Gaze Detection via Self-Organizing Gray-Scale Units

Margrit Betke* and Jun Kawai
Computer Science Department
Boston College
Chestnut Hill, MA 02467-3808

Abstract

We present a gaze estimation algorithm that de-
tects an eye in a face image and estimates the
gaze direction by computing the position of the
pupil with respect to the center of the eye. The
algorithm is information conserving and based on
unsupervised learning. It creates a map of self-
organized gray-scale image units that collectively
learn to describe the eye outline.

1 Introduction

In the near future, standard desktop comput-
ers will be equipped with cameras that could be
used to augment traditional human-computer in-
terfaces such as keyboard and mouse. Cameras
pointed at the computer user can capture the
user’s gaze direction, facial expression, lip move-
ment, head orientation, etc. Being able to ana-
lyze and understand such image sequences auto-
matically, reliably, and in real time bas been and
continues to be the topic of exciting research in
the area of human-computer interfaces.

Our work focuses on the problem of gaze esti-
mation, which has previously been approached by
applying neural networks [3, 10], morphable mod-
els [9], and other techniques [5]. We developed an
unsupervised learning method that is based on
Kohonen’s self-organizing maps [6, 7, 2]. Self-
organizing feature maps have previously been
used in computer vision, for example, in image
compression [1], medical image processing [11],
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and face recognition [8] applications. In com-
puter vision, the term feature generally refers to
a local image property, for example, a line or cir-
cle in the edge map of an image. As discussed
in Ref. [4], edge-based methods may discard a
significant amount of information pertinent to
an object’s recognition and so may be inher-
ently suboptimal. Instead of using feature maps,
we therefore follow the “information-conserving
approach” discussed in Ref. [4] and use gray-
scale subimages as the building blocks of our self-
organized recognition system. These subimages
are the units that learn to arrange themselves
around the eye of a trial image in order to esti-
mate the eye center and pupil position.

2 System Overview

Figure 1 gives an overview of the gaze recognition
system. Given a model and trial image of an eye
as inputs, the system computes an estimate of
the user’s gaze direction in the trial image.

The system has two phases — an initial setup
phase and a learning phase. In the setup phase,
the system uses the model image to create and
arrange gray-scale subimages, or units, in an el-
liptic pattern. The units are then correlated with
the trial image at locations that are determined
in the learning phase. The learning phase con-
sists of a number of epochs. In each epoch, the
units move towards the trial eye. Each unit and
its neighborhood learn their best positions and
organize themselves in a final arrangement. The
center of the final arrangement is an estimate of
the position of the eye center in the trial image.
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Figure 1: Gaze Recognitioh System.
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The best-correlating pupil position in the trial
image is then determined. The location of the
pupil center with respect to the eye center is used
as an estimate of the gaze direction and is the
system output.

3 Setup Phase

In the setup phase, learning units are created
from a model image of the eye and arranged
around the eye of a trial image.

3.1 Initial Arrangement of Units in
Model Image

For each subject, a model image m(z,y) of one of
the subject’s eyes is created in the setup phase.
We ask the subject to look straight into the cam-
era, so that the eye is imaged with the pupil in
its the center. We then manually determine the
coordinates (Pzm,Ppym) of the pupil center p, and
the parameters a,, and b, that describe an el-
lipse

r = (am o8 0 + pem )% + (b sinf + pym)y (1)

fitted around the eye, where 0 is the angle used
to sweep vector (@, cos 8, b, sin8), shifted to the
pupil center p, through every point r on the el-
lipse, and where X = (1,0), § = (0,1) are unit
vectors.

The image regions at the outline of the el-
lipse are then organized into n unit images
s0(z,Y),...,8n—1(z,y). The unit centers are
placed along the outline of the ellipse at equally
spaced intervals. The image regions that sur-
round these centers are used as the model units.
The image region containing the pupil is used as
a gray-scale pupil model.

Figure 1 shows a model image, an image,
where every other unit center is shown as a white
dot, and an image that contains the pupil model
and arrangement of model units, which overlap
each other. One of the units is shown in white.



3.2 Initial Arrangement of Units in
Trial Image

The model units are rearranged to form a larger
ellipse, so that an overlay of this new arrange-
ment onto the trial image would surround the
eye in the trial image, as shown in Fig. 1. The
trial image dimensions are used to determine how
much the model units are spread out in the initial
arrangement. In particular, the ellipse parame-
ters a and b of the new arrangement are chosen
to be 40% of the width and height of the trial
image, respectively.

4 Learning Phase

Since the system does not know the position or
size of the eye in the trial image, we expect the
initial arrangement of model units to poorly de-
scribe the eye in the trial image. A learning
phase therefore follows, in which the units or-
ganize themselves and move into positions that
better describe the eye in the trial image.

4.1 Self-Organization of Units

Within £ epochs, the model units organize them-
selves into a final arrangement that describes the
eye in the trial image. In each epoch, each of
the n model units is chosen as the center of a
neighborhood of p units that collectively learn
better descriptions of the trial image.

The neighborhood centers are selected sequen-
tially in clockwise order starting with the Oth
unit, which is the rightmost unit in the arrange-
ment. The ith unit has a neighborhood of units
with indices (i — p/2) mod n, ..., (s + p/2) mod n.
The results of the learning process of unit s;
and its neighboring units are immediately incor-
porated into the unit arrangement, so that any
unit s; that is processed after unit s; in the same
epoch, ie., 0 <7 < j < n -1, and its neighbor-
hood make use of the newly learned unit arrange-
ment. Similarly, at the beginning of an epoch,
unit sg and its neighborhood use the unit ar-
rangement obtained in the previous epoch from
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the learning process of unit s,_; and its neigh-
borhood.

In each epoch, the learning process of a cen-
ter unit s; and its neighborhood consists of sev-
eral steps. First, a line through the center c; of
unit s; and the image center and g test points on
this line are determined that are equally spaced
with distance Ad from each other. Out of the
(3 test points, 80% are chosen to lie between the
center ¢; and the image center. The remaining
20% are taken on the line starting at center c;
and going outwards, and spaced at the same in-
tervals Ad. :

At each test point p, unit image s;(z,y) is then
correlated with the underlying subimage t(z,y)
of the trial image, such that the center c; is
matched with test point p, and the subimage ¢
has the same size as unit image s;. The normal-
ized correlation coefficient

AY si(z, y)t(z,y) — ¥ silz,y) S tz,y)

gi0¢
(2)
is used, where A is the number of pixels in

unit s;, 0; = /A 5i(2,9)? — (T si(2,9))?, and
ot = AT Hz,y)2 - (Dt(z,y)? The test

point ppesy with the highest correlation coeffi-
cient among the 3 coefficients is determined and
its distances d(pPpest,Ck) to the centers ¢ of all
units s that are in the neighborhood of unit s;
are computed.

The position ¢ of a trial unit is shifted to-
wards Ppest Dy a fraction f(G,n) of distance

d(pbes‘w Ck )7 i'e'a

'I‘(Si, t) =

™™ = et + F(Gy ) (Poest — k), (3)
where 9
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1(Gym) = & exp(- 1) @

is the neighborhood kernel, which is a function
of the kernel-width parameter G that is updated
in each epoch by G("*%) = (1 — 4)G, where v,
0 < v < 1, is the decay factor and 7 the differ-
ence of unit indices 7z and k. The learning-rate a is
also updated in each epoch by o{"®%) = (1 —7)a.
Note that the center unit s; always moves to-
wards the best matching test point ppest by a



- fraction f(G,n) = a of the distance d(pPpest, i),
since 7 = ¢ — ¢ = 0. The units in s;’s neighbor-
hood move by smaller fractions.

Figure 2 shows the fraction f(G,7) as a func-
tion of n for a given kernel width G. It illustrates
that the fraction f(G,n) is large for a small 7,
i.e, if index k of a neighbor unit is close to 1,
and small for a large 7, i.e, for neighbors further
away. . Closer neighbors are stronger influenced by
unit s;’s move than distant neighbors. The size of
parameter G determines how fast fraction f(G,n)
falls off to zero when 7 increases.

20

Figure 2: Function f(G,7), as defined in Eq. 4,
shown as a function of the index difference n of
neighboring units, and for a neighborhood size
of p = 20 and kernel-width parameters G = 3.14
and G = 10. o

The parameters n, &, 4, 3, o, G, of the learn-
ing process are carefully chosen such that after
¢ epochs the units have converged into a final
arrangement that describes the eye in the trial
image well. Our measure of success is the qual-
ity of the eye center estimate that we can obtain
from this final arrangement. The values that we
propose for the parameters in Table 1 are based
on our experiments.

4.2 Eye Center Estimation

To estimate the eye center in the trial image, the
units are paired by indices, so that the ith unit is
paired with the unit with index (i + n/2) modn,
for 0 < i < n/2. The pairs lie approximately op-
posite to each other in the final unit arrangement.
So averaging the midpoints between the centers
of all unit pairs results in an estimate of the eye
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center in the trial image. Note that the number n
of units is large, so inconsistencies in the learned
unit arrangement due to a small number of unit
pairs do not have a notably adversary effect on
the estimate. ‘

4.3 Pupil Estimation

The pupil model obtained from the model image
is used to find the pupil position in the trial im-
age. The pupil is compared to various regions of
the trial image that are surrounded by the final
unit arrangement using the normalized correla-
tion coeflicient, as defined in Eq. (2).

Since the pupil model is taken when the sub-
ject looks straight into the camera, the pupil ap-
pears smaller in a trial image that captures the
subject looking to the left or right. The model
pupil may therefore not correlate highly with the
trial pupil. The model pupil is therefore trans-
formed into templates of various sizes that are
then correlated with the trial image [4]. The tem-
plate choice depends on the distance of the test
position to the eye center in the trial image. For
example, if the subject looks all the way to its
left, we found that the best matching pupil tem-
plate is a transformation of the pupil model that
is subsampled in its width to 2/3 of the original
width of the pupil model.

5 Experimental Results

We tested our system on a 450 MHz Pentium II
PC running Linux. Qur database contains image
sequences of 13 Asian and Caucasian, male and
female subjects. Each person was asked to look
straight into the camera so that a model image
could be taken. Then the subjects were asked to
change their gaze direction. Three different light-
ing directions were tested. The eyes and pupils
are imaged at various sizes in the trial images.
Table 1 shows the values for the learning param-
eters in our experiments, which we chose after
analyzing a number of training examples.
Figure 3 shows the model images of our 13
subjects, one trial image per subject, and the cor-



Table 1: Initial Parameter Values

Parameter Initial Value
number of units n 100
unit width/height 0.5
number of epochs ¢ 10
number of tests 8 60
neighborhood size p 10
kernel width G 10
learning rate a 1/V2
decay v 0.25

responding learned unit arrangements. The trial
images displayed are chosen to illustrate the vari-
ety of images in our database. It includes images
of left and right eyes, blinking eyes, and eyes that
are looking into various directions.

We also tested our system using a combina-
tion of a fixed model image of a particular person
and trial images of different people. Our prelim-
inary results indicate that the gaze direction can
be detected, as long as the eyes of the subject
involved look similar. So we may not need to
create a model image of each user, but can offer
a set of images from which the user can chose a
similar looking eye. This then simplifies the pro-
cess of determining ellipse parameters a and b in
the setup phase.

We found that the location of the pupil is eas-
ier to recognize for eyes with brown irises than
for eyes with blue, grey or green irises, because
the normalized correlation coefficient is invariant
to the uniform variations in shading that may ap-
pear of brown irises, but not to nonuniform scale
changes that occur in lighter irises.

Our system can be used to track the center of
an eye and the position of a pupil with respect to
this center in videos. Figure 4 shows the results of
tracking the pupil’s distance from the eye center
over time. The sequence includes a few frames
during which the subject blinked while moving
his eye.
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Figure 3: Learning results: Examples of model
and trial images and their corresponding learned
arrangement of the gray-scale units.
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Figure 4: Tracking results: For each frame in the video sequence, the pupil’s distance from the eye
center is shown. The sequence includes a blink that starts at frame 73. At frame 74, the eye is almost
closed and at frame 80, the eye is completely open again.
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6 Discussion and Future Work

The main focus of this paper was to describe our
unsupervised learning approach to the problem
of estimating the gaze direction of a person. The
strength of our algorithm is that it is informa-
tion conserving, which means it uses all the mea-
sured data that is relevant to the recognition of
the pupil’s position. If a small number of outlier
units do not match the test image, the overall
large number of units ensures that the eye center
can be estimated reliably.

Future work will focus on optimizing our sys-
tem. Our preliminary experimental results have
been promising. The system can estimate the
gaze directions of male and female, Asian and
Caucasian subjects. The accuracy has been es-
tablished by visual inspection. Additional ex-
periments to validate our success rate statisti-
cally on a larger database and analyze the trade-
off between algorithmic speed and robustness are
planned for the future.
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