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18.1 Erdos-Renyi Random Graphs

An Erdos-Renyi graph G(n, p) depends on two parameters n and p s.t. n = number of nodes
and p = probability a given edge (i, j) is present

18.1.1 Small p

• If p is small ∼ 1
n
, then not every node will be connected. Many components will be

disconnected from the graph.

• The average degree will be constant (disconnected forests).

• In general, these networks are not very interesting.

18.1.2 Larger p

If p ∼ log(n)
n

...

• The average degree will be ∼ log(n) per node

• Nodes being disconnected is unlikely (inverse polynomial of n), some singletons but
not many.

• Most nodes will have a high degree

If p ∼ 2∗log(n)
n

...

• Sharp phase transition, the network gels and the graphs becomes one giant connected
component

18.1.3 Degree distribution

The Erdos-Renyi graph degree distribution resembles a normal distribution where the degrees
of most nodes are about the same size.

Pr[X ≥ x] ≤ e−x. The graph is characterized by exponential tails.
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18.2 S-W Graphs

Some social scientists and physicists claimed Erdos-Renyi graphs were not the types of
graphs they usually see in practice [1][2]. They saw distributions tailing off over many
orders of magnitude with many high degree nodes. This is termed a ”heavy-tailed” degree
distribution. The probability drops off sub-exponentially, where Pr[X ≥ x] ≤ 1

poly(x)

Strogatz-Watts graphs vary a parameter p which varies from 0 to 1. Values towards 0
represent regularity whereas those towards 1 represent disorder.

In the extreme, regularity creates a basic topology like a ring. There is an additional
parameter k which controls the connectivity of the graph.

The model focuses on two computable quantities:

• L(p) = average path length

• C(p) = average clustering coefficient

The clustering coefficient is a measure of the ”connectedness” of a neighborhood. The
clustering coefficient is calculated as follows for a node x. Of the neighbors of x, calculate
the fraction of neighbors N(x) that are directly connected (pairwise acquaintances). It is a
good idea to normalize by dividing by the total number of possible edges:

C(p, x) =
‖[(y, z) : y ∈ N(x), z ∈ N(x)]‖(

N(x)

2

)
C(p) =

∑
xC(p, x)

n
Scaling k up, results in better clustering.

18.2.1 Generating graph

• Take a model which starts at full regularity then do ”random rewiring”.

• Iterate around ring and for every edge rewire the edge with probability p

• Rewirings to edges that already existed are ignored

• For each edge (i, j) in turn, rewire the edge to (i, k) for some k ∈R {1..n} with prob.
p and only if (i, k) /∈ E

At p = 1 the graph is very similar to a Erdos-Renyi graph, random rewiring shortens
path lengths since long jumps shorten paths, but this reduces the clustering coefficient.

When p is in the middle, the average path length is smaller and clustering coefficient is
higher.

Strogatz and Watts argue that ”real” graphs are not too far from p = 0.
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18.3 Graph Models

Erdos Renyi Strogatz-Watts ”Internet”

Path Length p ∼ logn
n

=⇒ O(log n) O(n)→ O(log n) O(log n)
Clustering Coef-
ficient

no better than random High clustering, de-
creases w/ p

> random

Degree Distribu-
tions

exponential tails, normal exponential tails subexponential
tails, heavy
tailed

Table 18.1. Random graph models
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