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Abstract. This paper presents a shape-based curve growing model for
object recognition in the field of medical imaging. The proposed curve
growing process, modeled by a Bayesian network, is simultaneously influ-
enced by the image data and knowledge of a prior curve shape. A max-
imum a posteriori (MAP) solution is derived by an energy-minimizing
mechanism. It is implemented in an adaptive regularization framework
which models the interaction between image data and shape prior influ-
ences and reflects the related causal dependencies in the Bayesian net-
work. The method effectively alleviates over-smoothing, an effect that ex-
ists in other regularization methods. Moreover, the proposed framework
also addresses initialization and local minima problems. Robustness and
performance of the proposed method are demonstrated by segmentation
of pulmonary fissures in computed tomography (CT) images.

1 Introduction

Enormous demands for automatically recognizing complicated anatomical struc-
tures in medical images have been raised in recent years. The medical commu-
nity has seen many benefits from computer aided diagnosis (CAD) systems [5]
and computer visualizations [6]. A large body of literature on segmentation of
anatomical structures has been published [13]. Low-level image processing meth-
ods, such as thresholding or edge detection, by themselves, were often not suf-
ficient for segmenting complete geometric structures of target objects. Many
methods have attempted to introduce prior knowledge into the object recog-
nition process by a model-based mechanism. A widely known technique, the
“snake” or active contour method [7] used a deformable spline contour to cap-
ture the boundary of an object in an iterative energy minimizing process. The
assumption of a smooth object boundary was guaranteed implicitly by the ge-
ometry of the spline contour. The level set method [11] was later proposed as a
more powerful solution for handling instability and allowing changes in object
topology. However, for objects with high curvatures or large boundary disconti-
nuities, the smoothness assumption by itself is not sufficient for modeling object
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shape. Thus, some high-level prior knowledge is needed to guide the object seg-
mentation process. Statistics based methods (e.g., [4]) used training data for rec-
ognizing objects with complicated shapes. Recently several methods (e.g., [10])
have incorporated shape priors into existing segmentation methods, e.g., [7, 11],
and presented promising results. In most applications, the above methods used
closed contours to model objects. For an object modeled by an open contour, it
is more appropriate to apply Berger and Mohr’s method [1].

The main contributions of our paper are (1) a way to include a shape prior
in a curve growing method for object segmentation (2) an adaptive regulariza-
tion framework, (3) a way to address curve initialization and alleviate the local
minima problem, (4) a successful application of the proposed method to the
problem of segmenting fissures in CT. With the introduced shape prior, mean-
ingful segmentation results are produced in the presence of uncertainties, such
as ambiguous image features or high curvature variation on the object boundary.
The adaptive regularization alleviates over-smoothing, an effect encountered by
classical regularization methods. Our method also provides a solution for the
initialization problem by taking advantage of the shape prior. It also alleviates
the local minima problem effectively by a revised definition of the “image force.”
The performance of our method is evaluated in experiments on CT images for
the specific application of pulmonary fissure segmentation.

2 Method

2.1 Bayesian Formulation of Curve Growing Behavior

Bayesian networks [12] have been applied to many applications that involve a
reasoning process, as they succinctly describe causal dependencies using prob-
abilities. Suppose that an object is modeled by a piecewise spline curve C. A
random variable I, representing the observed image data, and a random vari-
able C∗, representing prior information about the object shape, are considered
as two causal predecessors of the random variable C, the curve to be estimated.
This relation can be modeled by the Bayesian network shown in Fig. 1A. The
curve is represented as a collection of curve segments C= {S1, . . ., SK , . . ., SN},
where SK represents the K-th curve segment and is also considered a random
variable. The curve C is created by adding curve segments SK one at a time. Ran-
dom variable SK is assumed to be only dependent on the most recently added
curve segment SK−1 and not on earlier segments. We call this the “Markovian-
ity assumption” [9] on subsequent curve segments. The corresponding Bayesian
network is shown in Fig. 1B. Estimating the curve C is equivalent to finding the
maximum of the joint probability P(S1, S2, ..., SN , C∗, I) defined by the Bayesian
network. By applying the Markovianity assumption, this is

P(S1, ..., SN , C∗, I) =P(C∗, I)P(S1|C∗, I)P (S2|S1, C∗, I) . . .P(SN |SN−1, C∗, I). (1)

This product includes the prior distribution P (C∗, I), which is generally assumed
to be uniform, the posterior probability P(S1|C∗, I), which models the probability
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Fig. 1. A Hierarchy of Bayesian Networks for Curve Growing

of the initial curve placement and relates to the curve initialization problem, and
the remaining posterior probabilities P(SK |SK−1, C∗, I), for K = 1, . . . N . The
maximum of the joint probability given in Eq. 1 is approximated by the product
of the maximum of P(S1|C∗, I) and each P(SK |SK−1, C∗, I), where

P(SK |SK−1, C∗, I) = P(SK |SK−1, C∗K , IK)
= P(IK |SK , SK−1)P(C∗|SK , SK−1, IK)P(SK , SK−1) /P(SK−1, C∗, IK).

(2)

Here IK is the local image region containing SK and is considered to be the
only relevant part of the image I for estimating SK (Fig. 2). Similarly, C∗K is
the part of the shape prior C∗ relevant to estimating SK . The normalizing factor
P(SK−1, C∗, IK) is considered irrelevant to SK and omitted in its estimation.
The corresponding Bayesian network is shown in Fig. 1C.

2.2 Energy Function of Curve Growing Model

The conditional probability P(IK |SK , SK−1) in Eq. 2 is defined as:

P(IK |SK , SK−1) ∝ exp(−|Eimg(SK)− E min
img | ), (3)

where Eimg(SK) = −∑
i |∇I(V i

K)| is the associated image energy of curve seg-
ment SK , ∇I defines the image force, in many applications, the intensity gra-
dient, V i

K represents the i-th spline point in the segment SK , and E min
img is a

lower bound on the values of Eimg that can occur in an image. In contrast to
previous methods [7, 16], the image energy is evaluated on the curve segment
instead of a singular spline point, which reduces the possibility that the curve
growing process is trapped in off-curve local image energy minima.

In Eq. 2, the probability P(C∗K |SK , SK−1, IK) is used for modeling the shape
similarity between the current estimated curve C and the given shape prior C∗. It
is a function of SK , SK−1 and IK , and can be defined by a Gaussian distribution:

P(C∗K |SK , SK−1, IK) ∝ exp(−α(IK)fsim(SK , SK−1, C
∗
K))

= exp(−|µ(SK , S∗K)− µ(SK−1, S
∗
K−1)|/(2σ2)) with (4)

µ(SK , S∗K) = 1
n

∑
i|V i

K − V i∗
K |, S∗K = {V i∗

K |V i
K ∈ SK}, and C∗K = S∗K ∪ S∗K−1,
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where fsim(SK , SK−1, C
∗
K) is a function measuring the similarity between (SK ,

SK−1) and the shape prior C∗K , (V i
K , V i∗

K ) is a pair of corresponding points on C
and C∗ (correspondence is established by a closest point search [2]), µ(SK , S∗K) is
the mean difference vector between two corresponding curve segments, n is the
number of points included in SK , and α(IK) is a function of IK used to control
the magnitude of the Gaussian deviation (α(IK) ∝ 2σ2). Its main role will be
discussed in next section.

The smoothness constraint on the curve is modeled by:

P(SK , SK−1) ∝ exp(−|fcurv(SK , SK−1)|), (5)

where fcurv(SK , SK−1) is a function measuring the curvature between SK−1 and
SK , e.g. as in Ref. [16]. By incorporating the Eqs. 3, 4, and 5 into Eq. 2 and
taking the logarithm, the curve energy function

E(C) = Eshape(C) + Ecurv(C) + Eimg(C) ∝
N∑

K=1

(αK(IK)fsim(SK , SK−1, C
∗
K) + βKfcurv(SK , SK−1) + γKEimg(SK))

(6)

is obtained, where αK , βK and γK are usually regarded as “regularization fac-
tors.” Constraints on their ratios are relevant to the variances of the underlying
Gaussian distributions. Each of Eshape, Ecurv and Eimg is normalized as sug-
gested by Ref. [16]. The energy minimum of the function in Eq. 6 is considered
an approximate MAP solution of the curve segmentation problem.

2.3 Causal Confidence Approximation and Adaptive Regularization

Ill-suited values for αK , βK and γK in Eq. 6 can cause the curve C to be-
come overly smoothed due the shape prior or to include image clutter. Reg-
ularization factors can be estimated by different approaches, for instance, the
cross-validation method [9], which, however, require a large amount of computa-
tion. To obtain a well-behaved regularizer, we propose an adaptive regularization
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Fig. 2. Curve Growing with Adaptive Shape Influence
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framework. A revised factor α(IK) is introduced to model the dependency be-
tween IK and the estimated SK , which influences the belief represented by the
distribution P(C∗|SK , SK−1, IK). Such an adaptive behavior is directly related to
the observed uncertainties of the image features, for which a common definition
is the entropy [14], that is,

H(IK) = −F
∑n

i=1
P(IK |Si

K , SK−1) log2 P(IK |Si
K , SK−1), (7)

where Si
K is the i-th sample of SK in IK , as illustrated in Fig. 2 and F is

a normalizing factor. The entropy H(IK) can be interpreted as the amount of
information contained in image region Ik. Based on H(IK), the parameter α(IK)
is then defined as

α(IK) = max( ε, (H(IK)− λ)/(1− λ)), (8)

where λ is the threshold that corresponds to a desirable feature in IK and can be
learned offline from a set of training examples and where ε defines the minimum
value of α(IK). The values λ = 0.5 and ε = 0.1 were chosen in the current imple-
mentation. Fig. 3(a)– 3(e) illustrates how the value of α(I) changes with regard
to the image features along the curve. Fig. 3(f)– 3(i) shows a second example,
where the curve segmented by the adaptive regularizer matches the ground-truth
curve approximately, but the curve segmented by the static regularizer does not.
In this case, the adaptive regularizer successfully weakened the influence of the
prior shape, while in other cases, when the image region does not contain salient
features, it strengthens it.

2.4 Curve Initialization

The curve growing process starts after a segment belonging to the curve is
selected. The probability formulation P(S1|C∗, I) suggests that both the shape
prior C∗ and the current image data I should be considered in this selection. In
our work, the positions of salient image features, for example, local minima of
the brightness gradient, are collected to form a set of candidate segments. Then,
a confidence weight is assigned to each candidate segment. As an illustration, the
dashed line Li in Fig. 4(a) denotes the prior shape registered to the current seg-
ment Si. Its confidence weight is calculated by accumulating the feature values
along Li in the image. The segment with the highest confidence weight among
all segments is chosen as the initial curve segment. An example of the selection
of an initial curve segment on CT is shown in Fig. 4(b). Our method provided
more effective start conditions for the curve growing process than Berger and
Mohr’s method [1] for most of our data.

3 Results for Pulmonary Fissure Segmentation

A pulmonary fissure is a boundary between lung lobes which are distinct parts
of the lung [8, 15, 17]. Its segmentation is of clinical interest because the fissure
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Fig. 3. Image features, entropy and adaptive regularization: Example 1: (a) Region of
interest in a CT image. (b) Region with curve. (c) Feature map of region. (d) Value
of entropy H along the curve. (e) Corresponding value of α. The two highest entropy
values and the corresponding locations in the feature map are circled. Example 2: (f)
Shape prior. (g) Curve obtained with static regularization, α = 1.2 and γ = 1.4. (h)
Curve obtained with adaptive regularization. (i) Ground truth curve.

can be used as cue to identify pulmonary nodules. On CT, a fissure often looks
like a ribbon structure with variable width due to respiratory motion and the
partial volume effect. In some slices, the fissure may appear as an incomplete
curve composed of discontinuous segments. Tissue surrounding the fissure, e.g.,
adjacent vessels or nodules, and clutter due to noise in the imaging process can
result in off-curve local minima of the image energy. Traditional active contour
methods [7, 1] may not be able to overcome the above difficulties.

The proposed method has been tested to segment pulmonary fissures on 11
thin-section CT scans of 4 patients. On each slice, a morphological operation
is applied to generate a feature map of the local region of interest containing
the fissure. The prior shape C∗ is estimated from fissures previously segmented
in other images of the same scan. For each CT scan, the fissure on a single
selected slice is segmented semi-automatically; the fissures on the remaining
slices are then segmented fully automatically. The average time for segmenting
fissures in one CT scan is less than 5 minutes on a PIII 1.2 GHz PC. Among
509 slices sampled from a total 1432 slices, the proposed method successfully
segmented the fissures on 460 slices. The overall success rate of the method is
460/509=90.4%. The method then interpolated the segmentation of fissues on
the remaining slices. Partial results are shown in Figs. 5 and 6 for illustration
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Fig. 4. Confidence weight of candidate segments: (a) Illustration of the confidence
weight calculation. (b) A CT example with a local region of interest (top), candidate
segments of collected features (middle), and the selected initial curve segment (bottom).

and comparison purposes. Berger and Mohr’s method [1] produced comparable
results in the few cases where image features are sufficiently salient. In many
other cases, where image features are ambiguous, our method produced more
meaningful results. Finally, the lung lobes were fully segmented by combining
the segmented fissures with segmented lung contours [3], as visualized in Fig. 7.

4 Conclusion and Future Work

We described a shape-based curve-growing method and its application to pul-
monary fissure segmentation. Selecting the location of the next curve segment
in each iteration of the curve growning process effectively is a critical part of
our solution. It overcomes some of the difficulties encountered by other meth-
ods [7, 1]. Moreover, the idea of adaptive regularization may be generalized and
applied to many existing model-based energy-minimizing mechanisms. This will
be investigated in future experiments involving different applications and higher
dimensional spaces.

C*

(a) (b) (c) (d) (e)

Fig. 5. A complete curve growing process:(a) the shape prior obtained from previous
segmentations; (b) the found initial curve segment; from (c) to (e), the intermediate
results after 4, 8, and 18 iterations, respectively.
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