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Abstract

This paper proposes novel algorithms that use network-

flow and set-cover techniques to perform occlusion reason-

ing for a large number of small, moving objects in single

or multiple views. We designed a track-linking framework

for reasoning about short-term and long-term occlusions.

We introduce a two-stage network-flow process to automat-

ically construct a “track graph” that describes the track

merging and splitting events caused by occlusion. To ex-

plain short-term occlusions, when local information is suffi-

cient to distinguish objects, the process links trajectory seg-

ments through a series of optimal bipartite-graph matches.

To resolve long-term occlusions, when global information

is needed to characterize objects, the linking process com-

putes a logarithmic approximation solution to the set cover

problem. If multiple views are available, our method builds

a track graph, independently for each view, and then simul-

taneously links track segments from each graph, solving a

joint set cover problem for which a logarithmic approxima-

tion also exists. Through experiments on different datasets,

we show that our proposed linear and integer optimization

techniques make the track graph a particularly useful tool

for tracking large groups of individuals in images.

1. Introduction

The interpretation of the motion of large groups of indi-

viduals is a challenging problem in computer vision. The

fundamental difficulty in solving this problem lies in the

data association step of the tracking process. When corre-

spondences between objects and observations are not de-

termined correctly, the state estimation step of the tracking

process, typically recursive Bayesian filtering, also fails. In

visual tracking, the occlusion events, especially long-term

occlusions, are responsible for causing problems during the

data association phase. They typically create “track-lost”

or “track-switch” errors. When occlusion first occurs, indi-
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sity of Washington.

vidual tracks, sometimes multiple tracks, become merged.

When the occlusion event is over, the earlier merged tracks

are supposed to separate into appropriate individual tracks

(Fig. 1). To maintain the object identity through merging

and splitting events, the “track linking method,” considers

each individual track as a “tracklet” and links these track-

lets together segment by segment.

Figure 1. Three different occlusion scenarios: (a) short-term oc-

clusion, (b) long-term occlusion, and (c) occlusion in two camera

views. Red nodes represent merged measurements; numbers are

labels for objects. Short-term occlusion (a) is usually easy to re-

solve if objects have strong motion patterns. Long-term occlusion

(b) is more difficult to explain since motion information about the

objects (i.e. linear dynamics) typically only characterizes them for

a short time period. If multiple views are available (here two), a

long-term occlusion in one view (c-1) may be resolved by analyz-

ing the status of the objects in another view where the occlusion

does not occur or only occurs for a short time (c-2). Throughout

this paper, we do not assume objects are significantly distinctive in

appearance or motion characteristics. Such an assumption would

simplify the problem of occlusion reasoning, but cannot be made

for our data.

Track linking, as a batch process, is a generalization of

traditional measurement-to-measurement association: here,

the matching involves trajectory segments (tracklets). Oc-

clusion ambiguity is resolved by optimizing some cost func-

tion that considers the smoothness of object motion and ap-

pearance over several frames. With this approach, tracklets

may be stitched together and full trajectories may be recov-

ered. Previous approaches typically adopted a local linking
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strategy that computed the pairwise cost between tracklets

in a recursive way [6, 13, 19]. Nillius et al. [11] introduced

the “track graph” and suggested use of a Bayesian network

inference algorithm on this graph as a global linking strat-

egy, which allowed matching of several tracklets at the same

time. This method is computationally expensive for large

graphs. We instead propose a two-stage network-flow al-

gorithm that builds the track graph and allows us to pro-

vide both local and global solutions for track-linking. We

demonstrate how to resolve occlusion efficiently by inter-

preting it as a linear network optimization problem or set

cover problem. Also, we show that our approach can be

easily extended to the multi-view multi-object tracking sce-

nario. We experimentally compared the performance of our

methods to three other methods, the global linking approach

by Nillius et al. [11] and two traditional approaches [2]. We

used both synthetic and real video data with various levels

of object density. Our experiments reveal that the relative

performance of the methods depended on the level of ob-

ject density. Our global linking method outperformed the

other methods in dense object scenarios, where occlusion

reasoning becomes particularly difficult. Our paper makes

the following algorithmic and experimental contributions:

• For the local linking scheme, our method automatically

constructs the track graph and resolves it by comput-

ing the minimum flow and a series of bipartite graph

matches, each of which can be solved in polynomial

time.

• For the global linking scheme, we convert the prob-

lem of track graph reasoning to the standard set cover

problem, for which a logarithmic approximation solu-

tion exists.

• For track linking in multiple views, our method con-

structs the track graph for each view independently and

resolves the track graphs jointly by solving a joint-set-

cover problem. We provide a greedy logarithmic ap-

proximation method for this problem. To the best of

our knowledge, we are the first to formulate the track

linking problem in both the temporal (across-time) and

spatial (across-camera) domains.

• Our experiments reveal that the choice of tracking al-

gorithm should depend on the level of object density in

the video. Our track-linking framework has the flex-

ibility to handle both easy (sparse) and challenging

(dense) datasets.

2. Related Work

Traditional data association approaches work on the

measurement level where observations (e.g., a bounding

box) are returned from the object detection module. The

radar literature [2] describes mature algorithms for tracking

multiple targets within a dynamic system, such as Multiple

Hypothesis Tracking (MHT) and Joint Probabilistic Data

Association (JPDA). MHT enumerates all possible com-

binations through time by building a hypothesis tree and

selecting the most likely combination as its optimal solu-

tion. JPDA only analyzes the correspondence between two

frames. It does not pursue the best solution but instead com-

putes the expected track state over all hypotheses.

The probabilistic association methods have their inte-

ger optimization counterparts. When only pairwise corre-

spondences are considered, finding the best measurement-

to-measurement match can be modeled as linear network

optimization problem [22, 7, 1], for which an optimal solu-

tion can be efficiently obtained in polynomial time. By con-

trast, the discrete optimization version of MHT, known as

the multidimensional assignment problem [14], is NP-hard.

An approximate solution can be obtained by semi-definite

programming [15], Lagrange relaxation [5], or randomized

greedy search [17].

Sampling-based algorithms form another category of

data association methods. They have gained popularity re-

cently, partially because of advances in Monte Carlo the-

ory. Oh et al. [12] proposed a general framework to sam-

ple the data association hypothesis using a Markov Chain

Monte Carlo (MCMC) approach. They showed that their

batch processing method is able to track a large number

of simulated objects. Khan et al. [8] introduced a proba-

bilistic model to associate merged and split measurements

using a MCMC-based particle filter. Yu and Medioni [21]

also extended the framework by Oh et al. [12] to identify

the best spatial and temporal association of regions with a

Data-Driven MCMC sampling approach. As for most sam-

pling methods, tuning the parameters that achieve relatively

fast convergence is always a nontrivial task.

A challenge of measurement-level data-association

methods is that the problem size is often too large for batch

processing. A compromise between accuracy and batch size

is often made using a sliding window [18]. The choice of

the length of such sliding window is typically made ad hoc,

based on the particular data set. It is natural to extend the

framework of temporal data-association to the tracklet level,

where a matched unit is a pair of trajectory segments [9].

Instead of organizing temporal data-association hierarchi-

cally, in which, at each level, local links between track frag-

ments are produced [6, 13, 19], Nillius et al. [11] solved the

problem globally by processing the track graph that repre-

sented all object interactions. Since the state space, i.e., the

permutation space over the object identities, is large, their

method incorporated some heuristics to make it practical,

especially when objects interaction was frequent.

In our paper, we make use of the track graph representa-

tion by Nillius et al. [11]. Our algorithms for automatically

constructing and interpreting the track graph, however, both

significantly differ from theirs. We propose a network flow

algorithm for creating the track graph and employ both lo-
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cal and global linking strategies for interpreting the track

graph that address the different types of occlusion events.

Our formulation is based on a linear/integer optimization

framework and does not incorporate any heuristics. We also

introduce a new strategy for linking tracklets that involves

matches across camera views. The strategy can be seen as

a “track-to-track fusion scheme.” In contrast to the work

by Wu et al. [18], which described a track-to-track fusion

scheme for multi-object multi-view sequential tracking, the

focus of our paper is the development of a batch linking

algorithm that uses a track graph representation. We must

stress that the density of objects we are interested in is up to

one hundred objects per frame. This means that, although

the size of the objects is small in the images, they very fre-

quently occlude each other.

3. Track linking

A track graph G = (V, E) is defined over sets of ver-

tices V that represent individual or merged tracks1 and

edges E that represent merging or splitting events. Directed

edge ei,j from vertex vi to vj represents that track vi is

merged with track vj if vj is a merged track, or that vi is

split to track vj if vi is a merged track (Fig. 2). The flow

on the edge indicates how many objects are involved dur-

ing the merging or splitting event. The vertex that has only

incoming edges is called sink; the vertex that has only out-

going edges is called source. The set of all source vertices

is denoted by S, and the set of all sink vertices by T . Each

vertex has its track-capacity to represent single or multiple

objects2. For a source vertex, its associated track-capacity

is the sum of outgoing flows; for a sink vertex, its associ-

ated track-capacity is the sum of incoming flows; for other

intermediate vertices, the sum of incoming flows is equal

to the sum of outgoing flows (for balance). For tracking in

a single view, an isolated vertex that has no incoming or

outgoing edges has capacity one. We remove these isolated

vertices in preprocessing, as they do not require occlusion

reasoning.

3.1. Algorithm to Construct Track Graph

We propose a two-stage algorithm for automatically con-

structing the track graph. In the first stage, our algorithm

generates track fragments and merge/split hypotheses that

define the vertices and edges of the track graph. In the sec-

ond stage, a path-reducing min-flow algorithm determines

the track-capacity of each vertex and flow for each edge

(e.g., Fig. 2(b)).

Stage I: The algorithm first processes the image se-

quence forward in time to generate basic tracks and merge

1A merged track is due to either a close interaction between objects or

a projection of moving objects that are physically far apart in 3D space.
2Unlike traditional terminology, we here define “capacity” for both ver-

tices and edges.

hypotheses. It then goes backward to break some tracks,

when necessary, and generate split hypotheses, and finally

constructs the track graph:

I.1 Tracking Forward: A new tracker is initiated when

a measurement cannot be associated with an existing

tracker. Each existing tracker chooses the measure-

ment nearest to its position estimate, which is com-

puted by a Kalman filter, as its current observation.

If a measurement is the nearest neighbor of the posi-

tion estimates of multiple trackers, each of these track-

ers terminates itself, and a new tracker is initiated for

this measurement. Meanwhile, a track-merge hypoth-

esis Hm is generated and added to the list of hypothe-

ses. An existing tracker also terminates itself if it is not

associated with any measurement for a certain number

of frames.

I.2 Tracking Backward: If a track is not initiated within

the zone of the scene, where objects enter (e.g., the im-

age boundary), then it must be a track that is split from

a previously merged track. Its position is predicted

backward in time to find a nearest measurement. The

track that originally included this measurement will be

denoted as a merged track. Meanwhile, a track split

hypothesis Hs is generated and added to the list of hy-

potheses.

I.3 Building Track Graph: The list of merge/split hy-

potheses is sorted according to time. A vertex of

the track graph is created for each track on this list.

For each merge hypothesis Hm that merges track

Ti1 , Ti2 , ...Tim
to track Tj , corresponding edges from

vertices vi1 , vi2 , ..., vim
to vj are added to the track

graph. For each split hypothesis Hs that splits track

Ti into track Tj1 , Tj2 , ...Tjn
, the corresponding edges

from vertex vi to vj1 , vj2 , ..., vjn
are added.

Stage II: The number of objects in the track graph is

equivalent to the amount of flow passing through the net-

work. Since each track represents at least one object, we

have a lower bound on the capacity of the edges in the track

graph. This is not sufficient for uniquely determining the ac-

tual number of objects and describes the ambiguity caused

by occlusion, i.e., an arbitrary number of objects can “hide”

in any merged track. For single-view tracking, where we

cannot rely on additional information provided by unoc-

cluded views, we require our algorithm to select the small-

est number of objects that can explain the scene. We thus

converted our problem into a minimum-flow problem where

the lower bound on the capacity of each edge is one. We use

a polynomial-time algorithm that iteratively searches for a

“reducing path” (as opposed to the “augmenting path” in

the max-flow Ford-Fulkerson method [4]) and updates the

residual network:
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Figure 2. An example of tracking that consists of three interacting objects and eight system-generated tracks (a) and the corresponding

track graph (b). The track graph represents two objects that occlude each other for a while, then move apart, then merge again, and finally

interact with the third object. The track graph is particularly useful to visualize such frequent track-merging and track-splitting events. Our

local or global linking algorithm processes the track graph (b) and produces the resolved graph (c), where each red arrow connects multiple

vertices (i.e., tracks) and maintains the identity of the tracked object.

II.1 Finding a feasible flow: Starting with the source ver-

tices, keep pushing flow through the graph G until the

lower-bound capacity c(u, v) (one in our case) of every

edge eu,v is satisfied, which returns a feasible flow f .

Determine the residual graph Gf to be the network

with capacity cf (u, v) = f(u, v) − c(u, v).

II.2 Path-reducing step: If Gf has a path p from one

source node in S to one sink node in T , reduce

the edge capacity of Gf along path p by cf (p) =
min{c(u, v)|(u, v) ∈ p}, and subtract cf (p) units

along p from flow f . Repeat this step until no valid

path can be found in residual graph Gf . The result

flow f is the minimum flow.

3.2. Linking Scheme for Track Graph
We propose local and global linking strategies to pro-

cesses the track graph. If occlusion occurs for a short pe-

riod of time or the object features are sufficiently discrimi-

nate, we can use a local linking strategy. If occlusion occurs

during a long period of time or object features have to be

monitored for several frames (e.g., motion smoothness or

periodic motion patterns), we need to use a global linking

strategy.

3.2.1 Local Linking

If one track can determine its successor without the need

to look further we use of the local linking strategy. Local

information is thus not passed through the whole graph, and

linking can be done efficiently by a series of matchings of

bipartite graphs. The vertices on the graph are first sorted

according to the initiation time of its corresponding track.

The local linking processes each vertex sequentially until all

vertices have been matched. By construction, there are only

three types of local structures in a track graph, see Fig. 3.

• For a type-(a) structure that represents a merge hypoth-

esis Hm : {(Ti1 , Ti2 , ...Tim
) ⊢ Tk}, we extend each

individual track with the merged track and smooth the

Figure 3. The local structure of track graph. In all three cases,

vk represents a merged track (a) vk is a sink node; (b) vk is a

source node; (c) vk is an intermediate node, where the numbers

of incoming and outgoing edges might be different, but the flow

going through vk is balanced.

trajectory where the tracks are joined. Then we create

the representation (Ti1Tk, Ti2Tk, ..., Tim
Tk).

• For a type-(b) structure that represents a split hy-

pothesis Hs : {Tk ⊢ (Tj1 , Tj2 , ...Tjn
)}, we extend

each split track reversely with the merged track and

smooth the trajectory at the joint. The tracks are now

(TkTj1 , TkTj2 , ..., TkTjn
),

• For a type-(c) structure that represents a merge hy-

pothesis immediately followed by a split hypothesis,

we first extend each individual track with the merged

track as we do for a type-(a) structure, then we search

for the best match between two sets of tracks Ha :
{(Ti1 , Ti2 , ...Tim

) ⊢ (Tj1 , Tj2 , ...Tjn
)}, which is a bi-

partite matching problem. The flow fi→k determines

the number of times track Ti has to be matched, and

the flow fk→j determines the number of times track

Tj has to be matched. The matching cost between a

pair of tracks (Ti, Tj) depends on the specific applica-

tion. Once we solve for the best match, we link each

track Ti with its match Tj : TiTj .

The above procedure repeats until all the hypotheses are

processed. Since each linking operation makes a locally
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optimal choice, the results of the algorithm are locally opti-

mal.

3.2.2 Global Linking

Global linking may connect several trajectory segments to-

gether at the same time. We convert this problem to a gen-

eralized set-cover problem as follows.

For a given track graph, we enumerate all possible paths

from source set S to sink set T , where each path consists

of a sequence {vi1vi1 ...vip
} of vertices visited. The set of

all paths is denoted as P . A weight wp is associated with a

path p that measures the likelihood of the path being a true

trajectory or, equivalently, the “cost” of the path. The ob-

jective function then is defined as selecting a subset P ′ of P
such that the sum of the costs of all selected paths is mini-

mum. Each vertex v ∈ V has to be in some path at least tv
times, where tv is the track-capacity of v computed from the

minimum flow during the construction of the graph. Note

this is a classic set cover problem when tv = 1 for all ver-

tices. Mathematically, this is equivalent to the following

linear/integer programming problem, where xp is an inte-

ger variable to indicate if path p is selected xp times:

min
∑

p

wpxp

s. t.
∑

p:v∈p

xp ≥ tv, ∀v ∈ V

xp ≥ 0 and xp is integer. (1)

Given this conversion from a track-linking to a set-cover

problem, we use the following deterministic greedy method

to solve Eq. 1, which has the same approximation quality as

LP relaxation [16], but is much easier to implement:

GREEDY METHOD FOR TRACK SET COVER PROBLEM

Input: A track graph G that has a set V of vertices, representing

2D tracks, with their associated track-capacities tv , and a set E of

edges for merge/split relations.

• Enumerate all possible paths from source S to sink T . De-

note such path set as P .

• For each path p ∈ P , compute its weight wp as the likeli-

hood of p being the true trajectory of some object. Initialize

solution set P ′ = ∅, xp = 0, p ∈ P .

• While there is some tv > 0,

1. For each p ∈ P , let Up be the set of vertices that has

not been fully covered on that path, i.e., tv > 0, and

define cost cp = wp/|Up|.

2. Choose p∗ = arg min
p

cp. Let t∗ = min
v∈U

p∗

tv . Update

xp∗ = xp∗ + t∗. For each v ∈ Up∗ , let tv = tv − t∗.

Update P ′ = P ′ ∪ p∗.

Output: A resolved track graph with P ′ as the set of linked tracks.

The deterministic greedy method to solve the set cover

problem has a O(MN +M2) running time [20], here M =
|V | and N = |P |. It achieves an approximation ratio of

H(s), where s is the size of the largest set and H(n) =∑n

i=1 1/i ≈ log(n) is the n-th harmonic number [10].

3.2.3 Linking in Multi-view

The most general scenario of tracklet linking is to link track-

lets from multiple views with a global-linking cost. For

ease of notation, we here consider only two views, but the

method can be extended to an arbitrary number of views.

We formulate the multi-view global-linking problem as a

joint-set-cover problem. Specifically, we generate a track

graph for each view independently as G1 = (V1, E1) and

G2 = (V2, E2). For each graph Gi, i = 1, 2, we enumerate

all valid paths in set Pi. We define ap and bq to measure

the respective likelihood of path p ∈ P1 and q ∈ P2 being

true trajectories. Our goal is to choose a subset P ′

i ⊆ Pi

to achieve a cover on Vi for each view, subject to the addi-

tional constraint that enforces that any selected path p ∈ P ′

i

has a corresponding path q ∈ P ′

j with matching cost cp,q .

We seek the solution that achieves the minimum weighted

sum. Mathematically, it can be formulated as the following

linear/integer programming problem, where zp,q is a binary

variable to indicate if a path pair (p, q), p ∈ P1, q ∈ P2 is

selected or not:

min(
∑

p

ap

∑

q

zp,q +
∑

q

bq

∑

p

zp,q +
∑

p

∑

q

cp,qzp,q)

s. t.
∑

p:u∈p

∑

q

zp,q ≥ 1, ∀u ∈ V1

∑

q:v∈q

∑

p

zp,q ≥ 1, ∀v ∈ V2

zp,q ≥ 0 and zp,q is integer (2)

Proposition 3.1 The joint-set-cover problem defined in

Eq. 2 can be reduced to a standard set cover problem.

Proof For each pair of sets p ∈ P1, q ∈ P2, we create a

joint set o = p∪ q with an associated weight w = ap + bq +
cp,q . The new set of o is denoted as O and the new vertex

set as V = V1 ∪ V2. Now we need to find a subset O′ ⊆ O
that is a cover on V with a minimum weighted sum, which

is the standard set cover problem.

Given this proof, we can reuse our greedy approximation al-

gorithm for the multi-view linking strategy. We found that

it is not necessary to enforce the multiple assignment con-

straint (tv in Eq. 1) in practice, as the across-view matching

constraint implicitly determines the number of times each

tracklet has to be selected. In case some object does not

appear in both views, e.g., set p ∈ P1 has no matching set

q ∈ P2, we add all pairs (p, q0) to the joint set O, where
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Figure 4. Fifteen sample trajectories in 3D space (left), randomly generated by the simulator, and their images in two views (middle and

right) with numerous occlusions. We used matching colors to visualize corresponding trajectories.

p ∈ P1 and q0 is a “dummy” placeholder, and assign a large

associated matching cost so that these elements have a low

priority of being selected.

4. Experiments and Results

We adopted these performance metrics (details in [3]):

Miss Rate (MR): the ratio of misses in the sequence, com-

puted over the number of objects present in all frames,

False Positive Rate (FPR): the ratio of false-positive detec-

tions that cannot be matched to any ground-truth trajectories

over the number of detections,

Mismatch Rate (MMR): the ratio of the number of track

switches over the number of objects present in all frames,

Multiple Object Tracking Accuracy (MOTA): the final

score to summarize tracking accuracy = 1-MR-FPR-MMR.

We applied smoothing over the label matches between

system-generated tracks and ground truth so that MMR es-

timation became more accurate.

4.1. Simulation Experiment and Results
We randomly generated spheres with 10-unit radii, mov-

ing at constant speed in a 5003-unit 3D space (Fig. 4). The

arrival time of each sphere is drawn uniformly from inter-

val [1, Tmax] with Tmax = 250 frames. We created two

virtual cameras for viewing the spheres from directions dif-

fering by 45o. The motion model of each sphere is X(t) =
FX(t−1)+W (t) and Z(t) = HX(t)+V (t) with 6D state X
(3D position and velocity), 2D observation Z (virtual view

of sphere), state transition matrix F , projection matrix H ,

and zero-mean Gaussian noise processes W and V with re-

spective covariance matrices diag(1, 1, 1, 0.1, 0.1, 0.1), and

diag(1, 1). We generated 6 datasets (D1-D6) with increas-

ing density. Each dataset contained 5 sequences, each with

250 frames per view, resulting in a total of 15,000 test

frames. Key statistics of the synthetic data are summarized

in Table 1, rows 1–4. Row 4 shows the average number of

errors (missed detections, false alarms, and track switches)

that correspond to a 0.01 MOTA score.

The track graph representation was constructed by

forward-backward nearest-neighbor filtering (Sec. 3.1). All

three linking methods used the same set of tracklets from

the track graph as input. For the local linking method, the

cost of pairing two tracklets was chosen to be the stan-

dard deviation of the linear-regression residual over the ob-

served 2D coordinates (assuming that the motion was along

a straight line for short periods). For the global linking

method, the cost function that measures how likely sev-

eral tracklets can form a smooth trajectory was evaluated by

Kalman smoothing. For the multi-view linking method, the

across-view cost function was defined as the reconstruction

error according to the (virtual) epipolar geometry. In our

implementation of the global linking method by Nillius et

al. [11], we followed their recommendation to restrict the

dependence between two vertices (here the number of ob-

jects involved in an occlusion event and the frequency such

events) within a certain time period (here 20 frames).

We measured the performance of each tracking method

by the MOTA metric (Table 1, rows 5–8), for which a small

difference in a score can reveal a significant difference in

tracking accuracy (see row 4). Not surprisingly, the perfor-

mance for all methods decreased as the density of objects

in the scene increased. Both the global and multi-view link-

ing methods outperformed the local linking strategy. The

method by Nillius et al. [11], also global approach, achieved

comparable performance but failed to handle very dense

scenarios (no reports for D5, D6). It was simply too slow

because its state space was too large (even with proposed

heuristics [11]). For a vertex with n incoming and n outgo-

ing edges, our global linking method enumerates n2 paths

passing this vertex. In contrast, the method by Nillius et

al. [11] must evaluate n! possibilities of matching between

incoming and outgoing edges.

The multi-view linking method has a better performance

than the global linking method, since it uses additional ge-

ometric information, except in the most dense scenario of

our simulation (D6), where the size of the proposed joint

set cover problem is much larger than each single set cover

problems. In this case, the additional benefits that geomet-

ric information provided was compromised by the inaccu-
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Figure 5. Corresponding infrared video frames from three cameras (top) and system-generated trajectories (bottom) from dataset D3.

racy of the greedy solution. An advantage of the multi-view

linking method is that, as a byproduct, it gives the trajectory

correspondences between views, which can be further used

for 3D path reconstruction.

Table 1. Statistics of Synthetic Dataset and Results for 4 Methods

D1 D2 D3 D4 D5 D6

Avg. Objs / frame 8.8 17.8 27.1 36.2 45.5 54.6

Max. Objs / frame 16 27 38 51 59 73

Occlusions / frame 0.13 0.60 1.53 2.69 3.87 5.48

# errors, 0.01 MOTA 23 46 70 95 120 145

Nillius et al. [11] 0.92 0.92 0.86 0.81 NA NA

Local Linking 0.90 0.83 0.76 0.68 0.61 0.55

Global Linking 0.95 0.91 0.87 0.85 0.81 0.80

Multiview Linking 0.95 0.92 0.89 0.85 0.81 0.78

4.2. Results on Real Video Data

We tested our track-linking algorithms on real datasets

for infrared video analysis of wild animals. We processed

videos of the emergence of a colony of Brazilian free-tailed

bats from a natural cave in Texas, recorded by three cali-

brated thermal infrared cameras (Fig. 5). The cameras had

been placed at a distance from the cave that allowed captur-

ing of the entire group of flying bats from different view-

ing directions with overlapping fields of views. We did not

have sufficient appearance information to distinguish be-

tween bats, which look very similar to each other.

We applied background subtraction to detect bats in each

image, followed by labeling of connected components. The

size of the projection of each bat ranged from 10 to 40 pix-

els, depending on the distance of the bat to the camera. The

position of each bat was located by finding the pixel with

the highest intensity value within the connected component.

Because of occlusion, a single component might correspond

to the overlapping images of multiple bats.

We manually labeled 3 datasets (B1-B3) of different den-

sities, which included about 20, 50, and 100 bats per frame,

respectively. Datasets B1 and B3 contained 100 frames for

each view; B2 200 frames. For this real dataset, we com-

Table 2. Tracking Performance for Infrared Video Dataset
MOTA MR FPR MMR

B1 (11 errors for 0.01 MOTA)

JPDA 0.926 0.045 0.027 0.002

MHT 0.896 0.081 0.015 0.008

Nillius et al. [11] 0.985 0.0074 0.0072 0.0004

Local Linking 0.970 0.015 0.015 0.0

Global Linking 0.945 0.032 0.022 0.001

Multiview Linking 0.944 0.031 0.024 0.001

B2 (58 errors for 0.01 MOTA)

JPDA 0.886 0.087 0.022 0.005

MHT 0.913 0.072 0.004 0.011

Nillius et al. [11] 0.871 0.093 0.034 0.002

Local Linking 0.933 0.020 0.041 0.006

Global Linking 0.940 0.037 0.018 0.004

Multiview Linking 0.913 0.047 0.036 0.004

B3 (70 errors for 0.01 MOTA)

JPDA 0.871 0.088 0.030 0.011

MHT 0.881 0.103 0.004 0.012

Nillius et al. [11] 0.854 0.103 0.039 0.004

Local Linking 0.910 0.030 0.050 0.010

Global Linking 0.915 0.053 0.026 0.006

Multiview Linking 0.875 0.078 0.040 0.007

pared the performance of four track-linking approaches as

well as the two classic measurement-level approaches JPDA

and MHT (Table 2). We used 5-scanback for MHT and one-

scanback for JPDA. We used the same cost functions for the

four track-linking methods as for the synthetic data.

Our global linking approach resulted in the best overall

performance in terms of the MOTA metric for sequences

B2 and B3; the global linking approach by Nillius et

al. [11] won for the least dense sequence B1. The latter

approach provided a globally optimal solution but was time-

consuming. In contrast, our greedy algorithm was fast but

computed an approximate solution (of an excellent logarith-

mic approximation ratio).

The performance difference between the global and lo-

cal linking strategies was not as conclusive as it was in the

simulation. A reason may be that some bats had nonlinear

flying patterns so that the global cost function, which was

based on linear dynamics, was not sufficiently descriptive
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for true matches. The multi-view linking approach did not

perform as well on the real as on the synthetic data. This

may be a result of inaccuracies of camera calibration and

errors in the detection step. Nonetheless, it is important to

note that the multi-view approach is particularly relevant for

imaging situations in which local or global information is

sparse, e.g., objects look alike and move in highly nonlinear

patterns. In these situations, stereoscopic geometry might

be the only useful information to help tracking through oc-

clusion. Finally, we report that our tracklet-level methods

had a better performance than the measurement-level meth-

ods JPDA and MHT. The traditional formulations of JPDA

and MHT do not handle merged measurements, so they

tend to have a higher target miss rate (MR) and more track-

switch errors (MMR). In contrast, our tracklet-level meth-

ods have a higher false positive rate (FPR), as sometimes

they tend to “over-explain” the merged measurements.

5. Conclusion
In this paper, we proposed three tracklet-linking strate-

gies that are suitable for occlusion reasoning in different

imaging scenarios. The methods process a track-graph rep-

resentation that models track merging and splitting events.

We showed that the objective function in the local linking

approach is straightforward to optimize, but the formulation

is unable to handle frequent or long-term occlusions. The

objective function in the global linking approach is hard to

optimize, since its solution corresponds to the solution of

the set-cover problem. We showed that a greedy approxima-

tion solution worked well for both synthetic and real data.

We also proposed a novel linking formulation for multiple

views that not only outputs the trajectories in each view but

also provides track-to-track correspondences across views.

In future work, we plan to apply our methods on popular

datasets for pedestrian and cell tracking, for which tracklet

linking is important. The objective function does not need

to be modeled as a linear function; so we will also explore

more complicated forms of objective functions that encode

group behavior of large numbers of objects.
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