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Abstract—This work investigates the interplay between dif-
ferent types of user interactions on Twitter, with respect to
predicting missing or unseen interactions. For example, given a
set of retweet interactions between Twitter users, how accurately
can we predict reply interactions? Is it more difficult to predict
retweet or quote interactions between a pair of accounts? Also,
which features of interaction patterns are most important to
enable accurate prediction of specific Twitter interactions?

Our empirical study of Twitter interactions contributes initial
answers to these questions. We have crawled an extensive
dataset of Twitter accounts and their follow, quote, retweet, reply
interactions over a period of a month. Using a machine learning
framework, we find we can accurately predict many interactions
of Twitter users. Interestingly, the most predictive features vary
with the user profiles, and are not the same across all users. For
example, for a pair of users that interact with a large number
of other Twitter users, we find that certain “higher-dimensional”
triads, i.e., triads that involve multiple types of interactions, are
very informative, whereas for less active Twitter users, certain
in-degrees and out-degrees play a major role. Finally, we provide
various other insights on Twitter user behavior.

Our code and data are available at https://github.com/
twittermancer/.

Index Terms—Graph mining, machine learning, social media,
social networks

I. INTRODUCTION

Twitter is a microblogging service with more than 330
million monthly active users worldwide, as of the first quarter
of 2019. Its unique characteristics have drawn the attention of
many researchers, and provide a novel opportunity for under-
standing human behavior in a public and observable forum at
an unprecedented scale. Among many other applications, the
Twitter repository of human signals has been used to predict
the stock market [1], estimate mortality of heart diseases [2],
forecast election outcomes [3], [4], and detect humanitarian
crises in real time [5], [6]. Twitter follows the pulse of global
society, and therefore studying it from all possible angles is
an active area of research. The angle we take here is related
to the multiple networks that naturally underlie the Twitter
platform. Specifically, over a fixed window of observation, a
user u can interact with a user v in more than one way; u may
follow, reply, quote, retweet v, or like a tweet of v, or send
her a message. These types of interactions naturally define a
multilayer directed network, with layers corresponding to the
types of interactions that occur. We study both the unweighted
and weighted version of these networks, but for simplicity, we
discuss the unweighted (0/1) case herein. In this setting, the
sets of adjacencies (directed edges) across layers are typically

correlated, but also exhibit clear differences. We are interested
in the extent to which those differences can be characterized,
i.e., differences that are specific to certain layers (e.g., sparsity
of a given type of interaction), and differences that relate to
the local neighborhoods of users (e.g., graph structure around
a celebrity). Difference characterization via relevant feature
analysis enables accurate cross-layer prediction; conversely,
differences that are hard to characterize makes cross-layer pre-
diction more difficult. In this work we focus on the following
question:

Question. Given two Twitter users u, v, and the Twit-
ter multilayer interactions, can we predict what type
of interactions will take place between u, v?

For the purpose of answering the above Question, we have
crawled a large Twitter dataset, spanning the full month of
February 2018. Using this corpus of tweets, we have created a
multilayer network with four different layers, corresponding to
four different types of interactions respectively: follow, quote,
reply, retweet. We use this network, together with the temporal
information available to us, to attack the following series of
problems:

High-dimensional link prediction. Suppose we are given the
multilayer Twitter network, except for all interactions between
a pair u, v of nodes that are known to have interacted. How
reliably can we infer whether u, v will follow, reply, quote,
or retweet each other using the information provided by the
rest of the network? Our approach is data-driven, generalizes
the seminal work of Liben-Nowell and Kleinberg [7] on
link prediction, and follows the established framework of
Leskovec, Kleinberg and Huttenlocher [8]. Our main finding
is that leveraging information from other types of interactions
boosts prediction accuracy significantly, on the order of 9–
32%. We observe that typically higher gains are obtained for
the sparser interaction layers, and that overall the simplest
forms of interaction, like retweeting (just two clicks), are
easiest to predict.

Correlation between types of interactions. We perform a
detailed study on how certain interactions increase or decrease
the likelihood of other interactions. We focus on two types of
experiments to assess these interaction correlations. First, for
each interaction, we test how the prediction accuracy changes
for the standard link prediction formulation when we use
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Fig. 1: Predict edges of a type on the horizontal axis, using also
information from another type of the vertical axis. Diagonal
tiles refer to using only one type to predict this type.

information from one additional layer. Figure 1 displays a
heatmap depicting the classification accuracies of a specific
(u, v) interaction (row) by leveraging other interactions of
that type plus an additional interaction (column). Entries along
the diagonal correspond to using no outside interaction types.
For example, consider the Reply row. When only Replies are
used in prediction, the prediction accuracy is a relatively low
58.1% on the diagonal (as described in Section III, we test
against an equal number of edges and non-edges so that 50%
is achieved by random guessing). The prediction accuracy
is boosted to 75.5% using the additional information from
Retweets (rightmost column), but only to 63.4% using Quotes
(second column). We observe that for all interactions, side
information is always beneficial, as one would anticipate. The
most informative other interaction is consistently Retweets,
and for Retweets themselves, the most informative interaction
is from Quotes (even though that graph layer is significantly
sparser than, for example, the follows layer). Finally, our in-
terpretable logistic regression model, presented in Section III,
allows us to understand the relative importance of certain types
of interactions.
Accuracy of prediction as a function of user profiles. Fi-
nally, we provide novel insights on what features are important
for accurate prediction for different user profiles. Our findings
strongly suggest a dichotomy between two types of pairs
of users; pairs of users that engage jointly with many other
Twitter users in various combinations of interactions, and those
who don’t (for details see Section V). For the former, features
involving triads turn out to be important features in accurate
prediction, complementary to degree-based features that are
useful for less well-connected users. We provide a detailed
study of how all these features jointly affect the empirical
effectiveness of link prediction. Our findings can be seen as a
higher-dimensional analog of the importance of triads in the
signed link prediction problem [8].
Roadmap. Section II presents closely related work. Sec-
tions III, IV, and V present our machine learning framework,

discuss the dataset collection methods we use, and our experi-
mental findings, respectively. Section VI concludes our paper.

II. RELATED WORK

Due to the large volume of work related to Twitter and link
prediction, we focus on related literature that lies closest to
our work.

Link prediction. The link prediction problem was popularized
by the seminal paper of Libel-Nowell and Kleinberg [7]. Since
then, link prediction has been studied extensively [9]. Close
to our work lies the framework proposed by Leskovec et
al. [8] that extended the link prediction problem to graphs with
positive and negative interactions between nodes. Their work
suggests a machine learning framework that uses local features
and a logistic regression classifier to predict the unknown sign
of an edge.

Edge sign prediction. Leskovec, Huttenlocher, and Kleinberg
[8] formulate the edge sign prediction problem as follows:
given a social network G(V,E, s), where s : E → {−1,+1}
is the edge sign function, how well can we predict the sign
of a future edge s(x, y) between nodes x, y from the rest of
the network? In their influential paper [8], Leskovec et al.
proposed a machine learning framework where in practice one
of the edges (x, y) ∈ E is removed from the network, and
its sign is predicted using a logistic regression classifier that
uses 23 features in total. These features include positive and
negative out-degrees d+out(x), d

−
out(x) of node x, positive and

negative in-degrees d+in(y), d
−
in(y) of node y, the total out-

and in-degrees dout(x), din(y) of nodes x, y, and the number
of common neighbors (forgetting directions of edges) C(x, y)
between x, y. The quantity C(x, y) was referred to as the
embeddedness of the edge x→ y in [8], and we will follow the
same terminology. The rest 16 features correspond to counts
of each possible triad configuration between x, y. Recently,
Tsourakakis et al. extended this framework by including path-
based features [10]. It is worth mentioning that the model the
authors propose in [10] is closely related to the famous planted
partition model [11], [12], [13].

Prediction on Twitter. A wide variety of prediction prob-
lems have been studied on Twitter, due to its unique nature.
Petrovic, Osborne and Lavrenko [14] studied the problem
of predicting whether a user will retweet a particular tweet,
or more generally spread an item of interest. On the same
problem, Galuba et al. [15] used a propagation model to find
which users are likely to mention certain URLs. Martinčić-
Ipšić et al. [16] focus on predicting pairs of hashtags (or
words) that will co-occur in future tweets.

Jalili et al. [17] focused on the following link prediction
problem: given a set of users who participate both on Twitter
and Foursquare, predict links between users at Foursquare by
using information from the Twitter network. While experimen-
tally they do not study the inverse questions, their tools can
be used to predict links on Twitter from Foursquare. Hristova
et al. [18] enrich this framework by the use of random forest
classifiers.



Our work is however, the first —to the best of our
knowledge— that explores link prediction in the context of
different interactions among users on the Twitter network.
Abufouda and Zweig [19] use multiple networks to predict
which links among users represent actual, real-life links.
Our work differs from the bulk of such Twitter-related link
prediction problems as we focus on predicting interactions on,
and across different Twitter layers.

III. PROPOSED FRAMEWORK

In this work we focus on the following question that extends
the seminal formulation of Leskovec, Kleinberg, and Hutten-
locher [8] on predicting signed edges in online social networks,
and more generally research work on link prediction [7]:

Problem 1. Given the Twitter graph containing user
accounts and their pairwise follow, reply, retweet, and
quote interactions, and a pair of user accounts {u, v},
how accurately can we predict whether u will follow,
reply, retweet, or quote v?

Understanding Problem 1 will contribute further towards
a better understanding of user behavior on Twitter, and may
lead to detecting correlations between types of interactions
that will be useful for anomaly detection among others. We
model the input dataset as a directed, multi-label, multigraph
G = (V,E, I, `E). Specifically, the node and edge sets
V,E correspond to the set of Twitter user accounts, and
the interactions among them, respectively. Different types of
interactions are modeled by the label function, i.e., `E :
E → I is the function that labels each edge according
to the set I of all possible interactions. Here, we consider
I = {follow, quote, reply, retweet}. Our framework naturally
extends to larger sets of interactions and also weighted graphs,
i.e., graphs where each edge is associated with the counts of
interactions.

A. A Machine Learning Framework

The task of predicting a missing edge on a graph can be
thought of as the following classification problem: given a pair
of users (u, v) and an interaction type i, we are trying to learn a
function f that returns 1 if an edge (u, v) with label i is present
on the graph, and -1 otherwise. To tackle our problem, while
retaining interpretability of results, we use a simple logistic
regression framework. We use the term embeddedness —as
used also by Leskovec et al. [8]— for an edge (u, v) as the
quantity |{t|(u, t) and (t, v) ∈ E}|, the number of common
neighbors between {u, v}.
Features: As Twitter graphs are typically on the order of mil-
lions of users, we use local features that are computationally
efficient to extract. This approach also mirrors a local view
that Twitter users usually have (e.g., on their timeline) when
deciding to make an action (follow another user, reply to a
tweet, etc.). We build on features already used in relevant
related work, while also incorporating new feature sets that
capture the interplay between different types of interactions.

The first set of features that we use aims at capturing the
propensity of users to interact with other users more or less
often. To capture the breadth and relative frequency of activity
of each user, we define features based on the degrees of
corresponding nodes in the interaction graph. As Twitter is
inherently a directed network, and since we are concerned
with inferring the directionality of interaction (u, v), we use
the following 10 directed degree features: We use the out-
degree of user u for each of the interaction types in I (4
features), the in-degree of user v for those types (4 features),
as well as counts of the number of different interaction types
u initiated and v received, respectively (2 features).

The second set of features we use considers a common
neighbor t of u and v (as counted when computing the
embeddedness of (u, v)), and identifies all possible ways in
which t had an interaction with both u and v. For this set
of features, we consider each interaction type separately and
retain the directionality of edges. We have, thus, 3×3 possible
triads for each type, times 4 interaction types, yielding 36
features in total (see Fig. 2).

For the final set of features, we again employ triads as
above, but this time we make use of the interplay between
different types of interactions, e.g., for a common neighbor
t, if v retweets something that t posted, and u replies on t,
then it is likely that u follows v. To keep the cardinality of
this set of features manageable and to avoid overfitting, we
drop the directionality of the edges and use pairs of different
interactions. Thus, we have again 3 × 3 different triads for
each one of the

(
4
2

)
pairs, yielding 54 additional features (see

Fig. 3).
As our predictions are directed (u → v), we will use the

following notation for the feature names whenever we refer
to them: Out(i) will refer to the out-degree of u at layer
(interaction) i and respectively In(i) for the in-degree of v. We
will use the first letter of interactions1 to refer to every layer
i. Total(u) and Total(v) will refer to the number of different
layers u was an initiator and v a receiver. Lastly, the notation
for the triadic features is the one we describe in Figures 2 and
3.
Methodology. Using these 100 features, we train a logistic
regression model of the form:

Pr[e ∈ E|x] = 1

1 + e−(b+<w,x>)
(1)

where x is a vector representing the 100 features for a sample,
while b is the intercept and w is the vector of coefficients that
we want to learn.

For each type of interaction (e.g., reply), we randomly sam-
ple an equal number of edges where there was an interaction
of this type and where there was not. Therefore, our datasets
will be balanced, providing a baseline of how much more
accurately we can predict over random guessing. We use 10-
fold cross-validation: 10 disjoint folds, where within each fold,
90% of the edges will be used for training and the remaining
10% for validation.

1We distinguish between reply and retweets, by using r and rt , respectively.
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Fig. 4: Degree distributions on log-log scale

IV. DATASET COLLECTION

We used an open-source Twitter API crawler to monitor
Twitter traffic generated during February 2018 [20]. The
crawler targets the Greek-speaking users of Twitter, and
performs a near-total crawl of all tweets by the selected
users. Focusing the crawler in such a way produces a dense
sample of a localized part of the Twitter graph, instead of a
sparse random sample of the whole graph, as the language —
or alphabet— barrier facilitates recognizing interesting users
with high probability of locality. A similar technique has
been applied in the past for the Korean-speaking part of
Twitter [21].

The resulting dataset contains 21 million tweets, of which
9.8 million are in Greek. There are 204 million follow relations
among users that were observed before the start of February
2018, and 33 million additional follow relations crawled
during February 2018 proper. We obtain user information on
13 million unique users, and we classify 340 thousand of them
as Greek-speaking, using the conservative rule of thumb of
having posted more than 100 tweets, at least 20% of which
are in Greek. The dataset contains many more Greek-speaking
users than those classified marked as Greek-speaking, because
(i) many accounts have not yet posted enough tweets for our
heuristic to label them as Greek-speaking or not, and (ii) even
if they have shown zero evidence of tweeting in Greek, they
are followed-by or are following Greek speakers. From this
Twitter dataset we extract four graphs, namely Follow, Quote,

Reply, and Retweet, described below. Figures 4(a) and 4(b)
show their respective out-degree and in-degree distributions,
in log-log scale.

The Follow Graph is the directed graph of the follow
relation among users. The crawler uses the Twitter API to
periodically scan all tracked users for their lists of friends
and followers. Newly discovered users are given priority in
scanning, but after the first scan of friends and followers, users
are revisited in a FIFO order that requires several months to
cycle through. Moreover, the Twitter API does not date the
follow edges.2 Due to the long time interval between crawls
of the friend and follower lists, we construct a static follow
graph without time information for all edges crawled before
February 2018, and daily graphs for the follow edges crawled
during the month.

The Quote Graph is the directed, weighted graph of quote
retweets; these are tweets that include the URL of another
tweet in their text, along with commentary text. These are
rendered by most Twitter clients to include a box of the quoted
tweet within the box of the quoting tweet. A weighted edge
(u1, u2, w) indicates that there are w quote-retweets by user
u1 that quote tweets posted by user u2. As with all other dated
relations, we consider the edge to have the date of the quote,
not the original post, and extract daily aggregates for all of
February 2018.

The Reply Graph is the directed, weighted graph where an
edge (u1, u2, w) indicates that user u1 has posted w tweets
that directly reply to tweets posted by user u2. Since tweet
objects returned by the Twitter API are dated, this graph is
also dynamic, and we compute separate reply graphs for each
day of February 2018.

The Retweet Graph is the directed, weighted graph where
an edge (u1, u2, w) indicates that user u1 has retweeted
w tweets originally posted by user u2. This graph is also
dynamic, as retweets are dated. Similarly to the Reply Graph,
we compute separate retweet graphs for each day of February
2018.

2It is sometimes possible to infer approximately when a follow edge was
added [22].
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V. RESULTS

The data used in the experiments span the period of a
month, namely all interactions that occured in February 2018,
and the induced follow relationships. Table I summarizes our
dataset and the pairwise overlap between sets of nodes and
edges appearing in multiple layers, measured by the overlap
coefficient between two sets X and Y : |X∩Y |

min (|X|,|Y |) . We see
that those Twitter users involved in retweets overlap the most
with all other types of interactions.

A different set of important statistics on our layered graph
relate to edge embeddedness. Fig. 5 depicts the empirical CDF
of (undirected) edge embeddedness for each of the four layers
of the graphs. The fifth CDF depicts edge embeddedness for
the induced graph that has an undirected edge (u, v) if u and
v participated in any type of interaction. For quotes, replies,
and retweets, around 80% of edges have zero embeddedness;
for follows, this percentage drops to 63%, and when any
type of interaction is considered, only 40% of edges have
zero embeddedness. Conversely, more than 20% of edges
have any-type embeddedness exceeding a value of 50. Higher
embeddedness reflects higher adherence to triadic closure,
and we see that the follows interaction has the strongest
individual effect. The much higher values of embeddedness
when considering multiple types of interactions additionally
demonstrate the promise of using specific triadic features in
prediction.

One hand helping another. Our first experiment focuses on
the standard link prediction problem, to test what kind of
benefits in terms of prediction accuracy can be obtained by
leveraging additional interactions of other types. Intuitively,
we expect that leveraging information from additional Twitter
layers should strictly improve link prediction. Consider for
instance, a reply interaction. Frequently, replies are correlated
with other interactions, e.g., two users who follow each other
may have first retweeted the same tweet before one replies
to the other. We verify this intuition experimentally. As moti-
vated previously in Section I (see Figure 1), we quantify the
improvements in performance by leveraging information from
one additional layer. As in all subsequent experiments, we
perform 10-fold cross validation, and report the classification
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Fig. 6: Bar chart of accuracy prediction using different set of
features

accuracy, defined to be the fraction of correct predictions.
Table II reports mean accuracy over the 10 folds of cross-
validation using no extra layers (first column), and all extra
interaction layers (second column). The third column shows
the relative improvement we obtain when we add all extra
layers as part of the training input, clear illustration of the
benefits of the proposed framework. It is worth mentioning
that for each day, the accuracies we observe over the 10-folds
are well concentrated around their mean. They never exceed
10−3 across all days and types of interactions, so we omit
reporting them.

Which layer helps most? Suppose we want to predict links on
a given layer. We now ask, which of the other layers adds most
information to the link prediction classifier? This question is
important for two reasons. First it provides significant insights
on how Twitter users behave. Secondly, when computational
resources are scarce, then one may want to leverage infor-
mation from only one additional layer. As we can observe
from the heat map in Figure 1, for all types of interactions,
retweets help most in boosting accuracy. But, for predicting
retweets themselves, quotes form the most informative layer
of interactions. We assume that this is because quotes are
essentially a special type of retweet (even if they are regarded
as different by Twitter), where users not only retweet the
original tweet, but also add their comment.

Overall accuracy and weights of features. Table III and
Figure 6 summarize our results for the classification accuracy
when using different sets of features. As we can see, our
framework achieves an accuracy ranging from 71.5% for the
quote type to roughly 80% for the follow type of interaction.
For all types of features, the degree features are the ones that
achieve the best performance. However, as we will see in the
following, triadic features matter a lot when triads exist in
greater abundance.

Figure 7 displays the features with the highest absolute
value (positive and negative) of their learned coefficient
weights. As the range of each feature differs significantly
from one another, we have standardized them (with a mean
value of 0 and standard deviation of 1) and we also used `2-
norm regularized logistic regression to obtain sparse solutions.
From this figure, we see that the degree features are the ones
that play the most important role in predicting interactions.



TABLE I: Number of users, directed edges and fraction of common interacting nodes and edges using overlap coefficients
(Feb 1–28, 2018)

Nodes Edges Node Overlap Coefficient Edge Overlap Coefficient
All types 1,125,044 5,000,833 F Q R RT F Q R RT
Follow(F) 143,453 1,082,997 1 1
Quote(Q) 271,824 666,820 0.44 1 0.17 1
Reply(R) 530,956 1,259,970 0.58 0.57 1 0.21 0.10 1
Retweet(RT) 762,459 3,501,240 0.90 0.63 0.42 1 0.85 0.23 0.19 1

TABLE II: Accuracy and relative improvement from using
additional layers

Interaction
Type

Accuracy
(one layer)

Accuracy (all
layers)

Relative
improvement

Follow 0.736 0.797 8.29%
Quote 0.626 0.715 14.22%
Reply 0.581 0.769 32.36%
Retweet 0.682 0.771 13.05%

TABLE III: Accuracy of prediction using different set of
features

Type All Degree Single
triads

Pairwise
triads

All tri-
ads

Follow 0.797 0.784 0.725 0.728 0.734
Quote 0.715 0.693 0.630 0.672 0.685
Reply 0.769 0.756 0.655 0.671 0.672
Retweet 0.771 0.743 0.675 0.667 0.683

Observe that for predicting retweets uses mostly features from
the same layer, and appears to be negatively correlated with
other types of interactions.

Certain triadic features (see Figures 2 and 3 for the
id-encoding) —which are very important in terms of inter-
pretability, as they can explain patterns of interactions among
users—also play an important role. For follow and retweet
types, we observe that transitive closure, T3(rt), and hierarchy,
T5(f) and T5(rt), can explain the existence of an edge of this
type. While for quotes, two users that have quoted a common
user tend to also have a retweet relationship between them,
P8(q, rt). We note that these are some first findings of our
work, as the task of understanding user behavior on twitter is
much broader, and is an interesting open direction.

Are degrees or triads more informative features?
As triadic features constitute a key part of our framework, it
is important to understand when they provide crucial informa-
tion. Intuitively, we expect that the prediction accuracy should
increase as the embeddedness of (u, v) increases, simply
because these features make use of an intermediate node t
in order to predict an interaction between u and v. On the
other hand, logistic regression coefficients imply that degree
features are more important than triads. This naturally brings
the question whether triads or degrees are more important
features? The answer is enlightening, and we explain it in
detail in the following:

When a pair of nodes has a large embeddedness
value, then triads are more informative. However,
logistic regression coefficients indicate degree-based
features are more important simply because most
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Fig. 7: Highest (in absolute value) logistic regression coeffi-
cient weights

of the interactions have zero or very few common
neighbors (as we saw in Figure 5).

To consider how prediction accuracy varies by embed-
dedness, we revisit the broadest form of embeddedness: the
number of common neighbors in the undirected graph across
all interaction types, i.e., computing embeddedness without
regard to directionality of edges or layers. We noted that this
notion of full embeddedness, as also depicted in Figure 5,
necessarily has higher values of embeddedness than any of
the layer-specific measures.
How embeddedness relates to accuracy. Initially, in Fig. 8,
we depict for all pair of users grouped by their embeddedness
value, the fraction of those pairs for which an edge exists
between them. Figure 9 depicts prediction accuracy as we
have grouped the results according to the embeddedness of
an edge. We find that the task of predicting Quotes and
Retweets becomes easier as the embeddedness of an edge
increases. Interestingly, for the Follow interaction, we observe
that the accuracy actually decreases for the smallest values of
embeddedness (with a minimum at 7), which is followed by a
steady increase later. This can be explained by the fact that for
follows, the absence of any triad between a pair of nodes, is a
very strong indication of the absence of a follow relationship
among these two users. As we can see in Fig. 8 for only 20%
of pairs of zero embeddedness there is a follow relationship
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Fig. 8: For all pairs of users that have a certain embeddedness
value (x-axis), we calculate the fraction of those pairs that also
have an edge between them (y-axis)
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Fig. 9: Average accuracy for edges of certain embeddedness

between them.

When do triads start being more informative than de-
greesa? Our final set of experiments test the efficiency of all of
our features, both degree and triadic, as we restrict attention to
subgraphs whose edges all exceed an embeddedness threshold.
On the x-axis of Fig. 10, we vary the threshold value for edge
embeddedness in order to include it in our dataset, varying it
from 0 to 30. On the y-axis, we plot average link prediction
accuracy, with three curves for predictions using only degree
features, only triadic features, and all features, respectively.

In general, prediction accuracy follows observations we
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Fig. 10: Prediction accuracy vs. embeddedness threshold. The
figures show the prediction accuracy when using only edges
above a certain embeddedness threshold (x-axis)

made before. However, a salient and interesting difference is
the fact that, while the degree features were the ones that were
leading to higher accuracy previously, now, when every edge
in our dataset meets an embeddedness threshold, the triadic
features are those that become crucial in predicting edges.
These observations lead us to the following conclusion: while
degree features are important in predicting edges when the
two endpoints have few (or no) neighbors in common, the
triadic features act complementarily by improving predictions
for edges with higher embeddedness. This agrees with existing
findings for edge sign prediction [8], [10].

VI. CONCLUSION

Open problems. Our work opens numerous interesting ques-
tions in a range of application domains, including two we
consider here: in graph anomaly detection, and in approximate
graph inference. In the first direction, can we use existing al-
gorithms [23], [24] to locate “anomalous” higher-dimensional
subgraphs, e.g., k-cliques for small k, or other observed
motifs, and detect subsets of nodes that are dense in these
rare subgraphs? In another direction, we note that rate-limiting
of requests to the Twitter API is not specific to our work,
but exemplifies a challenge in measurement where conducting
probes incurs a measurable cost. In this setting, maximizing
the utility of a set of measurements that is feasible in a cost
or time budget becomes paramount, especially when there
is significant correlation and structure across measurements.
We view this as especially relevant in scenarios in predictive
analytics, where the objective function hinges on prediction
accuracy of future queries (such as link predictions) that arrive
as an online request stream, not known a priori.

Also, can we use social theories along the lines of [8]
to explain how Twitter users react, and which modalities of



interaction they select? Finally, are our findings consistent
across other subpopulations of users, e.g., those using either
other common languages or forming subcommunities around
different shared interests?
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