
Maple in OpenDaylight
github.com/maplesdn

Andreas Voellmy Cody Doucette Yao Xiao Guanchen Zhang Shigang Zhu

Problems with SDN Programming Practice Maple Overview
Maple is an SDN programming system that:

1. allows programmers to use standard languages to write
centralized algorithms to determine network behavior

2. provides simplifying abstraction that alg. runs per packet
3. includes efficient mechanisms for computing flow tables,

multicore scheduling, offloading work to switches

● Declarative: specify what, but not how
● Low-level: manage flow rule patterns, priorities, timeouts
● Restrictive: must use special programming language

To realize full benefits of SDN (for example, in cloud settings), we need
better SDN programming abstractions and mechanisms.

Flow Table CompilationAlgorithmic Policies Implementing Maple in ODL
Algorithmic policies describe how a packet
should be forwarded; not flow table rules!

f: (packet × env) → route

MapleMap<MacAddr, Location> location;

Route f(Packet p) {

 location.put(p.ethSrc(), p.ingressPort());

 if (p.tcpDstIs(22)) {

 return NULL_ROUTE;

 } else {

 Location dst = location.get(p.ethDst());

 Path path = myShortestPath(links(), p.ingressPort(),
dst);

 return path;

 }
}

Maple provides the abstraction that every packet
is logically run through the algorithmic policy.

Need to be careful in terms of latency,
bandwidth, and computational capacity.

Maple
observes

dependency
of f on

packet data

Maple builds
a partial

decision tree
for f

Maple
compiles

flow tables
from trace

trees

As part of a course on cloud computing, we built:
● a Java library for Maple
● a Java adapter for OpenDaylight

github.com/maplesdn

With these tools, SDN programmers can now
use Maple to write centralized algorithmic
policies efficiently using OpenDaylight.

Adapters for other OpenFlow controller
implementations can now also be written
(Floodlight, OpenStack, …).

