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In today’s lecture, we continued our discussion of power law random graphs. Previous
classes have discussed Erdos-Renyi random graphs and Barabasi-Albert preferential attach-
ment graphs [2]. The first half of the class covered work conducted by Chung and Lu [1].
In this work the authors presented the Generalized Random Graph (GRG) and Power Law
Random Graph (PLRG) generative models.

22.1 Generalized Random Graphs (GRG)

In order to build a target graph G of n nodes, we create a degree sequence D = (d1, d2, ..., dn).
d1 specifies the degree of node 1, d2 the degree of node 2, etc. The resultant graph has, in
expectation, the desired node degrees.

Figure 22.1. GRG Model

To build a graph using GRG:

1. Write down all vertices in the graph.

2. For each vertex vi, draw an edge to vj with probability Pr[(vi, vj) ∈ E] ∼ didj

The above equation does not include a normalization factor that is present in the actual
paper, but has little bearing on the model conceptually. There are a few key points to note
about GRG:

• A vertex with a high degree has a high probability of many edges.

• High-degree nodes tend to pair with other high-degree nodes, due to the relatively
large size of didj in the above equation.

• GRG does not sample uniformly at random from all possible graphs. Some graphs are
more likely to be generated than others (e.g. those with high-degree nodes attached
to other high-degree nodes are more likely than those with high-degree nodes attached
to only low-degree nodes).
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22.2 Power Law Random Graphs (PLRG)

PLRG, like GRG, requires a (power-law) degree sequence for the target graph. It is not
probabilistic, however. The result is a ’graph’ with node degrees exactly as specified, with
two caveats explained below.

Figure 22.2. PLRG Model

To construct a PLRG:

1. Make di copies of each node vi.

2. Randomly generate a matching on the copied vertices (i.e. pair every vertex with
another vertex).

3. Collapse the copies of each node column-wise to create the final graph.

Caveats:

• Note that in the expanded graph above, v1 is connected to itself. This creates a self-
referential cycle in the final graph, or reduces node degree by one if it is simply ignored.

• Also note that v1 is connected to v2 twice. Either the final graph is a multigraph
allowing multiple edges between two nodes, or both nodes are one degree lower than
intended if the extra edge is ignored.

Regardless of how these issues are dealt with, it has been shown that PLRNG is asymp-
totically equivalent to GRG. Therefore it also samples non-uniformly from the space of all
possible graphs, and will favor graphs with nodes of high degree connected to other nodes
of high degree.

22.3 Li et al.

The above generative models, as well as the models that were covered in previous classes,
have a common problem: they do not conform to real-world data. Despite most graph-
theoretic metrics between generated graphs and real-world topologies being similar, their
actual structure varied significantly.
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Li et al. [3] studied this discrepancy in detail, using an ISP network. Their key obser-
vation is that the Internet is not composed of a few highly-connected ’center’ ’nodes and a
large number of low-degree nodes on the edges. In fact, low degree nodes tend to form the
network center. High-degree nodes are closer to the edges. This is due to router technology
and the relationship between throughput and bandwidth.

Figure 22.3. Router Technology Constraints [3]

As the degree of a router increases, the switching overhead gets larger and reduces the
effective throughput of the router. This creates a configuration space with low-degree core
routers serving as a backbone, and high-degree aggregation routers (e.g. DSLAMS) acting
as access points for a large number of low-bandwidth links:

Figure 22.4. ISP-Like Graph
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22.3.1 Throughput

Graph-theoretic metrics do not provide the sufficient distinguishing capability needed to
select these kinds of graphs from the sort generated by the GRG, PLRG, or B-A models. Li
et al. provide two new metrics: Throughput and Likelihood.

To calculate the Throughput of a graph:

1. Annotate each node with a throughput rating based on its degree by assuming a given
router family in Figure 3.

2. Compute network traffic demands by assuming uniform traffic generation rates and
shortest-path routes.

3. Measure how much throughput the network as a whole can deliver.

In PLRG-type graphs, the core is quickly saturated by end-to-end traffic (due to the large
number of routes and low throughput) and performance suffers. These bottlenecks leave the
network both fragile and unable to deliver high bandwidth to end nodes. In HOT Model
graphs (the model developed by Li et al., which approximates ISP-like graphs), however,
aggregation points get saturated at about the same time as core nodes. There are fewer
bottlenecks, throughput is higher, and the network is more robust.

22.3.2 Likelihood

The authors note that HOT-type graphs are unlikely to be produced by previous generative
models, and quantify that statement in the Likelihood metric:

L(g) =
∑

e=(i,j)

didj (22.1)

over all edges e. Note that this is a deterministic measure over an existing graph. For all
graphs of size n and a given degree distribution, ∃gmin that minimizes L(g) and ∃gmax that
maximizes L(g). This can be used to normalize:

= l(g) =
L(g)− L(gmin)

L(gmax)− L(gmin)
∈ [0, 1]′ (22.2)

• B-A, PLRG, and GRG graphs tend to approach a high likelihood (l(g)→ 1)

• HOT graphs tend to approach a low likelihood (l(g)→ 0)

• Real-world topologies have a low likelihood

The authors show the relationship between likelihood and performance in a final figure,
which also serves to place the various graph generation models:
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Figure 22.5. Likelihood [3]
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