3.2 Binary Search Trees

- BSTs
- ordered operations
- deletion
BSTs
- ordered operations
- deletion
Binary search trees

Definition. A BST is a **binary tree in symmetric order**.

A binary tree is either:
- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node’s key is:
- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.
BST representation in Java

Java definition. A BST is a reference to a root `Node`.

A `Node` is comprised of four fields:
- A `Key` and a `Value`.
- A reference to the left and right subtree.

```java
private class Node {
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val) {
        this.key = key;
        this.val = val;
    }
}
```

Key and `Value` are generic types; `Key` is `Comparable`
public class BST<Key extends Comparable<Key>, Value> {
 private Node root;

 private class Node
 { /* see previous slide */ }

 public void put(Key key, Value val)
 { /* see next slides */ }

 public Value get(Key key)
 { /* see next slides */ }

 public void delete(Key key)
 { /* see next slides */ }

 public Iterable<Key> iterator()
 { /* see next slides */ }
}
BST search and insert demo
Get. Return value corresponding to given key, or `null` if no such key.

BST search

- **Successful search for R**
 - R is less than S so look to the left
 - Black nodes could match the search key
 - R is greater than E so look to the right
 - Found R (search hit) so return value

- **Unsuccessful search for T**
 - T is greater than S so look to the right
 - T is less than X so look to the left
 - Link is null so T is not in tree (search miss)
BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```java
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
       int cmp = key.compareTo(x.key);
       if      (cmp  < 0) x = x.left;
       else if (cmp  > 0) x = x.right;
       else if (cmp == 0) return x.val;
    }
    return null;
}
```

Cost. Number of compares is equal to 1 + depth of node.
BST insert

Put. Associate value with key.

Search for key, then two cases:
- Key in tree \Rightarrow reset value.
- Key not in tree \Rightarrow add new node.
BST insert: Java implementation

Put. Associate value with key.

```java
public void put(Key key, Value val) {
    root = put(root, key, val);
}

private Node put(Node x, Key key, Value val) {
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if      (cmp  < 0)
        x.left = put(x.left, key, val);
    else if (cmp  > 0)
        x.right = put(x.right, key, val);
    else
        if (cmp == 0)
            x.val = val;
    return x;
}
```

Cost. Number of compares is equal to 1 + depth of node.
BST trace: standard indexing client

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>H</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>8</td>
</tr>
<tr>
<td>M</td>
<td>9</td>
</tr>
<tr>
<td>P</td>
<td>10</td>
</tr>
<tr>
<td>L</td>
<td>11</td>
</tr>
<tr>
<td>E</td>
<td>12</td>
</tr>
</tbody>
</table>

- **Red nodes** are new.
- **Black nodes** are accessed in search.
- **Gray nodes** are untouched.
- **Changed value**
Tree shape

- Many BSTs correspond to the same set of keys.
- Number of compares for search/insert is equal to 1 + depth of node.

Remark. Tree shape depends on order of insertion.
Observation. If keys inserted in random order, tree stays relatively flat.
Ex. Insert keys in random order.
Correspondence between BSTs and quicksort partitioning

Remark. Correspondence is 1-1 if array has no duplicate keys.
BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of compares for a search/insert is $\sim 2 \ln N$.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order, expected height of tree is $\sim 4.311 \ln N$.

But... Worst-case height is N.

(exponentially small chance when keys are inserted in random order)
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>search hit</td>
<td>insert</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
<td>N</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>lg N</td>
<td>N/2</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
<td>1.39 lg N</td>
</tr>
</tbody>
</table>
BSTs
ordered operations
deletion
Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?
Floor and ceiling

Floor. Largest key ≤ to a given key.

Ceiling. Smallest key ≥ to a given key.

Q. How to find the floor / ceiling?
Computing the floor

Case 1. \([k \text{ equals the key at root}]\)
The floor of \(k\) is \(k\).

Case 2. \([k \text{ is less than the key at root}]\)
The floor of \(k\) is in the left subtree.

Case 3. \([k \text{ is greater than the key at root}]\)
The floor of \(k\) is in the right subtree
(if there is any key \(\leq k\) in right subtree);
otherwise it is the key in the root.
Computing the floor

```java
public Key floor(Key key) {
    Node x = floor(root, key);
    if (x == null) return null;
    return x.key;
}

private Node floor(Node x, Key key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if (cmp == 0) return x;
    if (cmp < 0)  return floor(x.left, key);
    Node t = floor(x.right, key);
    if (t != null) return t;
    else           return x;
}
```

finding floor(G)

- **G is less than S** so floor(G) **must be on the left**
- **G is greater than E** so floor(G) **could be on the right**
- floor(G) in left subtree is null

result
Subtree counts

In each node, we store the number of nodes in the subtree rooted at that node. To implement \texttt{size()}, return the count at the root.

\begin{center}
\includegraphics[width=\textwidth]{tree.png}
\end{center}

\textbf{Remark.} This facilitates efficient implementation of \texttt{rank()} and \texttt{select()}.
BST implementation: subtree counts

```
private class Node
{
    private Key key;
    private Value val;
    private Node left;
    private Node right;
    private int N;
}

public int size()
{
    return size(root);
}

private int size(Node x)
{
    if (x == null) return 0;
    return x.N;
}

private Node put(Node x, Key key, Value val)
{
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if      (cmp  < 0) x.left  = put(x.left,  key, val);
    else if (cmp  > 0) x.right = put(x.right, key, val);
    else
      if (cmp == 0)
        x.val = val;
    x.N = 1 + size(x.left) + size(x.right);
    return x;
}
```
Rank

Rank. How many keys < k?

Easy recursive algorithm (4 cases!)

```
public int rank(Key key)
{  return rank(key, root);  }

private int rank(Key key, Node x)
{
   if (x == null) return 0;
   int cmp = key.compareTo(x.key);
   if      (cmp  < 0) return rank(key, x.left);
   else if (cmp  > 0) return 1 + size(x.left) + rank(key, x.right);
   else if (cmp == 0) return size(x.left);
}
```
Selection

Select. Key of given rank.

```java
public Key select(int k) {
    if (k < 0) return null;
    if (k >= size()) return null;
    Node x = select(root, k);
    return x.key;
}

private Node select(Node x, int k) {
    if (x == null) return null;
    int t = size(x.left);
    if (t > k)
        return select(x.left, k);
    else if (t < k)
        return select(x.right, k-t-1);
    else if (t == k)
        return x;
    return x;
}
```
Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

```java
public Iterable<Key> keys() {
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}

private void inorder(Node x, Queue<Key> q) {
    if (x == null) return;
    inorder(x.left, q);
    q.enqueue(x.key);
    inorder(x.right, q);
}
```

Property. Inorder traversal of a BST yields keys in ascending order.
Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.
BST: ordered symbol table operations summary

<table>
<thead>
<tr>
<th>Operation</th>
<th>Sequential Search</th>
<th>Binary Search</th>
<th>BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td>N</td>
<td>$\lg N$</td>
<td>h</td>
</tr>
<tr>
<td>insert</td>
<td>1</td>
<td>N</td>
<td>h</td>
</tr>
<tr>
<td>min / max</td>
<td>N</td>
<td>1</td>
<td>h</td>
</tr>
<tr>
<td>floor / ceiling</td>
<td>N</td>
<td>$\lg N$</td>
<td>h</td>
</tr>
<tr>
<td>rank</td>
<td>N</td>
<td>$\lg N$</td>
<td>h</td>
</tr>
<tr>
<td>select</td>
<td>N</td>
<td>1</td>
<td>h</td>
</tr>
<tr>
<td>ordered iteration</td>
<td>$N \log N$</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

$h = \text{height of BST (proportional to } \log N \text{ if keys inserted in random order)}$

worst-case running time of ordered symbol table operations
BSTs
ordered operations
deletion
ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Ordered Iteration?</th>
<th>Operations on Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential search (linked list)</td>
<td>N</td>
<td>N/2</td>
<td>no</td>
<td>equals()</td>
</tr>
<tr>
<td>Binary search (ordered array)</td>
<td>lg N</td>
<td>lg N/2</td>
<td>yes</td>
<td>compareTo()</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>1.39 lg N</td>
<td>yes</td>
<td>compareTo()</td>
</tr>
</tbody>
</table>

Next. Deletion in BSTs.
To remove a node with a given key:

- Set its value to `null`.
- Leave key in tree to guide searches (but don't consider it equal to search key).

Cost. $\sim 2 \ln N'$ per insert, search, and delete (if keys in random order), where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.
Deleting the minimum

To delete the minimum key:
- Go left until finding a node with a null left link.
- Replace that node by its right link.
- Update subtree counts.

```java
public void deleteMin()
{  root = deleteMin(root);  }

private Node deleteMin(Node x)
{
    if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.N = 1 + size(x.left) + size(x.right);
    return x;
}
```
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.
To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

- Find successor x of t.
- Delete the minimum in t's right subtree.
- Put x in t's spot.
public void delete(Key key) {
 root = delete(root, key);
}

private Node delete(Node x, Key key) {
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = delete(x.left, key);
 else if (cmp > 0) x.right = delete(x.right, key);
 else {
 if (x.right == null) return x.left;

 Node t = x;
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.N = size(x.left) + size(x.right) + 1;
 return x;
}
Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) \Rightarrow \sqrt{N} per op.

Longstanding open problem. Simple and efficient delete for BSTs.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered iteration?</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (linked list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
</tbody>
</table>

Other operations also become √N if deletions allowed.

Next lecture. **Guarantee** logarithmic performance for all operations.