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Abstract. This paper presents a shape-based curve-growing algorithm
for object recognition in the field of medical imaging. The proposed curve
growing process, modeled by a Bayesian network, is influenced by both
image data and prior knowledge of the shape of the curve. A maximum a
posteriori (MAP) solution is derived using an energy-minimizing mech-
anism. It is implemented in an adaptive regularization framework that
balances the influence of image data and shape prior in estimating the
curve, and reflects the causal dependencies in the Bayesian network. The
method effectively alleviates over-smoothing, an effect that can occur
with other regularization methods. Moreover, the proposed framework
also addresses initialization and local minima problems. Robustness and
performance of the proposed method are demonstrated by segmentation
of pulmonary fissures in computed tomography (CT) images.

1 Introduction

Enormous demands for automatically recognizing complicated anatomical struc-
tures in medical images have been raised in recent years. The medical commu-
nity has seen many benefits from computer aided diagnosis (CAD) systems [5]
and computer visualizations [7]. A large body of literature on segmentation of
anatomical structures has been published [14]. Low-level image processing meth-
ods, for example, thresholding or edge detection, by themselves, were often not
sufficient to segment such structures. Many methods have attempted to intro-
duce prior knowledge of the shape of a structure into the object recognition
process. A widely known technique, the “snake” or active contour method [8],
used a deformable spline contour to capture the boundary of an object in an
iterative energy minimizing process. The assumption of a smooth object bound-
ary was guaranteed implicitly by the geometry of the spline contour. The level
set method [12] was later proposed as a more powerful solution for handling
instability and allowing changes in object topology. However, for objects with
high curvatures or large boundary discontinuities, the smoothness assumption
by itself is not sufficient for modeling object shape. Thus, some high-level prior
knowledge is needed to guide the object segmentation process. Statistics based
methods (e.g., [4]) used training data for recognizing objects with complicated
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shapes. Recently several methods (e.g., [11]) have incorporated shape priors into
existing segmentation methods, e.g., [8,12], and presented promising results for
applications in which closed contours can be used to model objects. For an object
modeled by an open contour, Berger and Mohr’s curve-growing method [2] can
be applied. A shape model can also be used in the deformation of open contours,
for example, as proposed by Akgual et al. [1].

A pulmonary fissure is a boundary between the lobes in the lungs. Its seg-
mentation is of clinical interest because pulmonary nodules are frequently lo-
cated adjacent to the fissure, whose identification would benefit computer aided
diagnosis systems. Moreover, the ability to segment the lobes has additional
clinical implications that include automated quantitative assessment of regional
lung pathology and image registration. Few systems [9,15,17] have addressed
the problem of fissure segmentation. The main contributions of our paper are
(1) an approach to include a shape prior in a curve-growing method for object
segmentation (2) an adaptive regularization framework, (3) a process to address
curve initialization and alleviate the local minima problem, (4) a successful ap-
plication of the proposed method to the problem of segmenting fissures in CT.
With the introduced shape prior, meaningful segmentation results are produced
in the presence of uncertainties, such as ambiguous image features or high cur-
vature variation on the object boundary. The adaptive regularization alleviates
over-smoothing, an effect encountered by classical regularization methods. Our
method also provides a solution for the initialization problem by taking advan-
tage of the shape prior. It also alleviates the local minima problem effectively
by a revised definition of the “image force.”

2 Method

2.1 Bayesian Formulation of Curve Growing

Bayesian networks [13] have been applied to many applications that involve
reasoning processes, as they succinctly describe causal dependencies using prob-
abilities. Suppose that an object is modeled by a piecewise spline curve C. A
random variable I, representing the observed image data, and a random vari-
able C∗, representing prior information about the object shape, are considered
as two causal predecessors of the random variable C, the curve to be estimated.
This relation can be modeled by the Bayesian network shown in Fig. 1A. The
curve is represented as a collection of curve segments C = {S1, . . ., SK , . . ., SN},
where SK represents the K-th curve segment and is also considered a random
variable. The curve C is created by adding curve segments SK one at a time. Ran-
dom variable SK is assumed to be only dependent on the most recently added
curve segment SK−1 and not on earlier segments. We call this the “Markovian-
ity assumption” [10] on subsequent curve segments. The corresponding Bayesian
network is shown in Fig. 1B. Estimating the curve C is equivalent to finding the
maximum of the joint probability P(S1, S2, ..., SN , C∗, I) defined by the Bayesian
network. By applying the Markovianity assumption, this is
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Fig. 1. A Hierarchy of Bayesian Networks for Curve Growing

P(S1, ..., SN , C∗, I) =P(C∗, I)P(S1|C∗, I)P (S2|S1, C∗, I) . . .P(SN |SN−1, C∗, I). (1)

This product includes the prior distribution P (C∗, I), which is generally assumed
to be uniform, the posterior probability P(S1|C∗, I), which models the probability
of the initial curve placement and relates to the curve initialization problem, and
the remaining posterior probabilities P(SK |SK−1, C∗, I), for K = 1, . . . N . The
maximum of the joint probability given in Eq. 1 is approximated by the product
of the maximum of P(S1|C∗, I) and each P(SK |SK−1, C∗, I), where

P(SK |SK−1, C∗, I) = P(SK |SK−1, C∗
K , IK)

= P(IK |SK , SK−1)P(C∗
K |SK , SK−1, IK)P(SK , SK−1) /P(SK−1, C∗

K , IK).
(2)

Here IK is the local image region containing SK and is considered to be the
only relevant part of the image I for estimating SK (Fig. 2). Similarly, C∗

K

is the part of the shape prior C∗ relevant to estimating SK . The normalizing
factor P(SK−1, C∗

K , IK) is considered irrelevant to SK and thus omitted. The
corresponding Bayesian network is shown in Fig. 1C.

2.2 Energy Function of Curve Growing Model

The conditional probability P(IK |SK , SK−1) in Eq. 2 is defined as

P(IK |SK , SK−1) ∝ exp(−|Eimg(SK) − E min
img | ), (3)

where Eimg(SK) = − ∑
i |∇I(V i

K)| is the associated image energy of curve seg-
ment SK , ∇I defines the image force, in many applications, the intensity gradi-
ent, V i

K represents the i-th spline point in the segment SK , and E min
img is a lower

bound on the values of Eimg that can occur in an image. In contrast to previ-
ous methods [8,16], the image energy is evaluated on the curve segment instead
of a singular spline point, which reduces the possibility that the curve-growing
process is trapped in off-curve local image energy minima.

In Eq. 2, the probability P (C∗
K |SK , SK−1, IK) is used to model the similarity

of the Kth segment of curve C and prior curve C∗. It is a function of SK , SK−1
and IK , and can be defined by a Gaussian distribution:
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P(C∗
K |SK , SK−1, IK) ∝ exp(−α(IK)fsim(SK , SK−1, C

∗
K))

= exp(−|µ(SK , S∗
K) − µ(SK−1, S

∗
K−1)|/(2σ2)) with (4)

µ(SK , S∗
K) = 1

n

∑
i|V i

K − V i∗
K |, S∗

K = {V i∗
K |V i

K ∈ SK}, and C∗
K = S∗

K ∪ S∗
K−1,

where fsim(SK , SK−1, C
∗
K) is a function measuring the similarity between (SK ,

SK−1) and the shape prior C∗
K , (V i

K , V i∗
K ) is a pair of corresponding points on

C and C∗ (correspondence is established by a closest-point search), µ(SK , S∗
K) is

the mean difference vector between two corresponding curve segments, n is the
number of points included in SK , and α(IK) is a function of IK used to control
the magnitude of the Gaussian deviation (α(IK) ∝ 2σ2).

The smoothness constraint on the curve is modeled by:

P(SK , SK−1) ∝ exp(−|fcurv(SK , SK−1)|), (5)

where fcurv(SK , SK−1) is a function measuring the curvature between SK−1 and
SK , e.g. as in Ref. [16]. By incorporating the Eqs. 3-5 into Eq. 2 and taking the
logarithm, the curve energy function

E(C) = Eshape(C) + Ecurv(C) + Eimg(C) ∝
∑N

K=1(α(IK)fsim(SK , SK−1, C
∗
K) + βKfcurv(SK , SK−1) + γKEimg(SK))

(6)

is obtained, where α, β and γ regularization factors, whose ratios are constrained
by the variances of the underlying Gaussian distributions. Each of Eshape, Ecurv

and Eimg is normalized as suggested by Ref. [16]. The energy minimum of E(C)
is considered an approximate MAP solution of the curve segmentation problem.

2.3 Causal Confidence Approximation and Adaptive Regularization

Ill-suited values for α, β and γ in Eq. 6 can cause the curve C to become overly
smoothed. Regularization factors can be estimated by various approaches, for
instance, a cross-validation method [10], which requires a large amount of off-
line computation and is then static during the segmentation phase. To obtain
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Fig. 2. Curve Growing with Adaptive Regularization
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Fig. 3. Image features, entropy and adaptive regularization: Example 1: (a) Region of
interest in a CT image. (b) Ground truth curve. (c) Entropy H along the curve. (d)
Corresponding value of α. The two highest values of H and α and the corresponding
locations in the image are circled. Example 2: (e) Shape prior. (f) Curve obtained
with static regularization, α = 1.2 and γ = 1.4. (g) Curve obtained with adaptive
regularization. (h) Ground truth curve.

a well-behaved regularizer, we propose an adaptive regularization framework. A
revised factor α(IK) is introduced to weigh adaptively the influence of image
region IK versus the influence of prior shape C∗

K . This also reflects the causal
dependencies in the Bayesian network (Fig. 1c). The adaptive regularization
parameter α(IK) can be related to the entropy

H(IK) = −F
∑n

i=1P(IK |Si
K , SK−1) log2 P(IK |Si

K , SK−1) (7)

of image region IK , where Si
K is the i-th sample of SK in IK (Fig. 2) and F is

a normalizing factor. The entropy H(IK) can be interpreted as the amount of
uncertainty contained in image region IK . For regions with large entropy values,
the prior shape term should be weighted higher than for regions with small
entropy values. The adaptive regularization parameter α(IK) is thus defined as

α(IK) = max{ε, (H(IK) − λ)/(1 − λ)}, (8)

where λ is the threshold that corresponds to a desirable feature in IK and can
be learned offline from a set of training examples, and where ε defines the mini-
mum value of α(IK). The values λ = 0.5 and ε = 0.1 were chosen in the current
implementation. Fig. 3(a)– 3(e) gives an example where adaptive regulariza-
tion satisfactorily strengthened the influence of the prior shape (circled areas).
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Fig. 4. Curve Initialization: (a) Alignments of relevant portions {Li} of prior curve
C∗ with candidate segments {Si

1}. (b) Local region of interest in CT (top), candidate
segments {Si

1} (middle), and the selected initial curve segment S1 (bottom).

Fig. 3(f)– 3(i) shows a second example, where adaptive regularization is clearly
superior to static regularization.

2.4 Curve Initialization

The curve-growing process starts after a segment belonging to the curve is
selected. The Bayesian formulation P(S1|C∗, I) suggests that both the prior
curve C∗ and the current image data I should be considered in selection of
S1. In our work, the positions of salient image features, for example, local min-
ima of the brightness gradient, are collected to form a set of candidate segments
{Si

1}. To choose S1 among them, the prior curve C∗ is translated onto each
{Si

1}. A confidence weight is assigned to each candidate segment by accumulat-
ing image feature values along the relevant portion of translated C∗ (Fig. 4(a)).
The segment with the highest confidence weight among all segments is chosen
as the initial curve segment S1. An example of the selection of an initial curve
segment on CT is shown in Fig. 4(b). Our method provided more effective start
conditions for the curve-growing process than Berger and Mohr’s method [2] for
most of our data.

3 Results for Pulmonary Fissure Segmentation

On CT, a fissure often looks like a ribbon structure with variable width due
to respiratory motion and the partial volume effect. Fissures have been demon-
strated as frequently incomplete on imaging [6] – they may appear as collections
of discontinuous curve segments. Tissue surrounding the fissure, e.g., adjacent
vessels or nodules, and clutter due to noise in the imaging process can result
in off-curve local minima of the image energy. Traditional active contour meth-
ods [8,2] typically cannot overcome these difficulties.

The proposed method has been tested to segment pulmonary fissures on 11
thin-section CT scans of 4 patients. On each slice, a morphological operation was
applied to generate a feature map of the local region of interest containing the
fissure. The prior shape C∗ was estimated from fissures previously segmented in
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Fig. 5. Curve growing process: (a) Prior curve C∗. (b) Image region with initial curve
segment S1. (c)–(e) Intermediate results after 4, 8, and 18 iterations.

Fig. 6. Comparison of curve-growing results: Row 1: Original images. Row 2: Curve by
method in Ref. [2]. Row 3: Curve by proposed method. Row 4: Ground-truth curve.

Fig. 7. Visualization of the segmented lung lobes of four patients.

other images of the same scan. For each CT scan, the fissure on a single slice
was segmented semi-automatically; the fissures on the remaining slices were then
segmented fully automatically (Figs. 5 and 6). The average time for segmenting
fissures in one CT scan was less than 5 min on a PIII 1.2 GHz PC. Among 509
slices sampled from a total 1432 slices, the proposed method successfully seg-
mented the fissures on 460 slices. The overall success rate was 460/509 = 90.4%.
The method then interpolated the segmentation of fissures on the remaining
slices. Berger and Mohr’s method [2] produced comparable results in the few
cases where image features were sufficiently salient (Fig. 6). In many other cases,
where image features were ambiguous, our method produced more meaningful
results. Finally, the lung lobes were fully segmented by combining the segmented
fissures with lung contours [3], as visualized in Fig. 7.

4 Conclusion and Future Work

We described a shape-based curve-growing method and its application to pul-
monary fissure segmentation. Effectively selecting the location of the next curve
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segment in each iteration of the curve-growing process is a critical part of our
solution. It overcomes some of the difficulties encountered by other methods [8,
2]. Moreover, the idea of adaptive regularization may be generalized and applied
to other model-based energy-minimizing mechanisms. This will be investigated
in future work involving different applications, possibly in higher dimensional
spaces.
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