4.1 Undirected Graphs

- graph API
- depth-first search
- breadth-first search
- connected components
- challenges
Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.
Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics
Map of science clickstreams

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803
Kevin's facebook friends (Princeton network)
10 million Facebook friends

"Visualizing Friendships" by Paul Butler
One week of Enron emails

The analysis detected an anomaly: a new e-mail address for this person, who had been "philip.allen" for 131 previous weeks.

Company leaders e-mail less frequently, leaving some communication to subordinates.

Finding Patterns In Corporate Chatter
The evolution of FCC lobbying coalitions

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010
The Spread of Obesity in a Large Social Network Over 32 Years

Educational level; the ego's obesity status at the previous time point (t); and most pertinent, the alter's obesity status at times t and $t+1$.

We used generalized estimating equations to account for multiple observations of the same ego across examinations and across ego–alter pairs. We assumed an independent working correlation structure for the clusters. The use of a time-lagged dependent variable (lagged to the previous examination) eliminated serial correlation in the errors (evaluated with a Lagrange multiplier test) and also substantially controlled for the ego's genetic endowment and any intrinsic, stable predisposition to obesity. The use of a lagged independent variable for an alter's weight status controlled for homophily.

The key variable of interest was an alter's obesity at time $t+1$. A significant coefficient for this variable would suggest either that an alter's weight affected an ego's weight or that an ego and an alter experienced contemporaneous events affecting both their weights. We estimated these models in varied ego–alter pair types.

To evaluate the possibility that omitted variables or unobserved events might explain the associations, we examined how the type or direction of the social relationship between the ego and the alter affected the association between the ego's obesity and the alter's obesity. For example, if unobserved factors drove the association between the ego's obesity and the alter's obesity, then the directionality of friendship should not have been relevant.

We evaluated the role of a possible spread in smoking-cessation behavior as a contributor to the spread of obesity by adding variables for the smoking status of egos and alters at times t and $t+1$ to the foregoing models. We also analyzed the role of geographic distance between egos and alters by adding such a variable.

We calculated 95% confidence intervals by simulating the first difference in the alter's contemporaneous weight status.

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle is proportional to the person's body-mass index. The interior color of the circles indicates the person's obesity status: yellow denotes an obese person (body-mass index, ≥ 30) and green denotes a nonobese person. The colors of the ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange denotes a familial tie.
Graph applications

<table>
<thead>
<tr>
<th>graph</th>
<th>vertex</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>telephone, computer</td>
<td>fiber optic cable</td>
</tr>
<tr>
<td>circuit</td>
<td>gate, register, processor</td>
<td>wire</td>
</tr>
<tr>
<td>mechanical</td>
<td>joint</td>
<td>rod, beam, spring</td>
</tr>
<tr>
<td>financial</td>
<td>stock, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>street intersection, airport</td>
<td>highway, airway route</td>
</tr>
<tr>
<td>internet</td>
<td>class C network</td>
<td>connection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>social relationship</td>
<td>person, actor</td>
<td>friendship, movie cast</td>
</tr>
<tr>
<td>neural network</td>
<td>neuron</td>
<td>synapse</td>
</tr>
<tr>
<td>protein network</td>
<td>protein</td>
<td>protein-protein interaction</td>
</tr>
<tr>
<td>chemical compound</td>
<td>molecule</td>
<td>bond</td>
</tr>
</tbody>
</table>
Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.
Some graph-processing problems

Path. Is there a path between \(s \) and \(t \)?

Shortest path. What is the shortest path between \(s \) and \(t \)?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?

Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?

MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?

Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?
† graph API
† depth-first search
† breadth-first search
† connected components
† challenges
Graph representation

Graph drawing. Provides intuition about the structure of the graph.
Caveat. Intuition can be misleading.
Graph representation

Vertex representation.
- This lecture: use integers between 0 and $V - 1$.
- Applications: convert between names and integers with symbol table.

Anomalies.
- self-loop
- parallel edges
- symbol table
Graph API

```java
public class Graph {
    Graph(int V) {
        create an empty graph with V vertices
    }
    Graph(In in) {
        create a graph from input stream
    }
    void addEdge(int v, int w) {
        add an edge v-w
    }
    Iterable<Integer> adj(int v) {
        vertices adjacent to v
    }
    int V() {
        number of vertices
    }
    int E() {
        number of edges
    }
    String toString() {
        string representation
    }
}

In in = new In(args[0]);
Graph G = new Graph(in);
for (int v = 0; v < G.V(); v++) {
    for (int w : G.adj(v)) {
        StdOut.println(v + "-" + w);
    }
}
```
Graph API: sample client

Graph input format.

```
% java Test tinyG.txt
0-6
0-2
0-1
0-5
1-0
2-0
3-5
3-4
...
12-11
12-9
```

```
In in = new In(args[0]);
Graph G = new Graph(in);
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);
```
Typical graph-processing code

compute the degree of v

```java
public static int degree(Graph G, int v) {
    int degree = 0;
    for (int w : G.adj(v)) degree++;
    return degree;
}
```

compute maximum degree

```java
public static int maxDegree(Graph G) {
    int max = 0;
    for (int v = 0; v < G.V(); v++)
        if (degree(G, v) > max)
            max = degree(G, v);
    return max;
}
```

compute average degree

```java
public static int avgDegree(Graph G) {
    return 2 * G.E() / G.V();
}
```

count self-loops

```java
public static int numberOfSelfLoops(Graph G) {
    int count = 0;
    for (int v = 0; v < G.V(); v++)
        for (int w : G.adj(v))
            if (v == w) count++;
    return count/2;
}
```
Maintain a list of the edges (linked list or array).

Set-of-edges graph representation
Maintain a two-dimensional V-by-V boolean array;
for each edge v–w in graph: $\text{adj}[v][w] = \text{adj}[w][v] = \text{true}$.
Adjacency-list graph representation

Maintain vertex-indexed array of lists.
Adjacency-list graph representation: Java implementation

```java
public class Graph {
    private final int V;
    private Bag<Integer>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

- Adjacency lists (using `Bag` data type)
- Create empty graph with V vertices
- Add edge v-w (parallel edges allowed)
- Iterator for vertices adjacent to v
In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be “sparse.”

Two graphs ($V = 50$)

- **Sparse** ($E = 200$)
- **Dense** ($E = 1000$)
Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be “sparse.”

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>add edge</th>
<th>edge between v and w?</th>
<th>iterate over vertices adjacent to v?</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>E</td>
<td>1</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>V^2</td>
<td>1 $*$</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>$E + V$</td>
<td>1</td>
<td>degree(v)</td>
<td>degree(v)</td>
</tr>
</tbody>
</table>
• graph API
• depth-first search
• breadth-first search
• connected components
• challenges
Maze exploration

Maze graphs.

- Vertex = intersection.
- Edge = passage.

Goal. Explore every intersection in the maze.
Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.
Trémaux maze exploration

Algorithm.
• Unroll a ball of string behind you.
• Mark each visited intersection and each visited passage.
• Retrace steps when no unvisited options.

First use? Theseus entered labyrinth to kill the monstrous Minotaur; Ariadne held ball of string.

Claude Shannon (with Theseus mouse)
Maze exploration
Maze exploration
Depth-first search

Goal. Systematically search through a graph.

DFS (to visit a vertex v)

- Mark v as visited.
- Recursively visit all unmarked vertices w adjacent to v.

Typical applications. [ahead]

- Find all vertices connected to a given source vertex.
- Find a path between two vertices.
Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

```java
public class Search {
    Search(Graph G, int s) { find vertices connected to s
        boolean marked(int v) { is vertex v connected to s?
        int count() { how many vertices connected to s?
    }
```

Typical client program.

- Create a Graph.
- Pass the Graph to a graph-processing routine, e.g., Search.
- Query the graph-processing routine for information.

```java
Search search = new Search(G, s);
for (int v = 0; v < G.V(); v++)
    if (search.marked(v))
        StdOut.println(v);
```

print all vertices connected to s
Goal. Find all vertices connected to \(s \).

Idea. Mimic maze exploration.

Algorithm.
- Use recursion (ball of string).
- Mark each visited vertex.
- Return (retrace steps) when no unvisited options.

Data structure.
- `boolean[] marked` to mark visited vertices.

Depth-first search (warmup)

```
adj[]
0  2 1 5
1  0 2
2  0 1 3 4
3  3 5 4 2
4  3 2
5  5 3 0
```

```
marked[]
0  T
1  T
2  T
3  T
4  T
5  T
```

Depth-first search

```
dfs(0)
```

```
dfs(2)
check 0
```

```
dfs(1)
check 0
check 2
1 done
```

```
dfs(3)
```

```
dfs(5)
check 3
check 0
5 done
```

```
dfs(4)
check 3
check 2
4 done
```

```
dfs(1)
check 0
check 2
1 done
```

```
dfs(3)
```

```
dfs(5)
check 3
check 0
5 done
```

```
dfs(4)
check 3
check 2
4 done
```

```
dfs(1)
check 0
check 2
1 done
```

```
dfs(3)
```

```
dfs(5)
check 3
check 0
5 done
```

```
dfs(4)
check 3
check 2
4 done
```

```
dfs(1)
check 0
check 2
1 done
```

```
dfs(3)
```

```
dfs(5)
check 3
check 0
5 done
```

```
dfs(4)
check 3
check 2
4 done
```

```
dfs(1)
check 0
check 2
1 done
```

```
dfs(3)
```

```
dfs(5)
check 3
check 0
5 done
```

```
dfs(4)
check 3
check 2
4 done
```
Depth-first search (warmup)

```java
public class DepthFirstSearch {
    private boolean[] marked;

    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G, w);
    }

    public boolean marked(int v) {
        return marked[v];
    }
}
```

- `marked[v] = true` if `v` connected to `s`
- Constructor marks vertices connected to `s`
- Recursive DFS does the work
- Client can ask whether vertex `v` is connected to `s`
Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to the sum of their degrees.

Pf.
- **Correctness:**
 - if w marked, then w connected to s (why?)
 - if w connected to s, then w marked
 (if w unmarked, then consider last edge on a path from s to w that goes from a marked vertex to an unmarked one)
- **Running time:** each vertex connected to s is visited once.
Depth-first search application: preparing for a date

[Image of a comic strip showing a person preparing for a date. The dialogue is as follows:

PREPARING FOR A DATE:
WHAT SITUATIONS MIGHT I PREPARE FOR?
1) MEDICAL EMERGENCY
2) DANCING
3) FOOD TOO EXPENSIVE

OKAY, WHAT KINDS OF EMERGENCIES CAN HAPPEN?
1) SNAKEBITE
2) LIGHTNING STRIKE
3) FALL FROM CHAIR

HMM. WHICH SNAKES ARE DANGEROUS? LET'S SEE...
1) A) CORN SNAKE
2) GARTER SNAKE
3) COFFERHEAD

THE RESEARCH COMPARING SNAKE VENOMS IS SCATTERED AND INCONSISTENT. I'LL MAKE A SPREADSHEET TO ORGANIZE IT.

I'M HERE TO PICK YOU UP. YOU'RE NOT DRESSED?

BY UD, THE INLAND TAIPAN HAS THE DEADIEST VENOM OF ANY SNAKE.

I REALLY NEED TO STOP USING DEPTH-FIRST SEARCHES.

http://xkcd.com/761/}
Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).

Assumptions. Picture has millions to billions of pixels.
Depth-first search application: flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.
- Vertex: pixel.
- Edge: between two adjacent red pixels.
- Blob: all pixels connected to given pixel.
Depth-first search application: flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.
- Vertex: pixel.
- Edge: between two adjacent red pixels.
- Blob: all pixels connected to given pixel.
Goal. Does there exist a path from s to t?
Paths in graphs: union-find vs. DFS

Goal. Does there *exist* a path from s to t?

<table>
<thead>
<tr>
<th>method</th>
<th>preprocessing time</th>
<th>query time</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>union-find</td>
<td>$V + E \log^* V$</td>
<td>$\log^* V$</td>
<td>V</td>
</tr>
<tr>
<td>DFS</td>
<td>$E + V$</td>
<td>1</td>
<td>$E + V$</td>
</tr>
</tbody>
</table>

Union-find. Can intermix connected queries and edge insertions.

Depth-first search. Constant time per query.
Goal. Does there exist a path from s to t? If yes, find any such path.
Pathfinding in graphs

Goal. Does there exist a path from s to t? If yes, **find** any such path.

```java
public class Paths

Paths(Graph G, int s) // find paths in G from source s
boolean hasPathTo(int v) // is there a path from s to v?
Iterable<Integer> pathTo(int v) // path from s to v; null if no such path
```

Union-find. Not much help.

Depth-first search. After linear-time preprocessing, can recover path itself in time proportional to its length.
Depth-first search (pathfinding)

Goal. Find paths to all vertices connected to a given source s.

Idea. Mimic maze exploration.

Algorithm.
- Use recursion (ball of string).
- Mark each visited vertex by keeping track of edge taken to visit it.
- Return (retrace steps) when no unvisited options.

Data structures.
- `boolean[] marked` to mark visited vertices.
- `int[] edgeTo` to keep tree of paths.
- `(edgeTo[w] == v)` means that edge v–w was taken to visit w the first time.
public class DepthFirstPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private final int s;
 public DepthFirstPaths(Graph G, int s)
 {
 marked = new boolean[G.V()];
 edgeTo = new int[G.V()];
 this.s = s;
 dfs(G, s);
 }
 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w])
 {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 public boolean hasPathTo(int v)
 public Iterable<Integer> pathTo(int v)
}
Depth-first search (pathfinding trace)

tinyCG.txt

V
6
8
0 5
2 4
2 3
1 2
0 1
3 4
3 5
0 2

adjacency lists

adj
0
1
2
3
4
5

standard drawing

drawing with both edges

dfs(0)
dfs(2)
dfs(1)
dfs(3)
dfs(5)
dfs(4)

edgeTo[]

check 0
check 2
check 3
check 0
check 3
check 3
check 0
check 2
check 1
check 5
check 2
check 1
check 5

V
E

2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0
3 0

A connected undirected graph

V
1
2
3
4
5
6

E
8
0 5
2 4
2 3
1 2
0 1
3 4
3 5
0 2

standard drawing

drawing with both edges

dfs(0)
dfs(2)
dfs(1)
dfs(3)
dfs(5)
dfs(4)

edgeTo[]

check 0
check 2
done
check 3
done
check 0
check 3
done
check 4
done
check 2
done
check 1
check 5
check 2
check 1
check 5

V
E

2 1 5
0 2
0 1 3 4
5 4 2
3 2
3 0
3 0

A connected undirected graph
edgeTo[] is a parent-link representation of a tree rooted at s.

```java
public boolean hasPathTo(int v) {
    return marked[v];
}

public Iterable<Integer> pathTo(int v) {
    if (!hasPathTo(v)) return null;
    Stack<Integer> path = new Stack<Integer>();
    for (int x = v; x != s; x = edgeTo[x])
        path.push(x);
    path.push(s);
    return path;
}
```
Depth-first search summary

Enables direct solution of simple graph problems.
✓ • Does there exists a path between s and t?
✓ • Find path between s and t.
 • Connected components (stay tuned).
 • Euler tour (see book).
 • Cycle detection (see book).
 • Bipartiteness checking (see book).

Basis for solving more difficult graph problems.
• Biconnected components (beyond scope).
• Planarity testing (beyond scope).
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges
Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to t that uses fewest number of edges.

BFS (from source vertex s)

- Put s onto a FIFO queue, and mark s as visited.
- Repeat until the queue is empty:
 - remove the least recently added vertex v
 - add each of v's unvisited neighbors to the queue, and mark them as visited.

Intuition. BFS examines vertices in increasing distance from s.
Breadth-first search (pathfinding)

private void bfs(Graph G, int s)
{
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 marked[s] = true;
 while (!q.isEmpty())
 {
 int v = q.dequeue();
 for (int w : G.adj(v))
 {
 if (!marked[w])
 {
 q.enqueue(w);
 marked[w] = true;
 edgeTo[w] = v;
 }
 }
 }
}
Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from \(s\) in a connected graph in time proportional to \(E + V\).

Pf.
- **Correctness:** queue always consists of zero or more vertices of distance \(k\) from \(s\), followed by zero or more vertices of distance \(k + 1\).

- **Running time:** each vertex connected to \(s\) is visited once.
Breadth-first search application: routing

Fewest number of hops in a communication network.

ARPANET, July 1977
Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

http://oracleofbacon.org

Endless Games board game

SixDegrees iPhone App
Kevin Bacon graph

- Include a vertex for each performer and for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from \(s = \text{Kevin Bacon} \).
Breadth-first search application: Erdös numbers

hand-drawing of part of the Erdös graph by Ron Graham
• graph API
• depth-first search
• breadth-first search
• connected components
• challenges
Connectivity queries

Def. Vertices v and w are **connected** if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected to w? in constant time.

```java
public class CC

    CC(Graph G)  // find connected components in G

    boolean connected(int v, int w)  // are v and w connected?

    int count()  // number of connected components

    int id(int v)  // component identifier for v
```

Union-Find? Not quite.

Depth-first search. Yes. [next few slides]
The relation "is connected to" is an equivalence relation:

- Reflexive: \(v \) is connected to \(v \).
- Symmetric: if \(v \) is connected to \(w \), then \(w \) is connected to \(v \).
- Transitive: if \(v \) connected to \(w \) and \(w \) connected to \(x \), then \(v \) connected to \(x \).

Def. A connected component is a maximal set of connected vertices.

Remark. Given connected components, can answer queries in constant time.
Def. A connected component is a maximal set of connected vertices.

Connected components

63 connected components
Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all vertices discovered as part of the same component.
Finding connected components with DFS

```java
public class CC {
    private boolean marked[]; // id[v] = id of component containing v
    private int[] id; // number of components
    private int count; // run DFS from one vertex in each component

    public CC(Graph G) {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        for (int v = 0; v < G.V(); v++) {
            if (!marked[v]) {
                dfs(G, v);
                count++;
            }
        }
    }

    public int count() {
        return count;
    }

    public int id(int v) {
        return id[v]; // see next slide
    }

    private void dfs(Graph G, int v) {
        // ...}
    }
}
```
Finding connected components with DFS (continued)

```java
public int count()
{  return count;  }

public int id(int v)
{  return id[v];  }

private void dfs(Graph G, int v)
{
    marked[v] = true;
    id[v] = count;
    for (int w : G.adj(v))
       if (!marked[w])
         dfs(G, w);
}
```

- **number of components**
- **id of component containing v**
- **all vertices discovered in same call of dfs have same id**
Finding connected components with DFS (trace)

Trace of depth-first search to find connected components

```
<table>
<thead>
<tr>
<th>count</th>
<th>marked[]</th>
<th>id[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12</td>
<td></td>
</tr>
</tbody>
</table>
```

dfs(0) 0 T 0

dfs(6) 0 T T 0 0

cHECK 0

dfs(4) 0 T T T T 0 0 0 0

dfs(5) 0 T T T T 0 0 0 0

dfs(3) 0 T T T T T 0 0 0 0

cHECK 5

cHECK 4

3 done

cHECK 4

cHECK 0

5 done

cHECK 6

cHECK 3
4 done

6 done

dfs(2) 0 T T T T T T T 0 0 0 0 0 0

cHECK 0

2 done

dfs(1) 0 T T T T T T T 0 0 0 0 0 0

cHECK 0

1 done

cHECK 5

0 done

```
Finding connected components with DFS (trace)

Trace of depth-first search to find connected components

tinyG.txt

Input format for Graph constructor (two examples)
Connected components application: study spread of STDs

Relationship graph at "Jefferson High"

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
• Vertex: pixel.
• Edge: between two adjacent pixels with grayscale value ≥ 70.
• Blob: connected component of 20-30 pixels.

Particle tracking. Track moving particles over time.

black = 0
white = 255
› graph API
› depth-first search
› breadth-first search
› connected components
› challenges
Graph-processing challenge 1

Problem. Is a graph bipartite?

How difficult?
• Any COS 126 student could do it.
• Need to be a typical diligent COS 226 student.
• Hire an expert.
• Intractable.
• No one knows.
• Impossible.
Bipartiteness application

Relationship graph at "Jefferson High"

Graph-processing challenge 2

Problem. Find a cycle.

How difficult?
• Any COS 126 student could do it.
• Need to be a typical diligent COS 226 student.
• Hire an expert.
• Intractable.
• No one knows.
• Impossible.
Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?
- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.
The Seven Bridges of Königsberg. [Leonhard Euler 1736]

“…in Königsberg in Prussia, there is an island A, called the Kneiphof; the river which surrounds it is divided into two branches ... and these branches are crossed by seven bridges. Concerning these bridges, it was asked whether anyone could arrange a route in such a way that he could cross each bridge once and only once.”

Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see textbook).
Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

How difficult?
• Any COS 126 student could do it.
• Need to be a typical diligent COS 226 student.
• Hire an expert.
• Intractable.
• No one knows.
• Impossible.
Problem. Are two graphs identical except for vertex names?

How difficult?
• Any COS 126 student could do it.
• Need to be a typical diligent COS 226 student.
• Hire an expert.
• Intractable.
• No one knows.
• Impossible.
Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?
- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.