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tWe introdu
e a method to dete
t the white visible por-tion of the eyeball, the \s
lera." Our method is embed-ded in a real-time vision system that a
tively 
ontrolsthe 
amera's pan, tilt, and zoom. We designed thesystem to automati
ally dete
t the head of a movingperson and zoom towards the fa
e until the eyes areimaged with suÆ
ient resolution. The s
leras are thendete
ted using 
olor-based Bayes de
ision thresholds.We tested our system for various subje
ts, head andfa
ial motions, and lighting 
onditions.1 Introdu
tionIn the near future, standard desktop 
omputers willbe equipped with 
ameras that 
an 
apture the 
om-puter user's head orientation, fa
ial expression, lipmovement, and gaze dire
tion. A 
omputer visionsystem that interprets this information reliably hasthe potential to be
ome a new 
ommuni
ation tooland augment traditional human-
omputer interfa
essu
h as keyboard and mouse. Su
h a system willalso have an important impa
t on people who 
an-not use the keyboard or mouse due to severe dis-abilities. Our resear
h is motivated by the goal toprovide a 
ommuni
ation tool to non-speaking 
hil-dren with 
erebral palsy and traumati
 brain injuriesat Boston College's 
ampus s
hool. Currently twosystems are used as mouse repla
ements and impor-tant means of 
ommuni
ation by several 
hildren atthe 
ampus s
hool. The older system, 
alled \Ea-gleEyes," is based on measuring the user's ele
tro-o
ulographi
 potential [11, 6℄. Our new system, the\Camera Mouse" is based on fa
ial feature tra
king�The author a
knowledges support by NSF equipment grant9871219.Email: betke�
s.bu.edu, http://www.
s.bu.edu/fa
/betke.

using a video 
amera [10℄. The 
hildren use the sys-tems to spell out words or messages and play games.This paper des
ribes our steps towards substitutingEagleEyes with an inexpensive, unobtrusive 
omputervision system that not only tra
ks features but alsodete
ts them. Our ultimate goal is to automati
allydetermine the gaze dire
tion of a 
omputer user. Our
urrent system addresses the following two tasks:� Dete
ting a fa
e, zooming towards it, and tra
k-ing it.� Dete
ting the s
leras, the white visible portion ofthe eyeballs.Our system performs these tasks in real time usingvarious subje
ts, head and fa
ial motions, and lighting
onditions. We developed a 
olor-based te
hnique todete
t eye s
leras. The 
olor of eye s
leras, a yellowishwhite, does not vary mu
h between di�erent subje
ts,while iris 
olor, eye shape, and surrounding skin 
olorgenerally vary substantially.1.1 Previous WorkVarious te
hniques have been used to dete
t and tra
kpeople, and their fa
es and eyes in real time. Tem-poral di�eren
ing is often used to segment moving aregion of interest from a stable ba
kground [5, 19℄. Fa-
ial motions have been analyzed in real time or nearreal time, using normalized 
olor histograms [3, 18℄,parametri
 
ow models [21℄, models of fa
ial dynami
s[4, 7℄, Hidden Markov Models [14℄, and stereo systems[12℄. We are unaware of any previous work that ad-dressed s
lera dete
tion. Skin 
olor based dete
tionof fa
es, however, has been explored extensively, e.g.,[8, 16, 20, 22℄.Gaze estimation has proven to be a 
hallengingproblem. Previous approa
hes in
lude systems basedon neural networks [1, 17℄, morphable models [15℄, andself-organizing gray-s
ale units [2℄. Gee and Cipolla[9℄ explore the underlying geometri
 
onstraints.



2 Statisti
al S
lera and SkinColor ModelsWe use statisti
al de
ision theory [13℄, in parti
ular,Bayes de
ision rule to estimate from the 
olor of apixel if it images a fa
e or the s
lera of an eye. Atraining data set of images that are known to 
on-tain fa
es is analyzed to determine a priori probabil-ity distributions of skin and s
lera 
olor. Our sys-tem minimizes the average loss asso
iated with the
lassi�
ation de
ision as follows. Let p and q be therespe
tive a priori probabilities that a data ve
tor vdes
ribes/does not des
ribe the 
olor of a parti
ularfa
e region. Let p(vjs) be the likelihood fun
tion forthe image data v given a desired 
olor s. Finally, letp(vj0) be the probability of the data, given that thedesired 
olor s is not present. The likelihood ratio `(v)is then given by `(v) = p p(vjs)q p(vj0) : (1)The likelihood ratio `(v) is 
ompared to the de
isionthreshold H = C1C2 ; (2)where C1 and C2 are the respe
tive 
osts asso
iatedwith false positive and false negative de
isions. Theaverage loss asso
iated with the 
lassi�
ation de
isionis minimized when pixels for whi
h`(v) � H (3)are 
lassi�ed belonging to the desired 
olor, and pixelsfor whi
h `(v) < H are 
lassi�ed as not belonging tothe desired 
olor.2.1 S
lera ColorOur training data 
onsists of images taken from 8 sub-je
ts under two di�erent lighting 
onditions. First,only the neon 
eiling lights in our laboratory wereused, and a set of images was obtained that showsdark shadows around the subje
t's eyes. Then an ad-ditional desk lamp was pla
ed to brighten the sub-je
t's fa
e. We segmented the white of the eyes inea
h training image by hand.Figure 1 shows a sample set of our training images,where the subje
t's s
lera is segmented by hand anddisplayed in pure white. Figure 2 plots the distri-butions for the s
lera and non-s
lera pixels for datapoints v1 = red � green and v2 = green � blue. The

non-s
lera pixels are also segmented by hand to in-
lude all pixels that make up the eye region ex
ept thes
lera, i.e., the iris, pupil, eye brows, lashes, and lids.The distributions were 
omputed using 7550 trainingpixels for the s
lera 
olor, and 275,547 for the non-s
lera 
olor, and taken under the same desk and 
eil-ing light 
onditions.
Figure 1: Training images for s
lera 
olor taken with
eiling lights (top row), 
eiling and desk lights (bot-tom row). The bla
k region in the right bottom imageis used as training data for non-s
lera eye 
olor.Table 1 lists sample means and varian
es for thetraining data distributions. Figure 2 shows Gaus-sian approximations based on these statisti
s. We usethem to de�ne the likelihood fun
tionsp(v1js
lera) = 1p2��1 exp(� (v1 �m1)22�21 ) (4)for v1 = red � green, m1 = 29, and �21 = 121, andp(v1jeye) = 1p2��2 exp(� (v1 �m2)22�22 ) (5)for v1 = red � green , m2 = 42, and �22 = 231. Thelikelihood fun
tions for v2 = green � blue are de�nedsimilarly. We assume that s
lera or non-s
lera 
olorsare equally likely to o

ur within the eye region. Thenthe prior probabilities p and q 
an be set to 1=2 andthe likelihood ratio is`(v) = p(v1js
lera)p(v2js
lera)p(v1jeye)p(v2jeye) : (6)If the same 
osts are asso
iated to false positiveand false negative de
isions, i.e., H = C1=C2 = 1;pixels with v1 = red � green � 36:4 and v2 =green � blue � 8:3 are 
lassi�ed to have s
lera 
olor.These thresholds on v1 and v2 are given by the inter-se
tions of p(vjs
lera) and p(vjeye) in Fig. 2. How-ever, for our appli
ation it is worse to miss a trues
lera pixel rather mis
lassify a non-s
lera pixel. We2
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Figure 2: Distributions of s
lera and surround-ing eye 
olor of training data and respe
tive like-lihood fun
tions p(v1js
lera); p(v1jeye); p(v2js
lera),and p(v1jeye). On top v1 = red � green , at bottomv2 = green � blue. Table 1Statisti
s of Training DataS
lera Eye S
lera EyeSample red - green green - blueMean 29 42 4 12Varian
e 121 231 36 64therefore use a 
ost ratio of C1=C2 = 2=3 as the de-
ision threshold H. This results in 
lassifying pixelswith v1 � 40 and v2 � 12 as s
lera 
olored.Figure 3 shows the s
lera 
lassi�
ation results fora typi
al s
ene. S
lera-
olored pixels are shown inwhite. Noti
e that glare at the border of the fa
e

and 
lusters of ba
kground pixels are also identi�edas s
lera 
olored. To avoid su
h mis
lassi�
ations, oursystem �rst identi�es the fa
e and then only sear
hesthe fa
e area for s
lera-
olored pixels. Skin-
oloredpixels are used to help identify the fa
e. We use thesame te
hniques as des
ribed above to determine de-
ision thresholds for skin-
olor 
lassi�
ation. Mis
las-si�
ation of skin 
olor is addressed by a model-basedapproa
h as des
ribed in Se
tion 4.

Figure 3: Pixels that mat
h the s
lera 
olor are shownin white; other pixels are shown in bla
k.3 System OverviewOur system a
tively a
quires and pro
esses live videoinput of a person and outputs an online des
ription oflo
ation and size of the person's fa
e and eyes. Thevision system 
ontains �ve main 
omponents: 
am-era initialization, pro
ess 
oordination, fa
e dete
tion,fa
e tra
king, and eye dete
tion. Figure 4 provides asystem 
ow 
hart.In the initialization phase, the 
amera is positionedat zero pan and tilt angles and widest �eld of view.Frame a
quisition is then started with the fa
e de-te
tor sear
hing the full frame. On
e the fa
e dete
-tor re
ognizes a fa
e, the pro
ess 
oordinator 
reatesa tra
king pro
ess. While the fa
e is being tra
ked,the system de
reases the 
amera's �eld of view andzooms towards the dete
ted fa
e until it appears largeenough to employ the eye dete
tor.The pro
ess 
oordinator uses the dete
tion andtra
king history to de
ide whether a fa
e estimate isreliable. If the pro
ess 
oordinator 
on
ludes that thefa
e disappeared or is tra
ked in
orre
tly, it swit
hes
ontrol from the fa
e tra
ker ba
k to the full-framefa
e dete
tor. The dynami
 use of either fa
e dete
-tor and tra
ker redu
es the amount of 
omputational3



Figure 4: System overviewresour
es needed and allows real-time dete
tion andtra
king.4 Fa
e Dete
tionThe task of the fa
e dete
tor is to identify a person'shead and rotate the 
amera so that the fa
e is in the
enter of the image. It outputs estimates for the 
en-ter and the top, bottom, left, and right borders of thefa
e.The fa
e dete
tor identi�es pixels with skin tonein the entire image frame. To 
lassify the 
olor of apixel, Bayes de
ision rule is applied as des
ribed inSe
tion 2. The fa
e dete
tor then 
reates a \skin-tone motion image" that des
ribes where the signi�-
ant 
hanges in skin 
olor from one frame to the nexto

ur. As 
an be seen in Figure 5, these 
hanges ap-pear strong within the fa
e and at its border, whereskin-tone motion is obtained by subtra
ting fa
e pix-els from non-fa
e ba
kground pixels. The fa
e dete
-tor 
an therefore identify the fa
e outline by sear
hingthe skin-tone motion image for strong edges.Strong horizontal and verti
al lines in the n � mskin-tone motion image are identi�ed as follows. Itspixel values are proje
ted horizontally and verti
allyonto ve
tors h and v, respe
tively. The horizon-tal proje
tion ve
tor h is an m-dimensional 
olumn

ve
tor, and the verti
al proje
tion ve
tor v is an n-dimensional row ve
tor. A large ve
tor 
omponent hiindi
ates that the ith image row 
ontains a substantialnumber of pixels with skin-tone motion that are dueto up or down head motion. Similarly, a large 
ompo-nent vj indi
ates that the jth image 
olumn 
ontainsa substantial number of skin-tone motion pixels thatare due to left or right head motion. Lo
al peaksin h and v 
an therefore be used to estimate the top-,bottom-, left-, and rightmost 
oordinates of the fa
e.The sear
h for these 
oordinates starts at the top,bottom, left, and right border of the image and movestowards the image 
enter.Our method to dete
t the fa
e outline only assumesthat the fa
e will be a \re
ognizable blob" in the skin-tone motion image. It does not assume the 
oheren
eof same-
olor pixels and therefore does not waste 
om-putational resour
es trying to �nd 
risp, 
ontiguousedges that mark the border of the fa
e.

Figure 5: A skin-tone motion image. Bright pixels in-di
ate signi�
ant temporal 
hanges in skin tone, bla
kpixels indi
ate no 
hange.On
e the fa
e dete
tor identi�es a set of 
oordi-nates (xt; yt); (xb; yb); (xl; yl) and (xr; yr) that poten-tially des
ribe the borders of a fa
e, it 
ounts skin-tone pixels (x; y) within the ellipse(x� (xr + xl)=2)2((xr � xl)=2)2 + (y � (yb + yt)=2)2((yb � yt)=2)2 � 1that is de�ned by these 
oordinates (see Fig. 6). Ifthe skin-tone portion of the ellipse is large enoughto provide eviden
e that it indeed models a fa
e, the
amera is repositioned to 
enter the fa
e in the image.At this point, the pro
ess 
oordinator swit
hes 
ontrolto the fa
e tra
ker. It also disables the fa
e dete
torfor the next few frames to in
rease the speed of thesystem.4



Figure 6: The fa
e in the left image is dete
ted andmodeled by the ellipse shown in the right image.5 Fa
e Tra
kingThe task of the fa
e tra
ker is to� follow the fa
e by rotating the 
amera and� obtain or maintain a resolution that allows reli-able eye dete
tion by 
hanging the 
amera zoom.To determine the fa
e outline in the 
urrent imageframe, the fa
e tra
ker uses as inputs either its ownor the fa
e dete
tor's estimates of fa
e border 
oordi-nates in the previous frame.The fa
e tra
ker and dete
tor determine the fa
eoutline in a similar manner. The main di�eren
eslie in the sear
h size, data, and dire
tion. Insteadof sear
hing the entire frame, the fa
e tra
ker onlysear
hes an image region slightly larger than the re-gion 
overed by the dete
ted fa
e in the previousframe. Instead of sear
hing for strong edges in theskin-tone motion image alone, the fa
e tra
ker in-
ludes in its sear
h both skin-tone pixels and skin-tonemotion pixels. This enables the tra
ker to identify thefa
e even if there is no or only small motion. The fa
etra
ker sear
hes the proje
tion ve
tors from the 
en-ter of the sear
h region towards its borders. On
e itidenti�es a set of 
oordinates that possibly des
ribethe fa
e outline, the fa
e tra
ker 
he
ks whether theskin-tone portion of the ellipse de�ned by these 
oor-dinates is large 
ompared to the size of the ellipse. Ifthis portion is large, the 
oordinates are 
onsidered todes
ribe a fa
e.On
e the fa
e tra
ker has identi�ed a fa
e, it 
he
ksthe size of the ellipti
 fa
e model and determines if the
amera's �eld of view should be de
reased to in
reasethe size of the fa
e within the image. After the po-tential 
hange of the 
amera's zoom, system 
ontrolmoves on to the eye dete
tor.6 Eye Dete
tionThe task of the eye dete
tor is to �nd the eyes in a fa
eby lo
ating the left and right eye s
leras. The eye de-te
tor is started by the pro
ess 
oordinator as soon as

the identi�ed fa
e region 
ontains at least two-thirdsof the size of the image. This threshold is neededto ensure a resolution of the eyes in the image thatmakes s
lera dete
tion feasible. The threshold wasnot 
hosen arbitrarily, but in fa
t tested extensively.The eye dete
tor identi�es all s
lera-
olored pix-els within the fa
e using Bayes de
ision rule as de-s
ribed in Se
tion 2.1. To improve s
lera 
olor 
las-si�
ation, the pixels in the fa
e region are also ana-lyzed for skin tone and verti
al edges and weights areassigned to 
ombine 
olor and edge information as fol-lows. A weight of zero is assigned for a skin-
oloredpixel, a weight of one for a pixel mat
hing the non-skin 
olor or indi
ating the presen
e of a verti
al line,and a weight of three for a s
lera-
olored pixel. Thehighest 
on
entration of weights 
an be expe
ted too

ur around the eyes, where large pixel 
lusters ofs
lera-white, 
lusters of non-skin 
olor due to pupilsand irises, and verti
al edges due to eyelashes and irisborders are the most prominent features.The peak 
on
entration is found by �ltering theweight map of the fa
e. The �lter is de�ned by a
omputational mask of 5 � 5 that averages the lo
alweights that are asso
iated with the pixels. The eyedete
tor �rst sear
hes for a peak �lter output thatrepresents the 
enter of the left eye. The sear
h in-
ludes only pixels lo
ated within the left half of theellipti
 fa
e model. On
e the left eye is found in thismanner, the eye dete
tor sear
hes the right half of theellipse for the right eye.7 HardwareOur system uses a Sony EVI-D30 
olor video CCD
amera. Its NTSC video output is pro
essed by aMatrox Meteor II image 
apture board on a 450 MHzdual pro
essor PC with 384MB RAM. Our system
ontrols the 
amera's pan, tilt, and zoom me
hanismsvia the PC's serial port. The 
amera's pan and tiltangles are �100o and �25o, respe
tively. Horizontallythe 
amera's �eld of view 
an 
hange from 48:8o to4:3o; verti
ally it 
an 
hange from 37:6o to 3:2o. The
amera has autofo
us. Our system pro
esses imagesof size 320 � 240 pixels, whi
h is half the resolutionthat the 
amera provides.8 Real-time Performan
eOur system pro
esses between 5 and 14 frames perse
ond. The wide range of possible frame rates is dueto the a
tive nature of our system. During dete
tion5



and tra
king phases that do not require any adjust-ments of the 
amera's 
ontrols, the system runs about12 to 14 frames per se
ond. When our system de
idesthat repositioning of the 
amera be
omes ne
essaryand a
tivates the 
amera's 
ontrol me
hanisms, imagea
quisition 
annot o

ur and the frame rate drops.At the beginning of the experiments, the 
amera isinitialized to use its widest �eld of view. When a fa
eis dete
ted at this wide angle, the 
amera takes severalse
onds to zoom towards the fa
e until a suÆ
ient res-olution of the eyes is obtained and the s
leras 
an bedete
ted. Due to frequent 
amera readjustments, theframe rate is only about 5 frames per se
ond duringthis time.9 Experiments and Dis
ussionSin
e our system a
tively a
quires and pro
esses videoinput, it only works in live experiments. This 
ompli-
ates the analysis of our system's performan
e. We
annot work with a database of image sequen
es andexploit the advantage that stored test sequen
es pro-vide, namely, repeatability of experiments. When atest person be
omes available, both image a
quisi-tion and pro
essing, and analysis of results must allbe done in a live session. In these live experiments,we �nd that the system lo
ates and zooms towardsfa
es well and dete
ts eyes reasonably well. A simplerversion of our system that manually determines the�eld of view and automati
ally dete
ts and tra
ks eyes
leras has been tested extensively in several publi
demonstrations that in
luded about 100 test subje
ts.All subje
t eyes were dete
ted and tra
ked su

ess-fully, independent of a subje
t's age, ra
e, sex, fa
ialhair, glasses, et
.To give a quantitative analysis of our system's per-forman
e, we added the option to save pro
essed im-ages that are annotated with information about fa
eborders and eye lo
ations. Saving images for lateranalysis slows down the system to about 4 to 6 framesper se
ond, and therefore 
auses a signi�
ant impa
ton its dete
tion performan
e.We �rst tested for long-term tra
king performan
e.We re
orded 190 images over the period of 11.5 min-utes, 
hoosing a uniform sampling rate. The outline ofthe head was identi�ed 
orre
tly in 75% of the storedimages. An eye mat
hed 
orre
tly in 63% of the sam-ple images.We then tested how well our system 
an tra
k afa
e if the subje
t moves around signi�
antly. Within

2500 frames, the subje
t made 14 drasti
 movementsso that only half of the subje
t's fa
e was imaged inthe frame that immediately followed the move. Thesystem 
orre
tly repositioned the 
amera 71% of thetime. The system repositioned the 
amera within thespan of 30 to 100 frames. It failed if the subje
t movedtoo fast out of the 
amera's �eld of view before the
amera 
ould reposition itself.We also tested our system's performan
e on eightdi�erent subje
ts in 18 live tests, ea
h lasting 33 se
-onds. For analysis purposes, 48 images were storedper test. They in
luded 13 images with eye lo
aliza-tion. The initial zooming pro
ess was 95% su

essful,taking between 86 and 254 frames until an optimal�eld of view was obtained. The system lo
alized atleast one eye in 89% of the 
ases. Figure 7 shows howthe vision system a
tively 
hanges the �eld of viewon
e it dete
ts a fa
e. The 
amera zooms in until thefa
e is imaged large enough for the eyes to be dete
ted.The person in the sequen
e on the right moved out ofthe �eld of view, whi
h delayed the zooming pro
ess.Figure 8 illustrates su

essful eye dete
tion. Fig-ures 9 and 10 show 
ases where only one eye is de-te
ted or eye dete
tion failed. Mismat
hes are due to
losed eyes, misidenti�
ation of the fa
e outline, andproblems with the autofo
us.

Figure 8: Eye dete
tion and iris lo
alization.6



Figure 7: On
e a fa
e is dete
ted, the system rotates to 
enter the fa
e within the image frame and widens the�eld of view. The fa
es dete
ted in frame 23 have a width of about 55 pixels. Eye dete
tion starts on
e thewidth of the imaged fa
e is 231 pixels.
Figure 9: Lo
alization of one iris and false mat
h withhair or ba
kground.10 Future WorkWe have presented a system that dete
ts, tra
ks, andzooms in on fa
es, and lo
ates eyes. We developed astatisti
al model based on Bayes de
ision rule to de-te
t the 
olor of the s
lera of an eye. Our plan for the

Figure 10: In
orre
t lo
alization of eyes due to 
losedeyes, failure of 
amera's autofo
us, and in
orre
t fa
elo
alization.future is to add geometri
 
onstraints to our fa
e andeye models that improve eye dete
tion without sub-stantially redu
ing the real-time performan
e of oursystem. To make eye dete
tion reliable over long timeperiods, we will also add an eye tra
ker to our system.7



We strongly believe that reliable s
lera dete
tion is animportant tool for estimating gaze dire
tion, whi
h isour ultimate goal.A
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