start a new track. If a track is not associated with a
detection, it may be allowed to “coast” forward for no more
than 10 min. Tracks that are less than 2:30 min long are not
allowed to coast. Tracks that are not allowed to coast for-
ward are terminated. Tracks that last for less than 2:30 min
are discarded as spurious.

3 Results

In this section, we first present the morphology classification
results obtained for cells in the morphology library. Next, we
report the classification results of our clutter identification

strategy on a training dataset. Finally, we present the impact
of our clutter mitigation strategy and the effectiveness of our
morphology classification methodology in our analysis of the
time-lapse migration library.

3.1 Morphology classification results

We first describe our benchmark: the agreement between two
expert human observers. We next present our classification
results when given the benefit of ground-truth manual seg-
mentation. Then, we report our classification results when
using a fully automated recognition system combining auto-
mated segmentation with automated classification. In Sect. 6,
we present results obtained when pursuing two alternate clas-
sification methodologies.

According to the labels assigned by one of the expert
observers, the morphology library contains the following
distribution of class labels: 82.8% of the examples were
spread, 60.5% of the examples were polarized, and 31.9%
of the examples were oriented. According to the other expert
observer, 84.0% of the examples were spread, 63.9% of the
examples were polarized, and 17.0% of the examples were
oriented.

3.1.1 Benchmark establishment: inter-observer
classification agreement

Our first set of results concerns the establishment of a per-
formance benchmark for our machine learning experiments.
It is noteworthy that the two expert human observers, who
labeled the same 838 cells in the morphology library, were
in complete agreement for less than 60% of the cells.

Both observers applied three labels to each cell, one for
each attribute (spread, polarized, and oriented). We combined
these labels to obtain a single classification for each cell and
created an 8 × 8 confusion matrix (Fig. 6, left). Examination
of the confusion matrix reveals significant structure. For
example, the observers might disagree on the spread attri-
bute, and while cells classified as non-spread by one observer
may be classified as spread by the other, they are not typi-
cally classified as both spread and polarized by the second
observer. The accuracy measured for each attribute is sum-
marized in Table 1, column 1.

3.1.2 Classification results using manual segmentation

Using the ground-truth segmentation established by one of
the cell biologists, we computed a feature vector for each of
883 cells, using the 39 features described in Sect. 2.4. Using
manual segmentation and all available features, our accuracy,
when compared to one of the two experts, is as good as the
agreement observed between the human observers (Table 1,
column 2).
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Fig. 6 We show the disagreement between human observers on 838
instances (left), classification accuracy on 883 instances using manual
segmentation, compared to one of the expert observers (middle), and
classification accuracy on 841 instances using automated segmentation,
compared to one of the expert observers (right). Classification accuracy

scores were obtained using tenfold cross validation. Each example is
classified by combining three binary attribute labels: spread (S) or non-
spread (NS), polarized (P) or non-polarized (NP), and oriented (O) or
non-oriented (NO)

Table 1 Agreement between the cell labels determined by expert
observers (column 1), accuracy of automated classification when com-
pared to labels of one of the expert observers (columns 2 and 3), and

accuracy of automated classification when compared to the cells where
the labels applied by both expert observers were the same (columns 4
and 5)

Agreement between
expert observers

Classification accuracy
(one observer)

Classification accuracy
(both observers)

Manual
segmentation

Automated
segmentation

Manual
segmentation

Automated
segmentation

No. of cell instances 838 883 841 490 476

Overall accuracy (%) 58.5 65.3 54.5 72.0 62.4

Weighted accuracy (%) 84.6 86.7 81.1 90.3 86.2

Spread attribute (%) 93.3 93.9 90.1 98.2 95.2

Polarized attribute (%) 83.3 85.6 76.9 91.2 84.9

Oriented attribute (%) 77.2 80.6 76.1 81.4 78.6

Accuracy of automated classification determined via tenfold cross validation, using shape-based and appearance-based features computed from
manual or automated segmentations

As can be seen by inspection (Fig. 6, middle), the structure
of the confusion matrix seen when using automated classi-
fication is similar to that found between the humans. There
are some differences; e.g., the algorithm classified some non-
spread cells as both spread and polarized, whereas cells clas-
sified as non-spread by one expert observer were not typically
classified as spread and polarized by the other.

We also applied the classification procedure to the set
of 490 cells where the labels applied by both expert
observers were in complete agreement (Table 1, columns 4
and 5). When we used only these samples, our classi-
fication results improved for all metrics. For example,
the overall classification accuracy based on automated
segmentation improved by 7.9 percentage points. For the
remaining experiments, we tested our classification pro-
cedure using only the labels applied by the first expert
observer.

We tested the performance of our methodology using
different combinations of features. We compared using
shape-based features, appearance-based features, and a com-
bination of both (Fig. 7, top). Inspection shows that the
performance obtained using only shape-based features is
comparable to the results obtained using all features, whereas
the performance obtained when using only appearance-based
features suffers significantly, particularly for the polarized
and oriented attributes.

3.1.3 Classification results using automated segmentation

In practical application, our classification strategy will not
have the benefit of manual segmentation. Shapes resulting
from automated segmentation are less precise than manual
segmentation. An important question is how well our classi-
fication strategy works, given these known shortcomings.
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Fig. 7 ROC curves showing the performance of the Adaboost classifier
on the spread (left), polarized (middle), and oriented (right) attributes
when used with manual segmentation (top) or automated segmentation
(bottom). We compare performance achieved when using shape-based

features, appearance-based features, or a combination of both. Results
were obtained by comparing classification results with the labels pro-
duced by one of the expert observers, using tenfold cross validation

We applied our segmentation technique to the 125 images
in the morphology library. The ground-truth labels used in the
Sect. 3.1.2 were aligned with the automatically segmented
regions by determining which region contained each labeled
object. Due to the imperfect segmentation, some of the truth
labels had no associated detected region, some detected
regions had no associated truth label, and some detected
regions had multiple associated truth labels. These objects
were excluded from our classification experiment, leaving
841 examples.

Overall, the accuracy we obtained using automatic seg-
mentation was 10.8 percentage points less than the accuracy
obtained using manual segmentation, when using both shape-
based and appearance-based features (Table 1, column 3).
The decrease in performance for the weighted accuracy, and
the accuracy for each individual attribute was between 3
and 9 percentage points. The polarized attribute suffered the
worst loss at 8.7 percentage points. The structure of the con-
fusion matrix obtained using automatic segmentation is sim-
ilar to the structure found using manual segmentation (Fig. 6,
right).

As before, we tested the performance of our classifi-
cation methodology using different combinations of fea-
tures (Fig. 7, bottom). An interesting difference between
the manual and automatic segmentation is that the ROC
curve for the spread attribute shows that classifiers using only
appearance-based features performed better than classifiers
using only shape-based features when automatic segmenta-
tion was applied.

3.2 Clutter identification

We used the first ten annotated images (50 min) from each
of the 30 sequences in the time-lapse migration library to
assemble a dataset containing 1,870 cell and 2,252 clutter
objects. To extract objects from the image data, automated
segmentation was applied, and the ground truth labels were
aligned with the detected regions. Regions that did not corre-
spond to any truth object were identified as clutter. Regions
that were in one-to-one correspondence with truth objects
were identified as cells. Shape-based and appearance-based
features were computed for these objects. Using this dataset,
we then trained an Adaboost classifier to distinguish between
clutter and cells. Tenfold cross validation was used to eval-
uate the classifier performance using different feature sets
(Fig. 8).

By examining the true positive rate, we chose a predic-
tion threshold that favored correctly identifying cells at the
expense of misidentifying clutter. Using this adjusted thresh-
old, we were able to identify 90.5% of clutter objects in the
training data set (2,038 out of 2,252), while preserving 97.9%
of the cell detections (1,831 out of 1,870 cells), measured
using tenfold cross validation (Table 2).

3.3 Classification in time-lapse migration library

We now present the impact of our clutter mitigation strategy
and morphology classification technique on our analysis of
sequences in the time-lapse migration library. These image
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Fig. 8 ROC curves showing the performance of the Adaboost classi-
fier distinguishing between cells and clutter when using shape-based
features, appearance-based features, or both

Table 2 Confusion matrix showing the classification results for 4,122
clutter and cell objects, with a threshold adjusted to favor correctly
identifying cells

Predicted True

Cell Clutter

Cell 1, 831 214

Clutter 39 2, 038

sequences are representative of the data used in biomaterial
studies conducted to address important issues, e.g., cell–sub-
strate interactions.

There are two sets of results to report. One result is the
change in the number of correctly and incorrectly identified
cells found with and without the clutter mitigation strategy.
The other result is the morphology classification performance
on the correctly identified cells.

In each sequence, cells were imaged at 30-s intervals, and
cells in the images were manually identified and classified by
a cell biologist every ten frames (5 min). No manual segmen-
tation was performed. The first ten marked images (50 min)
from each sequence were used to assemble two training data-
sets to train the clutter and cell morphology classifiers. The
subsequent 500 frames (50 annotated images, approximately
4:10 h) from each sequence were used as testing data.

3.3.1 Clutter mitigation success

The tracker described in Sect. 2.6 was applied to 500 frames
from each sequence in the time-lapse migration library.
Although the expert-supplied annotations were only avail-
able for every tenth frame, the tracker had the benefit of
access to every frame in the sequence. When the clutter miti-
gation strategy was used, clutter objects were removed from
consideration before the tracker had access to the detected
objects.

Fig. 9 An illustration of the definition of a true detection, missed detec-
tion, collision, and false detection

To evaluate the success of our clutter mitigation strat-
egy, we computed several performance metrics to com-
pare the objects found by our segmentation and tracking
algorithms with the annotations made by the cell biologist.
We computed the scores for our metrics using the tracked
objects produced by the tracker, instead of the raw detections.
(The tracker discarded detections contained in tracks shorter
than 2.5 min.) A true detection is defined as an annotated
cell in one-to-one correspondence with a tracked object.
A tracked object may be a detection from the image, or a coast
inserted by the tracker. A missed detection is defined as an
annotated cell that does not correspond to any tracked object.
A collision is defined as an annotated cell that corresponds to
a tracked object that corresponds to more than one annotated
cell (the set of annotated cells in a many-to-one relationship
with tracked objects). A false detection is defined as a tracked
object that does not correspond to an annotated cell (Fig. 9).

The first metric we computed was the probability of true
detection—the number of true detections, over the total num-
ber of annotated cells. The second metric was the probability
of a missed detection—the number of missed detections over
the total number of annotated cells. The third metric was the
probability of false detection—the number of false detec-
tions over the total number of tracked objects. The probabil-
ity of collision—the number of truth objects in many-to-one
correspondence with tracked objects over the total number
of annotated cells—is not affected by our clutter mitigation
strategy, but it does reduce our apparent probability of detec-
tion. The correspondence between detected objects and anno-
tated cells was determined as described in the Sect. 3.1.3.
We also counted the total number of true detections, missed
detections, and false detections. Tabulation of performance
metrics was performed every ten frames (5 min).

We observed our desired result, namely, significantly
decreasing false detections and only slightly affecting our
detection rate (Table 3). The true detection rate was reduced
from 82.8 to 80.0%, but the false detection rate was reduced
from 51.2 to 15.8%. The total number of false detections
dropped by 82.8%, while the total number of true detections
only dropped by 3.4%.
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Table 3 Using a machine
learning approach to reducing
clutter causes a significant
reduction in false detections,
with only a small reduction in
true detections

No clutter mitigation With clutter mitigation

Probability of true detection 82.8% 80.0%

Probability of missed detection 0.2% 3.1%

Probability of collision 16.9% 16.9%

Probability of false detection 51.2% 15.8%

Total annotated cells 11,469 11,469

Total tracked objects 20,385 11,791

Total true detections 9,502 9,180

Total missed detections 25 351

Total false detections 9,983 1,718

Table 4 Morphology classification accuracy achieved in the time-lapse
migration library

Overall accuracy 55.7%

Weighted accuracy 82.1%

Spread accuracy 88.8%

Polarized accuracy 74.0%

Oriented accuracy 83.4%

Fig. 10 Overall confusion matrix obtained for the classification per-
formance on 9,180 true detections found in the time-lapse migration
library, using automatic segmentation, a simple tracker, and both shape
and appearance-based features

3.3.2 Morphology classification performance

Our final task was to analyze the performance of the mor-
phology classifier on the true detections. Using the clutter
mitigation strategy, there were 9,180 true detections. The
true class distribution of the cells was 82.1% spread, 44.9%
polarized, and 14.4% oriented.

Measured by the overall accuracy, we found that our clas-
sification performance was as good as with the performance
achieved on cells in the morphology library (Table 4; Fig. 10).

We observed in the structure of the confusion matrix that
the confusion rate between polarized/non-oriented and polar-
ized/oriented cells is worse than the confusion rate in the
morphology library, although when measured by classifica-
tion accuracy for the oriented attribute, our performance is
quite good. We also note that the accuracy of our method for
the polarized attribute is lower than the accuracy observed in
the morphology library. Both of these issues may be due to
the class prevalence being different in the time-lapse migra-
tion library than in the morphology library.

4 Discussion

4.1 Relationship to previous work

Machine learning methods have been applied to analysis of
microscopy images for many years. We do not compare our
methods to previously published work because of the diffi-
culty of direct comparison with methods that are designed for
different situations, including different imaging modalities
(e.g., fluorescence microscopy [2,12,17,18]), microorgan-
isms [23], or cell types. To the best of our knowledge, public
benchmark datasets of phase-contrast microscopy images for
evaluating image analysis techniques are not available and
need to be created.

We are not aware of any work where the issue of clut-
ter mitigation has been addressed using machine learning, or
where classification accuracy using automated segmentation
is compared with classification accuracy using manual seg-
mentation. Experimenting with different machine learning
techniques and feature sets proposed in the literature remains
an important part of ongoing work.

4.2 Feature selection

The set of features to use as input to a machine learning algo-
rithm is one of the most important decisions when designing
a classification methodology. In our methodology, we used
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Adaboost to choose among weak classifiers that each oper-
ated on a single element of the feature vector, and so we can
use the classifiers built by Adaboost to gain some insight into
the discriminative power of the features, based on the way
each weak classifier was chosen and weighted. Care must be
taken when interpreting this information. Adaboost selects
weak classifiers which are in some sense orthogonal to each
other. So, in our case, if a set of features is strongly corre-
lated, only one feature may appear in the finished classifier,
but this does not mean that the other features are not useful.
Another consideration is that the number of weak classifi-
ers to use is determined a priori, and so classifiers chosen
towards the end of training may not contribute strongly to
the overall result, and can actually degrade performance in
the worst case. The strongest evidence for the usefulness of
an attribute is that it is consistently chosen by the algorithm
under differing conditions.

We examined the classifiers built for classifying each attri-
bute under the three conditions tested; manual and automatic
segmentation in the morphology library and automatic seg-
mentation in the migration library. It is interesting that for a
given attribute, the classifiers built under different conditions
generally used different features.

In our experiments, we found that shape-based features
made the strongest positive contribution to the classification.
The shape-based features that appear frequently include mea-
sures of cell size, including area, perimeter, and the mean
distance between the centroid and pixels belonging to the
boundary. We also see features related to the cell’s round-
ness, including circularity and the isoperimetric quotient. The
lower Hu moments and the extension, dispersion, and elon-
gation image moments, which are functions of the first and
second Hu moments, appear especially in the classifiers for
the oriented attribute.

Rodenacker and Bengtsson [22] discussed a wide variety
of features and reported that statistics of the gradient magni-
tude and Laplacian were very useful. The appearance-based
features that appear in our finished classifiers are related
to texture, including the mean of the absolute value of the
Laplacian and the standard deviation and skew of the gradi-
ent magnitude.

4.3 Additional experimental methodologies

Guided by domain knowledge about cell morphology, we
experimented with two additional approaches for morphol-
ogy classification. Our methods and quantitative results are
described in Sect. 6.

Our first alternative approach was to treat the attributes
as an ordered cascade by enforcing a classification hierar-
chy using rules (Sect. 6.1). To implement this approach,
we modified the training and testing phases of Adaboost.
We found that the hierarchical rules imposed a dependency
structure that, as the experiments revealed, was not needed.
Inspection of the structure of the confusion matrix computed
without hierarchical rules (Fig. 6) showed that the predic-
tion structure that the hierarchical rules were designed to
impose already existed. For example, one rule in the system
stated that non-spread cells cannot be polarized. In the exper-
iments without hierarchical rules, no cells were classified as
both non-spread and oriented, so this rule was shown to be
redundant.

Our second alternative approach was to use ternary labels,
instead of binary labels. Our decision to experiment with ter-
nary labels was informed by the biological reality that, since
the shape of a cell changes continuously, a cell may pass
through a partially spread (or partially polarized or oriented)
state in between the non-spread and fully-spread states. Using
ternary labels, we introduced an intermediate or partial class
between the positive and negative classes for each attribute.
This gives us slightly finer granularity for classifying cell
shape, which may be important in downstream studies of
population dynamics.

To evaluate our classification results using ternary labels,
we compared the automatic classification results with ter-
nary labels provided by one of the cell biologists. We com-
puted a modified accuracy metric that gave partial credit for
partially correct results. Using this evaluation technique, we
did not find that our quantitative performance was substan-
tially different from the experiments where we used binary
labels.

On the other hand, qualitatively, we found some differ-
ences. We define a positive or negative example classified
as belonging to the intermediate class to be partially correct.
Similarly, an intermediate example classified as positive or
negative is also defined to be to be partially correct. Posi-
tive examples classified as negative and negative examples
classified as positive are defined to be fully incorrect. We
found that while there were fewer fully correct results, there
were far fewer fully incorrect results because many of the
cells that were not identified correctly were assigned to the
intermediate class. Depending on the penalty for incorrect
classification, and the acceptability of intermediate labels,
ternary labels may be beneficial. Applications may also ben-
efit from the finer classification granularity available when
using ternary labels.
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5 Conclusions

In this paper, we addressed two problems: classifying cell
shape and identifying clutter. Our goal was to identify and
classify cells in a completely automated way. To benchmark
our performance, we used the disagreement between human
experts. To understand how well our classification technique
would work under the best circumstances, we applied our
methodology to manually segmented images. We found that
our classification accuracy was comparable to the agreement
between human observers. Then, we applied our classifica-
tion technique to automatically segmented images, and we
found a small reduction in classification performance.

We emphasize that even when given the imprecise cell
boundaries produced by a simple automated segmentation
method, our classification method was successful. This is an
important result because it reveals that image analysis tasks
can be performed effectively without perfecting automated
segmentation.

Misinterpreting non-cell clutter objects can waste sig-
nificant resources, both computational resources and, more
importantly, the time and efforts of the cell biologist who may
have to carefully inspect the results for correctness. Without
this inspection, false detections jeopardize the quality of the
results of subsequent analysis. This lack of trust may stifle
research in the development of downstream algorithms.

Previous work on cell segmentation and tracking has not
sufficiently addressed the important issue of mitigating clut-
ter. Our contribution, a machine learning approach that iden-
tified clutter objects successfully, is a significant step towards
addressing this issue. In one of our experiments, our method
correctly identified over 90% of clutter objects while preserv-
ing nearly 98% of the cell objects (Sect. 3.3). Future work is
needed to improve clutter identification while simultaneously
correctly identifying cells.

Acknowledgments We would like to thank Matthew Antone and
Evimaria Terzi for helpful discussions and Patricia A. Solski for provid-
ing us with ground-truth cell labels. Funding for this work was provided
by the National Science Foundation, HCC grant IIS-0910908.

6 Appendix: Additional experimental methodologies

Guided by domain knowledge about cell morphology, we
experimented with two additional approaches for morphol-
ogy classification. For these two experiments, we only report
our results using manual segmentation.

6.1 Classification results using hierarchical rules

Our first alternative approach was to treat the attributes as an
ordered cascade by enforcing a classification hierarchy. To

Table 5 Performance of two alternate classification strategies are com-
pared with our primary classification method

Classification method Binary Hierarchical Ternary

Cell instances 883 883 883

Overall accuracy (%) 65.3 63.1 45.8

Weighted accuracy (%) 86.7 85.9 90.8

Spread attribute (%) 93.9 93.5 93.0

Polarized attribute (%) 85.6 85.7 85.9

Oriented attribute (%) 80.6 78.4 75.3

Results were obtained using tenfold cross validation on instances found
using automated segmentation

implement this approach, we modified the training and test-
ing of the Adaboost classifier. During the training phase, we
removed all non-spread instances from the training set for the
polarized classifier. Similarly, we removed all non-spread and
non-polarized instances from the training set for the oriented
classifier. During the prediction phase, any cell classified as
non-spread was automatically classified as non-polarized and
non-oriented.

Using manual segmentation, we found that the perfor-
mance obtained when using hierarchical rules was similar
to the performance obtained without them (Table 5, col-
umn 2) and that the confusion matrix (not shown) had the
same structure.

6.2 Classification results using ternary labels

Our second alternative methodology uses ternary labels,
instead of binary labels. We discuss the justification for this
in Sect. 4.3. To evaluate our approach, we compare our clas-
sification results to ternary labels applied to all of the cells
in the morphology library by one of the two cell biologists.

For each attribute, we trained two one-versus-all classifi-
ers: one classifier for the positive class and one classifier for
the negative class. In the prediction phase, cells were classi-
fied as positive or negative only if the score computed by the
appropriate classifier was positive and the score computed
by the other classifier had the opposite sign. If the scores
from the two classifiers had the same sign, then the example
was assigned the intermediate label. After a ternary value
was assigned for each attribute of an instance of a cell, our
method combined the labels to form the final classification
of the shape of the cell.

To evaluate the ternary classifier, we compute 3×3 confu-
sion matrices for each attribute. To measure the accuracy, we
compute a cost function between the true class t and the pre-
dicted class c that gives credit for a partially correct answer.
The labels t and c have a value of 1 if they are the positive
class, −1 if they are the negative class, and 0 if they are the
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Table 6 Binary classification results for each attribute, using manual
segmentation, using both shape-based and appearance-based features

Predicted True

Non-spread (%) Spread (%)

Non-spread 15.5 2.7

Spread 3.4 78.4

Non-polarized (%) Polarized (%)

Non-polarized 32.4 6.3

Polarized 8.0 53.2

Non-oriented (%) Oriented (%)

Non-oriented 59.5 10.4

Oriented 8.9 21.2

Results were obtained using tenfold cross validation on 883 instances

intermediate class. We define

f (t, c) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if t = c,
0.375 if t = 0 and c = {1,−1},
0.375 if t = {1,−1} and c = 0,

0 otherwise.

(6)

The weighted accuracy metric, defined for 3 × 3 confusion
matrices using ternary labels, for a particular attribute a is

W3 = 1

N

n∑
i=1

f (Ti (a), Ci (a)). (7)

If no examples exist with true or predicted labels belong-
ing to the intermediate class, this metric is equivalent to
“accuracy” as defined above for the binary case. The expected
value of the metric is 0.5 if the truth labels and predicted
labels are equally distributed.

For the full 27 × 27 confusion matrix, we compute the
usual definition of accuracy as the sum of the diagonal of
the confusion matrix. We also compute a weighted accuracy
metric which is

W27 = 1

N · L

N∑
i=1

L∑
l=1

f (Ti (l), Ci (l)). (8)

When inspecting the scores computed with the A3 and
W27 metrics, we observed that the scores obtained using ter-
nary labels were comparable to the scores obtained using
binary labels, although the weighted accuracy metric is better
(Table 5, column 3).

When we examined the confusion matrices, we found that
there were fewer fully correct results, but far fewer fully
incorrect results. To illustrate the differences in the nature
of the classification errors, we present the 2 × 2 confusion
matrices for each attribute for the binary case (Table 6) and
the 3 × 3 confusion matrices for each attribute for the ter-
nary case (Table 7). For example, for the polarized attribute,
using binary labels, 14.3% of the examples were classified
incorrectly, whereas using ternary labels, 0.1% were classi-
fied incorrectly.

Table 7 Ternary classification
results for each attribute, using
manual segmentation, using
both shape-based and
appearance-based features

Results were obtained using
tenfold cross validation on 883
instances

Predicted True

Non-spread (%) Partially-spread (%) Spread (%)

Non-spread 8.5 2.8 0.0

Partial-spread 1.4 11.1 3.1

Spread 0.2 3.5 69.4

Non-polarized (%) Partially-polarized (%) Polarized (%)

Non-polarized 17.7 3.1 0.0

Partial-polarized 2.4 30.2 9.7

Polarized 0.1 7.2 29.6

Non-oriented (%) Partially-oriented (%) Oriented (%)

Non-oriented 52.0 7.5 5.9

Partial-oriented 8.5 7.5 8.4

Oriented 1.8 2.8 5.7
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