CS 559: Algorithmic Aspects of Computer Networks Fall 2007

Lecture 17 — November 7
Lecturer: John Byers BOSTON UNIVERSITY Scribe: Flavio Esposito

In this lecture, the last part of the PageRank paper has been presented [3] and a
discussion about the Hubs and Authorities paper [2] begun.

17.1 The Bow-tie model

Definition 1. Given a directed graph G = G(V, E), the fan out or out-degree of a vertex
V in G is the size of the subset ' of F of edges that are going from V to all the other
vertices.

Definition 2. Given a directed graph G = G(V, E), the fan in or in-degree of a vertex V
in G is the size of the subset H of E of edges that are going to V from all the other vertices.

Note that a vertex V' can be highly ranked in a graph G if it has either (both) high fan
out or (and) high fan in. The insight is the fan in is more important than the fan out but
both brings up in the ranking a web page.

Recall that in the PageRank approach the graph G(V, E) has as vertex the web pages
and as edges the hyperlinks.
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Figure 17.1. bow-tie model: If we only consider the graph bounded by the clique (core), we can prove that
an equilibrium point exist: if we have also tends parts, i.e. vertex with fan in zero (left tend) or with fan
out zero (right tend) then during a walk we can get stuck (dead end).

Recalling the PageRank markovian approach, the idea is to find an equilibrium vector
P of probabilities of a random walker being in vertex V after k steps when k — oo. The
process of finding the vector P ends when P does not change more than a given 4. So If we
consider all the bow tie, we might have to wait for a bigger amount of steps to find the final
P, or we can have no equilibrium point at all [1].
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We use then random jumps in the graph instead of a linear walk to visit the all nodes.
A random jump approach has two properties:

e Order persevering respect to a vertex V as starting point. First of all, if I change a
starting point the order has to be the same. Moreover, if I sort the elements of the
vector P, without jumps, and then on the same graph I sort the element of the P found,
I might find different values of p; but the bigger is the same, the second bigger is the
same, and so on.

e Speed up convergence for sampling based methods, i.e. P, < Py, where Py, is the
final equilibrium point after ko steps without random jumps and Py, is with random
jumps, given the same §.

17.1.1 Boost the ranking

The idea is that, a page is visited more often if I am being linked from more popular websites.

In other words, a way to increase the probability of getting hit by a random walker surfing
the web is by getting a link from a very popular website and or to create link to popular
websites. (so increase the fan in and the fan out of one page boost the ranking of a page).
Another approach could be to create a set of nodes (web pages) all linked one another in a
fully connected graph fashion. In this manner, the probability of an user hitting the set of
node (pages) connected by edges (pages) will be higher.

17.2 Hubs and Authorities

Assume that we have a topic T (represented by the set of pages in the cloud), and a set of
pages i.e. a region related to T

Definition 3. Given a directed graph G = G(V, E') and a topic T, a vertex V is called hub
for T if there is a significant number of edges starting from V and ending into a vertex
(page) of T.

Definition 4. Given a directed graph G = G(V, E) and a topic T, a vertex V is called
authority for 7T if there is a significant number of edges starting from any vertex in 7" and
ending in V.

Observation : Like is depicted in figure, hubs can have also edges that go out of 7" and
an authority can have edges that comes from vertex outside from T but we are not interested
in this edges

Kleinberg idea to rank the web pages is based on two main steps:

1. Find a collection of URL?® on a topic T.

2. Derive an algorithm to identify hubs and authorities from the previous step(1.).
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Authority

Figure 17.2. Hubs and Authorities: on the left, a page (vertex) with many edges (links) pointing to other
pages (vertex) of the same topic T i.e. an hub. On the right a page (vertex) with many edges (links) pointing
from other pages (vertex) of the same topic T i.e. an authority.

The challenging part is of course to find the collection of hubs and authorities. To accomplish
point 1., Kleinberg conducts a text based search: to find some (200) results with a web search
engine (HotBot, Altavista) and then, broading the set of U RL® by adding one-hop neighbor
downstream (the edge representing a son in the large graph), and one-hop neighbor upstream
(the father). Two observations: the first one is that in order to gather information of the
down and upstream neighborhood we need the knowledge of the graph.

The second observation is the reason why Kleinberg uses only one hop neighborhood
information: whenever the node found is an authority, the set of k ( £ > 1) hop neighborhood
can be too vast; that is why the identification algorithm has as input only with one hop
information.

Just looking at the degree of any node in the subgraph S of G associated with the topic
T, the system is able to cluster hubs and authorities.

Kleinberg formalizes an authorities and an hub weight as:

Definition 5. Given a graph G = G(V, E) and a topic T of G (subgraph S), an authority
of weight p for T, is the quantity {z<F~}

Definition 6. Given a graph G = G(V, E) and a topic T of G (subgraph S), an hub of
weight p for T, is the quantity {y<F~}

The algorithm identifies hubs and authorities updating k times the weights with two
operations, denoted O meaning Output degree of a vertex V of G, and I meaning Input
degree.

TP — Z y=9” (17.1)

p:(p,q)EE

IThe algorithm runs with good results if k& = 20. After 20 steps of the algorithm experimentally has been
found that no changes of the first top 50 (up to 200) are observed (equilibrium values have been reached).
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and
Yy — Z = (17.2)
p:(p,Q)€E
Moreover, a maintaining invariance conditions (normalizing the coefficient to 1 after each
step) have to be satisfied, i.e. 3 o (x<P7)* = Tand ) g (y=P7)* = 1 where o is a query
string. As we can see form the formulas above, the hubs power are given by the authorities
and vice-versa.

17.2.1 Pseudocode of the Iterative Algorithm

Let us see the pseudocode of the algorithm to identify hubs and authorities

Iterate(G, k)

G is a graph collection of n linked pages, k number of rounds
z is an unitary vector of R" (zg = z and yo = 2;)
fori=1,....k do

apply "I” operation to x;_1,y;_1 — x;
apply 7O” operation to x;_1,yi_1 — ¥,
Normalize x; — ;
Normalize y; — y;

end for

return (zx, yx)

17.2.2 Sketch of the proof of convergence

Given M n x n symmetric and A adjacency matrix (matrix of connectivity and so symmetric
and n x n as well) and the vectors z; of authorities and y; of hubs, the proof of convergence
is based on the follow logic steps:

e Hubs and Authorities are updated as follow: z; «+ Aly;,_; and vy; «+ Ax;_;.

e Expanding until there are no more iterations, we have:
1y — (ATA)*1 Az and
Yk — (AtA)kyo

notice that in class the updates where written in a slightly different notation from that
one in the paper: but the matrix M in your notes is suppose to be A:

€Ty < (AtA>LUZ‘_2

Doy — (ATA)kx

and the same for y.

e From linear algebra is known that if xg is a vector not orthogonal to the principal
eigenvector w of M, then the vector z; in the direction of M*z, converge to w and so
the sequence {z}} —xo for k — oo.
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