Question 1 (Multicast Address Allocation):

(a) Among the numerous problems with this approach are that a centralized solution quickly becomes a bottleneck as the size of the request pool grows large. Also, if such a central authority ever fails, nobody has the capability to lease out multicast addresses.

(b) This question can be interpreted two ways: 1) to compute the probability that there is at least one collision in the first N allocations, or 2) to compute the probability that the first collision is the N’th. Either interpretation was fine, and here we give the solutions to the first case.

Suppose we have allocated $i < N$ addresses without a collision. The probability that our random allocation of the $i+1$st address does not cause a collision is $1 - \frac{i}{65536}$. In general, we can chain these probabilities together to derive the probability that N consecutive allocations were collision-free. Letting C_i denote the event that the first i collisions were collision-free, we can write:

\[
Pr[C_i] = Pr[C_i|C_{i-1}] \cdot Pr[C_{i-1}]
\]

\[
= \left(1 - \frac{i}{65536}\right) \cdot Pr[C_{i-1}]
\]

Noting that at the base case, $Pr[C_1] = 1$, we have that:

\[
Pr[C_i] = \left(1 - \frac{1}{65536}\right) \left(1 - \frac{2}{65536}\right) \cdots \left(1 - \frac{N-1}{65536}\right)
\]

\[
= \prod_{i=1}^{N-1} \left(1 - \frac{i}{65536}\right)
\]

Now you would like to solve for the smallest i such that $Pr[C_i] \leq 0.99$. This is possible analytically, but is easier to solve in simulation. It turns out that the value of i is only 37, which means that you have only exhausted one-twentieth of one percent of your address space before you see a collision with one percent probability.

A famous, and closely related problem arises in the Birthday Paradox: How many individuals must there be in a room before there is a good chance that two of them were born on the same day of the year? It turns out that you should bet on it (> 50% chance of winning) even when there are only 23 people in the room.
Question 2 (ALOHA analysis):

(a) The efficiency of the protocol is \(\frac{k}{k+x} \), where \(x \) is the expected number of consecutive wasted slots. Now we determine \(x \). Let \(Y \) be a random variable denoting the number of slots until a success, we have \(P(Y = y) = a(1 - a)^{y-1} \) where \(a \) is the probability of a success, which is \(Np(1 - p)^{N-1} \). So \(x = E(Y) - 1 = \frac{1-a}{a} \).

Putting them together, efficiency = \(\frac{k}{k + \frac{1-Np(1-p)^{N-1}}{Np(1-p)^{N-1}}} \).

(b) The \(p \) that maximizes the efficiency is the one that minimizes \(x \), which in turn maximizes \(a \), so it is \(\frac{1}{N} \).

(c) Substitute \(p \) with \(\frac{1}{N} \) in the formula above, we get \(\lim_{n \to \infty} \text{efficiency} = \frac{k}{k + e - 1} \).

(d) Apparently, when \(k \) approaches \(\infty \), efficiency approaches 1.

Question 3 (Ethernet capture effect)

(a) A can choose \(k_A = 0 \) or 1; B can choose \(k_B = 0, 1, 2, 3 \). A wins outright if \((k_A, k_B)\) is among \((0, 1), (0, 2), (0, 3), (1, 2), (1, 3)\); there is a 5/8 chance of this.

(b) Now we have \(k_B \) among 0...7. If \(k_A = 0 \), there are 7 choices for \(k_B \) that have A win; if \(k_A = 1 \) then there are 6 choices. All told the probability of A’s winning outright is 13/16.

(c) \(P(\text{winning race 2}) = 5/8 \) and \(P(\text{winning race 3}) = 13/16 \); generalizing, we assume the odds of A winning the \(i \)th race exceed \(1 - \frac{1}{2^{i-1}} \). We now have that \(P(\text{A wins every race given that it wins races 1-3}) \geq (1 - 1/8)(1 - 1/16)(1 - 1/32)... \approx 3/4 \).

(d) B gives up on it, and starts over with \(B_2 \)

(e) Let us consider the same two stations \(A \) and \(B \) from the previous question. So if \(A \) just transmitted then it will wait for one or two time slots, during which \(B \) can try and successfully send data.
Question 4 (Throughput of wireless vs. wireline):

(a) Messages from C to A need to be relayed by B because A cannot hear C. So the answer is 1 message per 2 slots.

(b) The transmissions do not interfere with each other, so the answer is 2 messages per slot.

(c) Because B can hear both A and C, at one slot only one of them can transmit, so the answer is 1 message per slot.

(d) Let us assume that a wired network means point to point connection. Then there is no concern of conflict, so the answers to the above questions are: 1 message per 2 slots, 2 messages per slot and 2 messages per slot, respectively.

(e) (a) It takes 2 slots to get the message and 2 slots to return the ACK, so the answer is 1 message per 4 slots.

(b) The transmissions do not interfere, but the ACKs will interfere. So in addition to the 1 slot to send the original message, ACK from B to A and ACK from C to D will each take 1 slot. So the answer is 2 messages per 3 slots.

(c) The transmission of the second message can be concurrent with the ACK of the first message as $D \rightarrow C$ and $A \rightarrow B$ do not interfere. So we need 1 slot to transmit the first message, 1 slot to transmit the second message as well as ACK to the first message, and 1 additional slot to transmit ACK to the second message. So the answer is 2 messages per 3 slots.