
Ative Detetion of Eye Sleras in Real TimeMargrit Betke � William J. Mullally and John J. MageeComputer Siene Department Computer Siene DepartmentBoston University Boston College111 Cummington St Fulton HallBoston, MA 02215 Chestnut Hill, MA 02467AbstratWe introdue a method to detet the white visible por-tion of the eyeball, the \slera." Our method is embed-ded in a real-time vision system that atively ontrolsthe amera's pan, tilt, and zoom. We designed thesystem to automatially detet the head of a movingperson and zoom towards the fae until the eyes areimaged with suÆient resolution. The sleras are thendeteted using olor-based Bayes deision thresholds.We tested our system for various subjets, head andfaial motions, and lighting onditions.1 IntrodutionIn the near future, standard desktop omputers willbe equipped with ameras that an apture the om-puter user's head orientation, faial expression, lipmovement, and gaze diretion. A omputer visionsystem that interprets this information reliably hasthe potential to beome a new ommuniation tooland augment traditional human-omputer interfaessuh as keyboard and mouse. Suh a system willalso have an important impat on people who an-not use the keyboard or mouse due to severe dis-abilities. Our researh is motivated by the goal toprovide a ommuniation tool to non-speaking hil-dren with erebral palsy and traumati brain injuriesat Boston College's ampus shool. Currently twosystems are used as mouse replaements and impor-tant means of ommuniation by several hildren atthe ampus shool. The older system, alled \Ea-gleEyes," is based on measuring the user's eletro-oulographi potential [11, 6℄. Our new system, the\Camera Mouse" is based on faial feature traking�The author aknowledges support by NSF equipment grant9871219.Email: betke�s.bu.edu, http://www.s.bu.edu/fa/betke.

using a video amera [10℄. The hildren use the sys-tems to spell out words or messages and play games.This paper desribes our steps towards substitutingEagleEyes with an inexpensive, unobtrusive omputervision system that not only traks features but alsodetets them. Our ultimate goal is to automatiallydetermine the gaze diretion of a omputer user. Oururrent system addresses the following two tasks:� Deteting a fae, zooming towards it, and trak-ing it.� Deteting the sleras, the white visible portion ofthe eyeballs.Our system performs these tasks in real time usingvarious subjets, head and faial motions, and lightingonditions. We developed a olor-based tehnique todetet eye sleras. The olor of eye sleras, a yellowishwhite, does not vary muh between di�erent subjets,while iris olor, eye shape, and surrounding skin olorgenerally vary substantially.1.1 Previous WorkVarious tehniques have been used to detet and trakpeople, and their faes and eyes in real time. Tem-poral di�erening is often used to segment moving aregion of interest from a stable bakground [5, 19℄. Fa-ial motions have been analyzed in real time or nearreal time, using normalized olor histograms [3, 18℄,parametri ow models [21℄, models of faial dynamis[4, 7℄, Hidden Markov Models [14℄, and stereo systems[12℄. We are unaware of any previous work that ad-dressed slera detetion. Skin olor based detetionof faes, however, has been explored extensively, e.g.,[8, 16, 20, 22℄.Gaze estimation has proven to be a hallengingproblem. Previous approahes inlude systems basedon neural networks [1, 17℄, morphable models [15℄, andself-organizing gray-sale units [2℄. Gee and Cipolla[9℄ explore the underlying geometri onstraints.



2 Statistial Slera and SkinColor ModelsWe use statistial deision theory [13℄, in partiular,Bayes deision rule to estimate from the olor of apixel if it images a fae or the slera of an eye. Atraining data set of images that are known to on-tain faes is analyzed to determine a priori probabil-ity distributions of skin and slera olor. Our sys-tem minimizes the average loss assoiated with thelassi�ation deision as follows. Let p and q be therespetive a priori probabilities that a data vetor vdesribes/does not desribe the olor of a partiularfae region. Let p(vjs) be the likelihood funtion forthe image data v given a desired olor s. Finally, letp(vj0) be the probability of the data, given that thedesired olor s is not present. The likelihood ratio `(v)is then given by `(v) = p p(vjs)q p(vj0) : (1)The likelihood ratio `(v) is ompared to the deisionthreshold H = C1C2 ; (2)where C1 and C2 are the respetive osts assoiatedwith false positive and false negative deisions. Theaverage loss assoiated with the lassi�ation deisionis minimized when pixels for whih`(v) � H (3)are lassi�ed belonging to the desired olor, and pixelsfor whih `(v) < H are lassi�ed as not belonging tothe desired olor.2.1 Slera ColorOur training data onsists of images taken from 8 sub-jets under two di�erent lighting onditions. First,only the neon eiling lights in our laboratory wereused, and a set of images was obtained that showsdark shadows around the subjet's eyes. Then an ad-ditional desk lamp was plaed to brighten the sub-jet's fae. We segmented the white of the eyes ineah training image by hand.Figure 1 shows a sample set of our training images,where the subjet's slera is segmented by hand anddisplayed in pure white. Figure 2 plots the distri-butions for the slera and non-slera pixels for datapoints v1 = red � green and v2 = green � blue. The

non-slera pixels are also segmented by hand to in-lude all pixels that make up the eye region exept theslera, i.e., the iris, pupil, eye brows, lashes, and lids.The distributions were omputed using 7550 trainingpixels for the slera olor, and 275,547 for the non-slera olor, and taken under the same desk and eil-ing light onditions.
Figure 1: Training images for slera olor taken witheiling lights (top row), eiling and desk lights (bot-tom row). The blak region in the right bottom imageis used as training data for non-slera eye olor.Table 1 lists sample means and varianes for thetraining data distributions. Figure 2 shows Gaus-sian approximations based on these statistis. We usethem to de�ne the likelihood funtionsp(v1jslera) = 1p2��1 exp(� (v1 �m1)22�21 ) (4)for v1 = red � green, m1 = 29, and �21 = 121, andp(v1jeye) = 1p2��2 exp(� (v1 �m2)22�22 ) (5)for v1 = red � green , m2 = 42, and �22 = 231. Thelikelihood funtions for v2 = green � blue are de�nedsimilarly. We assume that slera or non-slera olorsare equally likely to our within the eye region. Thenthe prior probabilities p and q an be set to 1=2 andthe likelihood ratio is`(v) = p(v1jslera)p(v2jslera)p(v1jeye)p(v2jeye) : (6)If the same osts are assoiated to false positiveand false negative deisions, i.e., H = C1=C2 = 1;pixels with v1 = red � green � 36:4 and v2 =green � blue � 8:3 are lassi�ed to have slera olor.These thresholds on v1 and v2 are given by the inter-setions of p(vjslera) and p(vjeye) in Fig. 2. How-ever, for our appliation it is worse to miss a trueslera pixel rather mislassify a non-slera pixel. We2
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Figure 2: Distributions of slera and surround-ing eye olor of training data and respetive like-lihood funtions p(v1jslera); p(v1jeye); p(v2jslera),and p(v1jeye). On top v1 = red � green , at bottomv2 = green � blue. Table 1Statistis of Training DataSlera Eye Slera EyeSample red - green green - blueMean 29 42 4 12Variane 121 231 36 64therefore use a ost ratio of C1=C2 = 2=3 as the de-ision threshold H. This results in lassifying pixelswith v1 � 40 and v2 � 12 as slera olored.Figure 3 shows the slera lassi�ation results fora typial sene. Slera-olored pixels are shown inwhite. Notie that glare at the border of the fae

and lusters of bakground pixels are also identi�edas slera olored. To avoid suh mislassi�ations, oursystem �rst identi�es the fae and then only searhesthe fae area for slera-olored pixels. Skin-oloredpixels are used to help identify the fae. We use thesame tehniques as desribed above to determine de-ision thresholds for skin-olor lassi�ation. Mislas-si�ation of skin olor is addressed by a model-basedapproah as desribed in Setion 4.

Figure 3: Pixels that math the slera olor are shownin white; other pixels are shown in blak.3 System OverviewOur system atively aquires and proesses live videoinput of a person and outputs an online desription ofloation and size of the person's fae and eyes. Thevision system ontains �ve main omponents: am-era initialization, proess oordination, fae detetion,fae traking, and eye detetion. Figure 4 provides asystem ow hart.In the initialization phase, the amera is positionedat zero pan and tilt angles and widest �eld of view.Frame aquisition is then started with the fae de-tetor searhing the full frame. One the fae dete-tor reognizes a fae, the proess oordinator reatesa traking proess. While the fae is being traked,the system dereases the amera's �eld of view andzooms towards the deteted fae until it appears largeenough to employ the eye detetor.The proess oordinator uses the detetion andtraking history to deide whether a fae estimate isreliable. If the proess oordinator onludes that thefae disappeared or is traked inorretly, it swithesontrol from the fae traker bak to the full-framefae detetor. The dynami use of either fae dete-tor and traker redues the amount of omputational3



Figure 4: System overviewresoures needed and allows real-time detetion andtraking.4 Fae DetetionThe task of the fae detetor is to identify a person'shead and rotate the amera so that the fae is in theenter of the image. It outputs estimates for the en-ter and the top, bottom, left, and right borders of thefae.The fae detetor identi�es pixels with skin tonein the entire image frame. To lassify the olor of apixel, Bayes deision rule is applied as desribed inSetion 2. The fae detetor then reates a \skin-tone motion image" that desribes where the signi�-ant hanges in skin olor from one frame to the nextour. As an be seen in Figure 5, these hanges ap-pear strong within the fae and at its border, whereskin-tone motion is obtained by subtrating fae pix-els from non-fae bakground pixels. The fae dete-tor an therefore identify the fae outline by searhingthe skin-tone motion image for strong edges.Strong horizontal and vertial lines in the n � mskin-tone motion image are identi�ed as follows. Itspixel values are projeted horizontally and vertiallyonto vetors h and v, respetively. The horizon-tal projetion vetor h is an m-dimensional olumn

vetor, and the vertial projetion vetor v is an n-dimensional row vetor. A large vetor omponent hiindiates that the ith image row ontains a substantialnumber of pixels with skin-tone motion that are dueto up or down head motion. Similarly, a large ompo-nent vj indiates that the jth image olumn ontainsa substantial number of skin-tone motion pixels thatare due to left or right head motion. Loal peaksin h and v an therefore be used to estimate the top-,bottom-, left-, and rightmost oordinates of the fae.The searh for these oordinates starts at the top,bottom, left, and right border of the image and movestowards the image enter.Our method to detet the fae outline only assumesthat the fae will be a \reognizable blob" in the skin-tone motion image. It does not assume the ohereneof same-olor pixels and therefore does not waste om-putational resoures trying to �nd risp, ontiguousedges that mark the border of the fae.

Figure 5: A skin-tone motion image. Bright pixels in-diate signi�ant temporal hanges in skin tone, blakpixels indiate no hange.One the fae detetor identi�es a set of oordi-nates (xt; yt); (xb; yb); (xl; yl) and (xr; yr) that poten-tially desribe the borders of a fae, it ounts skin-tone pixels (x; y) within the ellipse(x� (xr + xl)=2)2((xr � xl)=2)2 + (y � (yb + yt)=2)2((yb � yt)=2)2 � 1that is de�ned by these oordinates (see Fig. 6). Ifthe skin-tone portion of the ellipse is large enoughto provide evidene that it indeed models a fae, theamera is repositioned to enter the fae in the image.At this point, the proess oordinator swithes ontrolto the fae traker. It also disables the fae detetorfor the next few frames to inrease the speed of thesystem.4



Figure 6: The fae in the left image is deteted andmodeled by the ellipse shown in the right image.5 Fae TrakingThe task of the fae traker is to� follow the fae by rotating the amera and� obtain or maintain a resolution that allows reli-able eye detetion by hanging the amera zoom.To determine the fae outline in the urrent imageframe, the fae traker uses as inputs either its ownor the fae detetor's estimates of fae border oordi-nates in the previous frame.The fae traker and detetor determine the faeoutline in a similar manner. The main di�ereneslie in the searh size, data, and diretion. Insteadof searhing the entire frame, the fae traker onlysearhes an image region slightly larger than the re-gion overed by the deteted fae in the previousframe. Instead of searhing for strong edges in theskin-tone motion image alone, the fae traker in-ludes in its searh both skin-tone pixels and skin-tonemotion pixels. This enables the traker to identify thefae even if there is no or only small motion. The faetraker searhes the projetion vetors from the en-ter of the searh region towards its borders. One itidenti�es a set of oordinates that possibly desribethe fae outline, the fae traker heks whether theskin-tone portion of the ellipse de�ned by these oor-dinates is large ompared to the size of the ellipse. Ifthis portion is large, the oordinates are onsidered todesribe a fae.One the fae traker has identi�ed a fae, it heksthe size of the ellipti fae model and determines if theamera's �eld of view should be dereased to inreasethe size of the fae within the image. After the po-tential hange of the amera's zoom, system ontrolmoves on to the eye detetor.6 Eye DetetionThe task of the eye detetor is to �nd the eyes in a faeby loating the left and right eye sleras. The eye de-tetor is started by the proess oordinator as soon as

the identi�ed fae region ontains at least two-thirdsof the size of the image. This threshold is neededto ensure a resolution of the eyes in the image thatmakes slera detetion feasible. The threshold wasnot hosen arbitrarily, but in fat tested extensively.The eye detetor identi�es all slera-olored pix-els within the fae using Bayes deision rule as de-sribed in Setion 2.1. To improve slera olor las-si�ation, the pixels in the fae region are also ana-lyzed for skin tone and vertial edges and weights areassigned to ombine olor and edge information as fol-lows. A weight of zero is assigned for a skin-oloredpixel, a weight of one for a pixel mathing the non-skin olor or indiating the presene of a vertial line,and a weight of three for a slera-olored pixel. Thehighest onentration of weights an be expeted toour around the eyes, where large pixel lusters ofslera-white, lusters of non-skin olor due to pupilsand irises, and vertial edges due to eyelashes and irisborders are the most prominent features.The peak onentration is found by �ltering theweight map of the fae. The �lter is de�ned by aomputational mask of 5 � 5 that averages the loalweights that are assoiated with the pixels. The eyedetetor �rst searhes for a peak �lter output thatrepresents the enter of the left eye. The searh in-ludes only pixels loated within the left half of theellipti fae model. One the left eye is found in thismanner, the eye detetor searhes the right half of theellipse for the right eye.7 HardwareOur system uses a Sony EVI-D30 olor video CCDamera. Its NTSC video output is proessed by aMatrox Meteor II image apture board on a 450 MHzdual proessor PC with 384MB RAM. Our systemontrols the amera's pan, tilt, and zoom mehanismsvia the PC's serial port. The amera's pan and tiltangles are �100o and �25o, respetively. Horizontallythe amera's �eld of view an hange from 48:8o to4:3o; vertially it an hange from 37:6o to 3:2o. Theamera has autofous. Our system proesses imagesof size 320 � 240 pixels, whih is half the resolutionthat the amera provides.8 Real-time PerformaneOur system proesses between 5 and 14 frames perseond. The wide range of possible frame rates is dueto the ative nature of our system. During detetion5



and traking phases that do not require any adjust-ments of the amera's ontrols, the system runs about12 to 14 frames per seond. When our system deidesthat repositioning of the amera beomes neessaryand ativates the amera's ontrol mehanisms, imageaquisition annot our and the frame rate drops.At the beginning of the experiments, the amera isinitialized to use its widest �eld of view. When a faeis deteted at this wide angle, the amera takes severalseonds to zoom towards the fae until a suÆient res-olution of the eyes is obtained and the sleras an bedeteted. Due to frequent amera readjustments, theframe rate is only about 5 frames per seond duringthis time.9 Experiments and DisussionSine our system atively aquires and proesses videoinput, it only works in live experiments. This ompli-ates the analysis of our system's performane. Weannot work with a database of image sequenes andexploit the advantage that stored test sequenes pro-vide, namely, repeatability of experiments. When atest person beomes available, both image aquisi-tion and proessing, and analysis of results must allbe done in a live session. In these live experiments,we �nd that the system loates and zooms towardsfaes well and detets eyes reasonably well. A simplerversion of our system that manually determines the�eld of view and automatially detets and traks eyesleras has been tested extensively in several publidemonstrations that inluded about 100 test subjets.All subjet eyes were deteted and traked suess-fully, independent of a subjet's age, rae, sex, faialhair, glasses, et.To give a quantitative analysis of our system's per-formane, we added the option to save proessed im-ages that are annotated with information about faeborders and eye loations. Saving images for lateranalysis slows down the system to about 4 to 6 framesper seond, and therefore auses a signi�ant impaton its detetion performane.We �rst tested for long-term traking performane.We reorded 190 images over the period of 11.5 min-utes, hoosing a uniform sampling rate. The outline ofthe head was identi�ed orretly in 75% of the storedimages. An eye mathed orretly in 63% of the sam-ple images.We then tested how well our system an trak afae if the subjet moves around signi�antly. Within

2500 frames, the subjet made 14 drasti movementsso that only half of the subjet's fae was imaged inthe frame that immediately followed the move. Thesystem orretly repositioned the amera 71% of thetime. The system repositioned the amera within thespan of 30 to 100 frames. It failed if the subjet movedtoo fast out of the amera's �eld of view before theamera ould reposition itself.We also tested our system's performane on eightdi�erent subjets in 18 live tests, eah lasting 33 se-onds. For analysis purposes, 48 images were storedper test. They inluded 13 images with eye loaliza-tion. The initial zooming proess was 95% suessful,taking between 86 and 254 frames until an optimal�eld of view was obtained. The system loalized atleast one eye in 89% of the ases. Figure 7 shows howthe vision system atively hanges the �eld of viewone it detets a fae. The amera zooms in until thefae is imaged large enough for the eyes to be deteted.The person in the sequene on the right moved out ofthe �eld of view, whih delayed the zooming proess.Figure 8 illustrates suessful eye detetion. Fig-ures 9 and 10 show ases where only one eye is de-teted or eye detetion failed. Mismathes are due tolosed eyes, misidenti�ation of the fae outline, andproblems with the autofous.

Figure 8: Eye detetion and iris loalization.6



Figure 7: One a fae is deteted, the system rotates to enter the fae within the image frame and widens the�eld of view. The faes deteted in frame 23 have a width of about 55 pixels. Eye detetion starts one thewidth of the imaged fae is 231 pixels.
Figure 9: Loalization of one iris and false math withhair or bakground.10 Future WorkWe have presented a system that detets, traks, andzooms in on faes, and loates eyes. We developed astatistial model based on Bayes deision rule to de-tet the olor of the slera of an eye. Our plan for the

Figure 10: Inorret loalization of eyes due to losedeyes, failure of amera's autofous, and inorret faeloalization.future is to add geometri onstraints to our fae andeye models that improve eye detetion without sub-stantially reduing the real-time performane of oursystem. To make eye detetion reliable over long timeperiods, we will also add an eye traker to our system.7
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