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Abstract

A method that combines shape-based object recognition
and image segmentation is proposed for shape retrieval
from images. Given a shape prior represented in a multi-
scale curvature form, the proposed method identifies the
target objects in images by grouping oversegmented image
regions. The problem is formulated in a unified probabilis-
tic framework, and object segmentation and recognition are
accomplished simultaneously by a stochastic Markov Chain
Monte Carlo (MCMC) mechanism. Within each sampling
move during the simulation process, probabilistic region
grouping operations are influenced by both the image infor-
mation and the shape similarity constraint. The latter con-
straint is measured by a partial shape matching process. A
generalized cluster sampling algorithm [1], combined with
a large sampling jump and other implementation improve-
ments, greatly speeds up the overall stochastic process. The
proposed method supports the segmentation and recogni-
tion of multiple occluded objects in images. Experimental
results are provided for both synthetic and real images.

1 Introduction

The general goal of image segmentation is to group pixels in
an image and thus produce contours or regions that are con-
sistent with what a human observer would perceive. Seg-
mentation methods are particularly useful if they yield ob-
ject recognition. Objects with similar shapes that belong to
the same object class may appear differently in images due
to differing surface properties, i.e., colors and textures, or il-
lumination conditions. Segmentation becomes particularly
challenging when the object is present in cluttered environ-
ments that include other objects. A strategy that addresses
these challenges is to incorporate high-level prior knowl-
edge about the object of interest, such as a shape prior, into
the segmentation process.

To capture the boundary of an object, contour-based seg-
mentation methods, e.g., active contour or level set meth-
ods [5, 9], explicitly or implicitly deform the contour. In
other work [7, 3], learned shape priors were introduced to
constrain the 2D (3D) contour (surface) deformations so
that objects with these predefined boundary shapes could

0-7695-2372-2/05/$20.00 (c) 2005 IEEE

Figure 1: (a): Contour-based segmentation by the traditional active con-
tour method [5], where the initial and final contour are shown as the link
of yellow and white knots, respectively. (b): Region-based segmentation
by data-driven MCMC [17]. (c): Segmentation by the proposed method.

be extracted from cluttered backgrounds. The original limi-
tations of contour-based methods, i.e., the initialization and
local minima problems (Fig. 1a), still remained.

Compared to the contour-based methods, recent region-
based methods [17, 12, 6] have the following advantages.
First, region-based methods are bottom up and data driven.
They generally do not require an initialization step, and
are expected to converge to the globally optimal solution
in many cases. Second, different types of high-level prior
knowledge, such as color/texture models [17, 12], bound-
ary continuity hypotheses [17, 12], or perceptual measure-
ments [6], can be incorporated into the bottom-up segmen-
tation process. Application of region-based methods was
mainly restricted to generate perceptual groupings or vi-
sually pleasing segmentation results (Fig. 1b). This paper
proposes a novel framework that aims beyond these goals
— the proposed method generates segmentation results that
can be directly used for object recognition. The main con-
tributions are:

e Given prior knowledge of shape, the proposed method
identifies target objects in images by grouping overseg-
mented image regions via a bottom-up Markov Chain
Monte Carlo (MCMC) mechanism. This method
achieves simultaneous segmentation and recognition
of multiple occluded objects whose location, rotation,
and scale are unknown Fig. 1c).

e During the stochastic simulation process, probabilistic
region grouping operations are influenced by both the
image information and the shape similarity constraint.

e A great speedup of the segmentation process is gained
by carefully adapting Barbu and Zhu’s [1] cluster sam-



pling method, the Swendsen-Wang Cut (SWC) algo-
rithm, to the current problem and providing new im-
plementation improvements.

The work most relevant to the current method was pro-
posed by Sclaroff et al. [14]. The method learned a de-
formable shape template from multiple shape samples and
applied it to constrain the region grouping process. Objects
were identified by merging the regions of interest gradu-
ally, either with simulated annealing or a greedy process.
Recent work by Tu et al. [16] advanced in the direction
of accomplishing object segmentation and recognition si-
multaneously within a unified framework [17]. Another
idea of combining top-down and bottom-up segmentation
was demonstrated recently by Borenstein et al. [2] for seg-
menting the foreground objects from images. These sys-
tems [16, 2] required the feature-based prior models to be
carefully constructed through a learning process, and then
applied the image information as the only cues for group-
ing regions. These methods also did not handle occluded
objects explicitly.

2 Problem Definition

Given an input color image (Fig. 2a), an “oversegmenta-
tion” (Fig. 2b) can be obtained by existing segmentation
methods, e.g., the “mean shift method” [4]. Because an
object of interest may be partitioned into multiple atomic
regions in the oversegmented image, the oversegmentation
cannot directly provide meaningful object interpretations.
In our method, a shape prior is introduced (Fig. 2¢), and a
meaningful segmentation can be achieved where the objects
of the interest in the image are identified (Fig. 2d).
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Figure 2: (a): Input color image. (b): Boundaries of oversegmented
regions [4]. (c): Shape prior. (d): Recognized objects of interest, including
completely or partially matched shape.

The segmentation problem to be solved here is, given
a shape prior represented in some form, how to group the

atomic image regions of an oversegmented image such that
the objects similar to the shape prior can be correctly identi-
fied. Finding the optimal solution for such a grouping prob-
lem is NP-hard [14]. A top-down shape matching process
could be extremely slow if an exhaustive search for the ob-
ject location, rotation and scale is employed. Another prob-
lem is that an image region may only provide a partial hy-
pothesis for shape similarity. A partial region boundary that
matches well locally may not produce a good match with
the shape prior globally.

3 Multi-Scale Curvature Representa-
tion of Shape Prior

Defining a good representation of shape is challenging [8,
18]. For the problem at hand, the representation of the
shape prior must be translation, rotation, and scale invari-
ant. The proposed method uses boundary curvatures to
define the shape of an object. Given the 2D closed con-
tour of an object, parameterized by the arc length param-
eter as {(z(u),y(u)) |u € [0,1]}, its smoothed boundary
(z(u,0),y(u, o)) can be calculated [10] by convolving the
boundary curve with different sizes of Gaussian kernels,
where o is the width of the kernel. The curvature of this
smoothed boundary is then:

' (u, o)y (u,0) — 2" (u, o)y (u, o)
(2(.0) + 520,02

k(u,0) =

ey
To achieve a scale invariant representation, Ref. [10] nor-
malized the curvature values by the length of the contour.
This approach would be problematic for handling partial
shape matches as described below. The proposed method
therefore instead precomputes a set of boundary curvatures
for the object in different scales. In particular, a shape
prior S = {C}, } consists of sequences of curvature val-
ues C'f o along the boundary of the object, smoothed by a
Gaussian kernel of width o, in the ith level of scale. The
total number of such curvature sequences are m X n, for
i = 1,...,m different levels of scale and j = 1,...,n
different sizes of Gaussian kernels.

3.1 Partial Shape Matching Problem

The boundaries of oversegmented image regions typically
only partially match with the shape prior contour (Fig. 2b).
To apply the prior shape information to group overseg-
mented image regions, partial shape similarity between the
image regions and the shape prior needs to be measured.
However, finding a general solution for identifying the
matches of different parts of the shapes is still an unsolved
problem [18, 11]. For the current problem, we assume the
matched portions of the boundary of the same object are
connected and only small “gaps” are allowed between them.



PARTIALSHAPEMATCH (Cy, C*, Ty, Ty)
/I Cy: curvatures of input object; C*: curvatures of prior shape;
/I Ty curvature similarity threshold; Ty: gap size threshold;
Maxhits = 0;
for i = 1to £(C*) do
Hits = Nonhits = 0;
forj =1t024(Cy ) do
m=jin=1+7;
ifj >£(Cy) them m=j—£(Cy);
ifi+j>=4¢(C*) then n=1i+j—£C*);
if |C(m) — C*(n)| < Ti. then Hits++;
else Nonhits++;
if Nonhits / Hits > Ty  then
if Hits > Maxhits then Maxhits = Hits;
NonHits = Hits = 0,
Normhits = Maxhits [£(Cy);
Return Normhits;

Given an input object V, for instance, an image region, and
a shape prior S, their boundary curvature sequences are C'y
for V and C* for S (Eq. 1). The proposed PARTIALSHAPE-
MATCH algorithm (PSM) identifies the longest subsequence
that matches in both C'y and C*. It allows small gaps in the
final matched sequences, controlled by threshold 7,. The
algorithm’s nested loop repeats 2 £(CY/) times to allow the
matching to start from any position on the region boundary
due to its cyclic representation. The length ¢ of the output
subsequence is normalized by the boundary length of the
input object V. The shape similarity

M(‘/, S) :max{di,j,k :PSM(CV’UH C;»G'k)’ Vi, j7 k} (2)

between V" and S requires PSM to be performed for all scale
and smoothness levels, where C'y,, is the smoothed bound-
ary curvature for image region V.

We assume the length of the region boundary that in-
cludes the partially matched shape is always shorter than
the length of the boundary of the prior shape in its matched
scale. Therefore, the shape similarity result only needs to be
computed between Cvy ., and a subset of curvatures in S.

4 Stochastic Region Grouping with
Shape Prior

This section follows the mathematical framework proposed
by Tu et al. [17] and derives a Bayesian formulation for
grouping image regions with the introduced shape prior. We
use a “region adjacency graph” [1] that contains a vertex
for each atomic region of the oversegmented image and an
edge e;; between vertices v; and v; if the regions repre-
sented by v; and v; are adjacent in the image (Fig. 3(a)-
(c)). Given a region adjacency graph, an image segmenta-
tion IV is defined as a random variable whose assignments
correspond to segmentation states during the region group-
ing process. In particular, in a given segmentation state,

W = ((V1,601),(Va,02),...,(Va,0n)), 3)

State g&‘/

Figure 3: Region Adjacency Graph and Grouping Operations: (a)
Oversegmented image of leaves occluding each other. (b) Region adja-
cency graph with vertices placed on the centroid of each atomic region. (c)
Region grouping result where the vertices belonging to the two leaves are
marked in red and white, respectively. (d)-(f) Three types of region group-
ing operations for the segmentation state transition from ¢ to ’. Vertices
with the same label belong to the same region group and are connected
by “turned-on” (thick) edges. During the state transition (middle column),
a subgraph Vj of a group V} is chosen, which either becomes a new re-
gion (e), or merges into a neighboring group Vl’ (in (d) Vx C Vj andin (f)
Vi = V}). The set of edges between groups V}, and Vl’ before the merging
operation are defined as Cut(Vy, Vjr — Vi) (marked with crosses).

where Vi,...,V, are mutually disjoint region groups or
subgraphs, V; N V; = &, each group V; is generated by
organizing a number of atomic regions, V; = {vi} via a
series of region grouping (graph partition) operations [1]
(Fig. 3(d)—(f)), and parameter 0; defines an image model
that can be learned in advance. The objective of the re-
gion grouping process is to achieve a good segmentation
that not only provides results consistent with human percep-
tual groupings but also yields object recognition, i.e., identi-
fies region groups that correspond to the objects of interest.
This grouping process should be influenced by image and
shape constraints simultaneously. If we assume Vi,...,V,
are mutually independent random variables, given an ob-
served image I and a shape prior S, the posterior probability
for the segmentation W is

p(WIL,S) o< p(I]S, W)p(S|W)p(W) 4)
 ([[p(v. Vi, I [p(SIVIp(W) ()
o ([[p(vi16:, I [p(SICvII (W), (6)

where Iy, represents image patch associated with V;, and
Cy;, stores the boundary curvatures of the region V;. The




likelihood

p(Iv,16;,S) x exp(—D(Iy,,0;)) @)

is computed based on the function D(Iy;, 6;) that measures
the compatability of the observed image data Iy, with the
objects’ predefined appearance models ;. These may be
Gaussian or histogram-based color or texture models that
can be learned in advance. The shape posterior is

p(S|Cy;) oc exp (—(1 — M(V;, 5))), (®)

where M (V;,S) is used to measure the shape similar-
ity between the current region V; and the shape prior S
(Eq. 2). As suggested previously [17], the number n of
region groups and the size |V;| and boundary smoothness
of each region group are taken into account in defining the
prior probability

p(W) < exp (—ern — o X2 |V5|™ — e3ZF|Cly,

), ©

where |Cy,| is the sum of curvature magnitudes along V;’s
boundary, and ¢y, ca,c3 and 7 are some constants. Intu-
itively, a segmentation is likely to include a small number
of large regions with smooth boundaries.

A solution of the image segmentation problem is ob-
tained by simulating the posterior probability p(W |1, S) via
a Markov chain and finding the segmentation ¥ that maxi-
mizes it. The Markov chain can be realized by a Metropolis-
Hastings mechanism [19, 17]. Given the solution space
Q = {¢| e is apossible state of W} of the segmentation
problem, we define ¢, ¢’ € Q to be the two configurations
of W that respectively correspond to the segmentation re-
sults before and after a region grouping operation (Fig. 3).
The probability ¢(¢ — ') = p(¢'|p, I,.5) indicates how
likely it is to transfer from the current state ¢ to the next
state o’. When a state transition from  to ¢’ is accepted by

a¢’ = ¢) ple'IL,S)
Y=o pens) 10
the Metropolis-Hastings method guarantees that the
Markov chain will converge to p(W|1,.S) as its stationary
distribution. Therefore, given the definition of p(W|I,.5),
there is a large chance a good segmentation can be achieved

after many sampling iterations.

a(p — ¢') = min(

4.1 Swendsen-Wang Cut Algorithm

One major disadvantage for most MCMC methods is that,
a long simulation process is usually required for conver-
gence. The recent Swendsen-Wang Cut (SWC) method [1]
generalized a well accepted cluster sampling algorithm [15]
for solving a graph partition problem. This method allows
a large sampling move between very different graph con-
figurations, thus providing fast simulation and optimiza-
tion. For the current problem, we apply the SWC-2 algo-
rithm (journal preprint of [1]) combined with other mod-
ifications to sample the different segmentation configura-
tions and perform the region grouping operations, so that

MOSAICSHAPE (I, S, 07, P)

/I I image; S: prior shape; 0r: image model; P: other parameters;

1. Generate oversegmented atomic regions for /.

2. Compute boundary curvature for each atomic region.

3. Compute band probabilities b; ; between adjacent atomic regions.

// Sample p(W|I, S) by transition move ¢ — ¢’ (Fig. 3)

4. For the current segmentation ¢,

e 4.1. Choose an unmarked atomic region v; randomly and
record its parent region group as V;.

® 4.2. Turn on the edge e;; with the band probability b;; inside V;.

e 4.3. Given the turned-on e;; inside V;, find the connected region
component for vy, and record it as Vj,.

5. Merge V} into some adjacent region group V;, with probability
q(U'|Vk, @, I,S) and record this new state as ’.

6. Generate V5, by the shape registration with the new V},.

7. If Vs or Vy; satisfies given shape similarity criteria w.r.t S, record
V;r or V5 as one of Recognized Objects and identify its atomic
regions as marked.

8. Accept the new state, e.g., ¢ = ¢, with the probability a(p — ¢’).

9. Repeat Step 2-9 until some convergence criterion or the expected
number of the objects is achieved.

Return all identified region groups as Recognized Objects.

an ideal segmentation result can be achieved efficiently. The
main steps of the new algorithm MosaicShape are summa-
rized below, where the modified parts will be described later
(accentuated in bold). The main conclusion from previous
work [1] was that when:

a¢' = ¢) _ eccuwivy—vip A=) q(ivi, ¢, 1,9)
a(p — ¢) HeGC’ut(Vk,Vlka) (1—=0be) ql'|Vi,,1,5)
1D
was defined for a(p — ¢’) (Eq. 10), the algorithmic pro-
cess was ergodic, aperiodic and had p(W|I, S) as its sta-
tionary distribution, where b;;(or b,) is the band probability
that determines how likely a pair of adjacent atomic regions
should be grouped together, ¢(I'|Vx, p, I, S) is the transi-
tion probability that defines how likely it is for the region
group Vj to be merged with its neighboring region group
Vir,and Cut(Vi, Vie = Vi) = {eijlvi € Vi, v; € (Vi = Vi) }
was defined as the set of region edges between region group
Vi and Vi — Vi, as shown in Fig 3. As to be described next,
once b;; (or b.) and q(I'|Vi, ¢, 1,S) are defined, the ac-
ceptance probability a(¢ — ¢') can be computed directly
given Eq. 11 and p(W|1, S) defined in Eq. 4.

4.2 Band and Transition Probabilities

A band probability b;; = p(e;; = “on”|v;, vy, I,.5) is in-
troduced for the edge e;; between two adjacent atomic re-
gions v;,v;. In the previous work [1], it is defined to be
large when the image information of two regions is compat-
ible. For the current problem, b;; should also be large if the
shape of the merged region is more similar to the shape prior
than either v; or v;. It is therefore defined as the product

bi; o< p(I|vi,v;) p(Slvi,v;5)

MLy Ioy) | e Ms(vi,v5,5) (12)

X e
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Figure 4: Shape-Based Band Probability: The longest partially
matched boundaries of the image regions are shown in bold.
where the shape measure Mg (v;, v;,5) =

n M(viuja S)
max (M (v;, S), M (v;,S)) + M(viuj, S)’
n = max{1,£.(viuj, S)/ max{l.(v;, S), Lc(vj, S)}},

and the image measure
MI(IW ) Ivj) & Zk (Hl(]izzzg;(k))Q >

where H;(k) and H;(k) are the regions’ kth bins of their
respective intensity histograms, and m(k) is their aver-
age (H;(k) + H;(k))/2. Many dissimilarity measurements
could be applied to compute the distance between two his-
tograms [13]; in the current implementation, a X2 statistics
distance is computed.

As illustrated in Fig. 4, the new region v;; is intro-
duced by merging v; and v;, and £.(vu;, S) represents the
length of the longest matched subsequence between the cur-
vature sequence of v;; and those sequences stored in S.
On one hand, the shape similarity defined by M (v;y;,.S) in
algorithm PSM (Section 3.1) is normalized by the bound-
ary length of v;_; so that a large region with the compara-
ble length of the matched boundary is penalized. On the
other hand, the scale factor n plays the role of encourag-
ing the existence of a large region. In particular, 1 could
be greater than 1 when v;,; was matched with the shape
prior in a large scale, while M (v,y;,S) is smaller than
max(M (v;, S), M(vj, S)).

As shown in Fig. 3, the neighboring region groups for
the chosen V}, can be represented by

Vi Vay .o Vi=Vi,..., Vo, @} (13)

and indexed from 1 to n + 1, where V; — V}, represents the

remaining region group after V was split from V;. The tran-

sition or “proposal” probability ¢(I'|Vi, ¢, I, S) [1] defines

how likely a merge of V}, with a region group Vs is among

all candidate groups. It is defined similar to Eq. 12 as
q(l'|\Vk, p, I, S) = p(Vi is merged with V})

(14)
o p(I|Vie, Vir) p(S| Vi, Vi)

and normalized by X" q(i| Vi, ¢, I, S).

Since the band (Eq. 12) and transition move (Eq. 14)
probabilities characterize the dominant properties modeled
by the posterior probability p(W|I,S) (Eq. 4) well, the

transition move ¢ — ¢’ is expected to be accepted with
a high probability such that the designed Markov chain will
quickly converge to the desired solution.

4.3 Sampling Jump by Shape Registration

The shape matching process (Section 3.1) can provide
strong constraints on the correspondence between the
matched image region and the shape prior. This allows
the simulation process to realize a large sampling jump.
Given a region group V' and the shape prior S, the sets of
the correspondening points on their matched boundaries are
recorded as Py and Pg, respectively. A pair of translation
and rotation parameters (¢, «) are calculated by the least-
square method for registering Ps with Py . The prior shape
S in the matched scale can then be transformed onto the
image and noted as S7. A new region group Vs can be
generated by merging all atomic regions inside St:

Vs = {v;|v; € Sy, for all i}, (15)

where the operation € judges if the centroid of v; is in-
side St. If the size of V; is comparable to the shape prior in
the matched scale, the posterior probabilities (Eqgs. 7 and 8)
are then computed for V5. Region group Vx is recorded
as the recognized object when the obtained posterior proba-
bility is larger than a given threshold, depending on what
degree of occlusion is allowed for the objects to be re-
trieved. In the current implementation, we embedded this
operation within each transition move and checked if any
matched object could be recognized, while continuing with
the Metropolis-Hasting sampling in its usual way.

S Some Implementation Issues

The MOSAICSHAPE algorithm first applied the mean shift
method [4] to generate an oversegmented image (Step 1),
in which a bandwidth value and the minimum region size
were chosen so that the number of generated oversegmented
regions was moderate. To compute the curvature values
for each region contour, the Fast Fourier Transformation
(FFT) and inverse FFT were applied to speed up the con-
volution operations in Eq. 1. The evaluation of probabilities
defined in Eqs. 4, 12 and 14 was implemented by a regular-
ization framework, where a small weight (0.2) was assigned
for the relevant image probability, and a large weight (0.6)
for the relevant shape probability. Moreover, to speed up
the overall simulation process, for operations requiring ex-
pensive computations, such as curvature calculation, par-
tial shape matching, or color histogram construction, re-
sults were only computed once for a newly generated re-
gion group, then stored into a sorted linked list indexed by
the labels of the atomic regions within the current region
group. Afterwards, when the same region group was re-



visited, these results could be accessed in time complexity
O(log(n)).

6 Experiments

The proposed method was tested on both synthetic and real
images. In the synthetic experiments, an irregular “star
shape” was first created as the shape prior S (Fig. 5a) and
stored in a multi-scale curvature form, where the scale range
was from 0.75 to 1.25 compared to the mean size, and the
widths for the chosen Gaussian kernels were 1, 2 and 4.
Synthetic images were then created by randomly placing
several mosaic “star” objects onto real images with a lot of
clutter in the background. Segmentation results were ob-
tained where star objects of different rotations and sizes oc-
curred with complete (Fig. 5) or partial shape (Fig. 6). In
the latter case, the desired partial objects were retrieved by
specifying an acceptable shape similarity threshold (0.7 in
this experiment).

To test the MOSAICSHAPE algorithm on real images, an
ellipse shape prior was first learned from a set of 12 leaves.
The goal was to detect leaves with color patches caused by
autumn. Different color distributions were observed on the
surfaces of these leaves, which yielded a number of small
atomic regions in the oversegmented images. To cover the
shape variability among the training samples, the registra-
tion parameters (¢, ) were first computed between the im-
age regions and the learned average shape. These param-
eters were then applied for registering each shape sample
in the training set onto the image. Experimental results
for detecting the objects with complete or partially matched
shapes are shown in Fig. 7 and 8.

The overall segmentation process took 30-90 s for syn-
thetic and 150-250 s for real images of size about 200-
250 by 200-250. As can be seen in most experiments, our
method provided satisfactory results for retrieving the shape
from the images, where the stochastic simulation process
usually started as a slow annealing process and recognized
the target objects by making a large sampling jump once a
good partial matching criterion was met. In some situations,
difficulties inherent in the original partial shape matching
problem may lead to ambiguous situations (Fig. 8 2(c-d))
by which the convergence process was slowed down.

7 Discussion and Conclusion

The paper proposed a novel framework for object segmen-
tation and recognition. Its main contribution was to inte-
grate the decomposed shape constraints into a bottom-up
image segmentation process using partial shape matching.
By this means, the segmentation and recognition of multi-
ple occluded objects can be achieved simultaneously.

The current method can be improved in several aspects.
First, the results of the partial shape matching could be am-

—IIOE(P(VV!LS))
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Figure 5: (a) Input image. (b) Oversegmented image [4] with region
adjacency graph. (c) Close-up view for some local region. The respective
band probabilities for edges 14 are 0.24, 0.68, 0.67 and 0.39 (Eq. 4.2). (d)
Segmentation result (green). (e) Posterior energy during the simulation.
The sampling states (red stars) at which the target objects were identified.
(f) Segmentation result by DDMCMC method [17].

(©)

Figure 6: (a) Oversegmented image [4]. Object in large white circle
has partial shape matching similarity 0.64. (b) Our result. Atomic regions
in small white circle were included in a matched object due to a large
sampling jump. (c) Segmentation result by DDMCMC method [17].

(@)

biguous during the region grouping process (Fig. 8 2(c-d)).
These ambiguities can be decreased when more sub-regions
are merged. Adopting better shape similarity measurements
will produce more accurate shape matching results and lead
to a faster shape recognition process. For instance, a dy-
namic programming method [11] may be applied to allow
the matching of distorted shapes. Second, the shape prior
used in the current method is limited to the class of 2D pla-
nar objects whose shape can be easily represented by their
boundary curvatures. In the future, we plan to perform extra
experiments on more complicated real-world objects. How-
ever, the problem of defining the shape for objects with non-
rigid appearance, e.g., human or animal, or for objects in
higher dimensions (3D), is ambiguous or very challenging
in itself. Moreover, the solution of partial shape matching
will become elusive when the intra-shape variations needs
to be modeled, for instance, by Principle Component Anal-
ysis (PCA) method. Finally, integrating comprehensive im-
age models [17, 12] or feature-based template matching [2]
into the current system may help capture additional vari-
abilities of the object appearance and improve segmentation
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Figure 7: 1st column: Input images; 2nd column: Our results; 3rd col-
umn: Results by DDMCMC [17].

results.
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