
CS 591B1: ALGORITHMIC ASPECTS OF COMPUTER NETWORKS Spring 2002

Lecture 2 — January 28, 2002

Lecturer: M. Mitzenmacher, J. Byers BOSTON UNIVERSITY Scribe: Trevor MacDowell

In today’s lecture Prof. Michael Mitzenmacher presented his method of compressing Bloom Filters so
that they may be efficiently transmitted as messages (minimizing either transmission size or false-positive
rate). We then discussed the possibility of applying Bloom Filters to the problem of IP Traceback as
motivated by the paper Hash-Based IP Traceback [5]. Professor John Byers concluded with an Information
Theoretic basis for the concept of Entropy and Shannon’s Theorem [4].

2.1 Compressed Bloom Filters

Motivation: Many applications of Bloom Filters (BFs), such as web caching, require that they be transmitted
as messages. Since data transmission is, in general, more expensive than data storage it would be useful to
find a method of compressing BFs . Indeed, we will see that compression in Bloom Filters comes at the cost
of much higher local storage.

Recall the 3 BF tradeoff variables:

• m/n (number of bits per entry)

• k (number of hash functions)

• f (false-positive rate)

In the previous lecture we learned that with good hash functions Pr [a given bit of the BF = 1] = 1
2 . So

it does not seem, at first glance, that compression is possible. But allowing m/n to grow while keeping the
compressed transmission size per entry (z/n) constant will allow us to further lower the false-positive rate
(i.e. we will create a sparser filter so that compression is feasible). Similarly we could keep the false-positive
rate constant and optimize for transmission size.

Given z and n choose m and k to optimize1f :

1. p ≈ e−
kn
m

2. f ≈
(
1− e−

kn
m

)k

3. z = mH (p)

Optimization through calculus2: k = m(ln(2))
n

Note that the optimal BF without compression yields the worst results when compression is permitted.
So surprisingly we can always improve performance through compression.

1Here we will assume the existence of an optimal compressor, z = mH (p) where H (·) is the entropy function.
2Please see [2] for proof of this, and a graph showing optimization points of BF vs. CBF.

2-1



CS 591B1 Lecture 2 — January 28, 2002 Spring 2002

2.2 Hash-Based IP Traceback

The goal of Hash-Based IP Traceback is to be able to “identify the source of any piece of data sent across
the network.”[5] Specifically we are thinking of the attacker-victim model where a victim (a host or network
that is being, or has just been, attacked) would like to determine the source of an attack. The Source Path
Isolation Engine (SPIE) system will enable a victim to do this as long as the attack is reported quickly, and
was sent through SPIE enabled routers3. The system stores digests of packets that cross the network in
bloom filters. Given a request from a victim, the system uses these digests to build an attack graph by first
determining the ingress points of ‘attack packets’ on its own network, and then forwarding the request to
SPIE router s along those paths.

Table 2.1. SPIE Inrastructure [5]

Three major components of SPIE infrastructure:

1. DGAs (Data Generation Agents): Each router on an SPIE enabled network has a DGA that pro-
duces packet digests (containing information about where each packet came from, and enough of the
header/payload to uniquely identify it). These digests are then efficiently stored in bloom filters at the
DGA for a short amount of time. If a particular time period needs to be examined further then the
data is transmitted to the SCAR for analysis and longer term storage.

2. SCARs (SPIE Collection and Reduction Agents): Each SCAR is responsible for traceback within a
given region of the network. Upon request it will gather information about a certain time period from
each of the DGAs in its region and produce a local attack graph.

3. STM (SPIE Traceback Manager): Each network contains one STM which is responsible for controlling
the SPIE system. It receives and processes requests from victims, propagates those requests to the
SCARs, and pieces together the graphs generated by each SCAR to produce a complete attac k graph.

3SPIE may be able to narrow down an attack region if most of the routers traversed were SPIE enabled.

2-2



CS 591B1 Lecture 2 — January 28, 2002 Spring 2002

2.3 Entropy and The Entropy Function

For our purposes, entropy is a measure of uncertainty as it relates to the information gained by conducting
experiments from a given sample set. Through the realization of Shannon’s Theorem we will also see that
entropy can tell us the minimum number of bits required (ideally) to represent a string. Before proceeding
we need to define an experiment in this context.

2.3.1 Experiments

An experiment is a set of possible outcomes where each outcome is represented by the probability of its
occurrence. These probabilities will sum to 1 and must cover the entire event space.

• Experiment=(p1, p2, . . . , pn) where pi = Pr [event eioccurs]

•
∑n

i=1 pi = 1

• In general, as n grows large, so does the level of uncertainty about an experiment’s outcome.

Example:
(

1
n , 1

n , . . . , 1
n

)
is an experiment with n possible outcomes each of which are equally likely.

2.3.2 Requirements for a definition of entropy

We will attempt to define a funtion H (·) that, given a sample space, will output a measure of the uncertainty
associated with an experiment in that space. Any definition of uncertainty (entropy) must follow all of the
following criteria:

1. H
(

1
n , 1

n , . . . , 1
n

)
< H

(
1

n+1 , 1
n+1 , . . . , 1

n+1

)
∀n ∈ Z+ i.e. we expect uncertainty to grow as the sample

size gets larger.

2. H (p1, p2, . . . , pn) is defined and continuous for all (p1, p2, . . . , pn) satisfying 0 ≤ pi ≤ 1,
∑n

i=1 pi = 1.

3. H
(

1
n , 1

n , . . . , 1
n

)
= H

(
b1
n , b2

n , . . . , bk

n

)
+

∑k
i=1

bi

n · H
(

1
bi

, 1
bi

, . . . , 1
bi

)
for arbitrary positive integers bi

satisfying
∑k

1 bi = n (blocks).

The third requirement simply means that if we break the sample space into k blocks that
the uncertainty associated with ‘choosing’ an element from the original space should be the
same as the uncertainty associated with first ‘choosing’ a block, and then an element within
that block:

H
(

1
n

,
1
n

, . . . ,
1
n

)
︸ ︷︷ ︸
One pass info. gain

= H
(

b1

n
,
b2

n
, . . . ,

bk

n

)
︸ ︷︷ ︸

1st pass (choose a block)

+
k∑

i=1

bi

n
· H

(
1
bi

,
1
bi

, . . . ,
1
bi

)
︸ ︷︷ ︸

2nd pass (choose element within block)

Aside: Given a sample space where all events are not equally likely we can always
use this property to transform the space into equiprobable blocks.

2.3.3 The Entropy Function

Only one family of functions satisfies all three of these criterion[3]:

Hl (p1, p2, . . . , pn) = −
k∑

i=1

pi · logl (pi) =
k∑

i=1

pi · logl

(
1
pi

)

The base l allows for the scaling of entropy (although in practice we will almost exclusively work with l = 2).

2-3



CS 591B1 Lecture 2 — January 28, 2002 Spring 2002

Some Examples:

1. H
(

1
2 , 1

2

)
= 1

2 · log2 (2) + 1
2 · log2 (2) = 1

2. H
(

1
4 , 1

4 , 1
4 , 1

4

)
= 4 ·

(
1
4 · log2 (4)

)
= 2

3. H
(

1
4 , 3

4

)
= 1

4 · log2 (4) + 3
4 · log2

(
4
3

)
≈ 0.8113

2.3.4 Shannon’s Noiseless Coding Theorem [4]

Prefix-free Encoding

A prefix-free encoding of sample space is a set of codes 〈c1, . . . , cn〉 such that:

• ci is a bit seqence representing event i, and pi is the probability that event i occurs.

• ∀i, j ∈ Z+: ci is not a prefix of cj .

• length(ci) =the number of bits in ci

Noiseless Coding Theorem

For any prefix-free encoding 〈c1, . . . , cn〉 (in bits) of a sample space (p1, p2, . . . , pn):

1. H (p1, p2, . . . , pn) ≤
n∑

i=1

pi · length (ci)︸ ︷︷ ︸
Expected bits per symbol

2. ∃ codes 〈c1, . . . , cn〉 s.t.
n∑

i=1

pi · length (ci) ≤ H (p1, p2, . . . , pn) + 1)

In 1952 Huffman was able to produce simple codes that always meet the bounds set in Shannon’s Theorem.
Shannon’s second bound has since been further improved, and it is now known that codes exist that acheive
encoding within ε of the sample set’s entropy (where ε > 0).

Example

Consider the following sample space and its Huffman coding:

pi
1
2

1
4

1
8

1
8

ci 0 10 110 111

∑n
i=1 pi · length (ci) = 1

2 ·length (c1)+ 1
4 ·length (c2)+ 1

8 ·length (c3)+ 1
8 ·length (c4) = 1

2 ·1+ 1
4 ·2+ 1

8 ·3+ 1
8 ·3 = 1 3

4

H
(

1
2 , 1

4 , 1
8 , 1

8

)
= 1

2 · log2 (2) + 1
4 · log2 (4) + 1

8 · log2 (8) + 1
8 · log2 (8) = 1 3

4

2-4



Bibliography

[1] B. Bloom. “Space/time trade-offs in hash coding with allowable errors,” Communications of the ACM,
13(7):422-426, 1970.

[2] M. Mitzenmacher. “Compressed Bloom Filters,” in Proceedings of PODC 2001.

[3] S. Roman. “Coding and Information Theory,” Springer, New York, 1992.

[4] C. E. Shannon. “A Mathematical Theory of Communication,” Bell System Tech Journal 27, p379-423
and p625-656. 1948.

[5] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio, S. Kent, and T. Strayer, “Hash-Based
IP Traceback,” in Proceedings of ACM SIGCOMM ’01.

5


