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A Digital Fountain Approach to Asynchronous
Reliable Multicast

John W. Byers, Michael Luby, and Michael Mitzenmacher, Member, IEEE

Abstract—The proliferation of applications that must reliably
distribute large, rich content to a vast number of autonomous re-
ceivers motivates the design of new multicast and broadcast pro-
tocols. We describe an ideal, fully scalable protocol for these ap-
plications that we call a digital fountain. A digital fountain allows
any number of heterogeneous receivers to acquire content with op-
timal efficiency at times of their choosing. Moreover, no feedback
channels are needed to ensure reliable delivery, even in the face of
high loss rates.

We develop a protocol that closely approximates a digital foun-
tain using two new classes of erasure codes that for large block
sizes are orders of magnitude faster than standard erasure codes.
We provide performance measurements that demonstrate the fea-
sibility of our approach and discuss the design, implementation,
and performance of an experimental system.

Index Terms—Content delivery, erasure codes, forward error
correction, reliable multicast, scalability.

I. INTRODUCTION

A NATURAL solution for companies that plan to effi-
ciently disseminate large, rich content over the Internet

to millions of concurrent receivers is multicast or broadcast
transmission. These transmissions must be fully reliable, have
low network overhead, support vast numbers of receivers with
heterogeneous characteristics, and should be deployed with a
minimum of server-side infrastructure investment. Activities
that have such requirements include distribution of software,
archived video, financial information, music, and games. One
method for content dissemination is to “push” content from
a single source to multiple receivers, which can be achieved
by reliable multicast, but many applications require more than
just a reliable multicast protocol, since receivers will wish to
access the data at times of their choosing, their access speeds
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will vary, and their access times will overlap with those of
other receivers. Our general approach will accommodate both
of these application styles.

While unicast protocols successfully use receiver-initiated
requests for retransmission of lost data to provide reliability, it
is widely known that the multicast analogue of this solution is
unscalable. For example, consider a server distributing a new
software release to thousands of receivers. As receivers lose
packets, their requests for retransmission can quickly over-
whelm the server in a process known as feedback implosion.
Even in the event that the server can handle the requests, the
retransmitted packets are often of use only to a small subset of
the receivers. More sophisticated solutions that address these
limitations by using techniques such as local repair, polling,
or the use of a hierarchy have been proposed [10], [15], [21],
[26], [34], but these solutions as yet appear inadequate [24].
Moreover, whereas adaptive retransmission-based solutions are
at best unscalable and inefficient on terrestrial networks, they
are unworkable on satellite networks, where the back channel
typically has high latency and limited capacity, if it is available
at all.

The problems with solutions based on adaptive retransmis-
sion have led many researchers to consider applying forward
error correction (FEC) based on erasure codes (also known as
FEC codes) to reliable multicast [11], [22], [23], [25], [28], [29],
[31], [32]. The basic principle behind the use of erasure codes
is that the original source data, in the form of a sequence of

packets, along with additional redundant packets, are trans-
mitted by the sender, and the redundant data can be used to re-
cover lost source data at the receivers. A receiver can reconstruct
the original source data once it receives a sufficient number of
packets. The main benefit of this approach is that different re-
ceivers can recover from different lost packets using the same
redundant data. In principle, this idea can greatly reduce the
number of retransmissions, as a single retransmission of redun-
dant data can potentially benefit many receivers simultaneously.

The work of Nonnenmacheret al. [25] defines a hybrid
approach to reliable multicast, coupling requests for re-
transmission with transmission of redundant codewords and
quantifies the benefits of this approach in practice. Their work,
and the work of many other authors, focus on erasure codes
based on Reed–Solomon (RS) codes [12], [22], [23], [28],
[29], [31]. The limitation of these codes is that encoding and
decoding times are slow on large block sizes (quadratic in the
block size), effectively limiting to small values for practical
applications. Hence, their solution involves breaking the source
data into small blocks of packets and encoding over these
blocks. Receivers that have not received a packet from a given
block request retransmission of an additional codeword from
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that block. They demonstrate that this approach is effective
for dramatically reducing the number of retransmissions when
packet loss rates are low (they typically consider 1% loss
rates). However, this approach cannot eliminate the need for
retransmissions, especially as the number of receivers grows
large or for higher rates of packet loss. This general approach
also does not enable receivers to join the session dynamically.

To eliminate the need for retransmission and to allow re-
ceivers to access data asynchronously, the use of adata carousel
or broadcast disk approach can ensure full reliability [1]. In
a data carousel approach, the source repeatedly loops through
transmission of all data packets. Receivers may join the stream
at any time and then listen until they receive all distinct packets
comprising the transmission. Clearly, the reception overhead at
a receiver, measured in terms of unnecessary receptions, can be
extremely high using this approach. As shown in [2], [29], and
[31], adding redundant codewords to the carousel can dramati-
cally reduce reception overhead. These papers advocate adding
a fixed amount of redundancy to blocks of the transmission
using RS codes. The source then repeatedly loops through the
set of blocks, transmitting one data or redundant packet about
each block in turn until all packets are exhausted and then re-
peats the process. This interleaved approach enables the receiver
to reconstruct the source data once it receives sufficiently many
packets from each block. The limitation of using this approach
over lossy networks is that the receiver may still receive many
unnecessary packets from blocks that have already been recon-
structed while waiting for the last packets from the last few
blocks it still needs to reconstruct. We quantify the performance
cost of such an approach in Section VI.

The approaches described above that limit the need for re-
transmission requests can be thought of as imperfect approxima-
tions of an ideal solution, which we call adigital fountain. A dig-
ital fountain is conceptually simpler, more efficient, and appli-
cable to a broader class of networks than previous approaches.
A digital fountain injects a stream of distinct encoding packets
into the network, from which a receiver can reconstruct the
source data. The key property of a digital fountain is that the
source data can be reconstructed intact fromanysubset of the
encoding packets equal in total length to the source data. The
digital fountain concept resembles ideas found in the seminal
works of Maxemchuk [20] and Rabin [27]. Our approach is to
construct better approximations of a digital fountain from fast
erasure codes as a basis for protocols that perform reliable dis-
tribution of bulk data.

We emphasize that the digital fountain concept is quite gen-
eral and can be applied in diverse network environments. For
example, our framework for data distribution is applicable not
only to multicast on the Internet but also to satellite and wire-
less networks. These environments are quite different in terms of
packet loss characteristics, congestion control mechanisms, and
end-to-end latency; we strive to develop a solution independent
of these environment-specific variables. These considerations
motivate us to study, for example, a wide range of packet loss
rates in our comparisons.

The body of the paper is organized as follows. In Section II,
we describe in more detail the characteristics of the problems
we consider. In Section III, we describe the digital fountain so-
lution. In Section IV, we describe how to build a good theo-

retical approximation of a digital fountain using erasure codes.
A major hurdle in implementing a digital fountain is that stan-
dard RS codes have unacceptably high running times for these
applications. Hence, in Section V, we describe Tornado codes
[18]: a class of erasure codes that have extremely fast encoding
and decoding algorithms but which still do not realize all the
benefits of a digital fountain solution. We then outline the prop-
erties of a new class of codes, Luby transform (LT) codes [17],
which for all practical purposes realize the digital fountain solu-
tion and have been used commercially in the products of Digital
Fountain, Inc. [9]. Both of these classes of codes generally yield
a far superior approximation to a digital fountain than can be
realized with RS codes in practice, as we show in Section VI.
In Section VII, we describe the design and performance of a
working prototype system for bulk data distribution based on
Tornado codes that is built on top of IP Multicast. The perfor-
mance of the prototype bears out the simulation results, and it
also demonstrates the interoperability of this work with the lay-
ered multicast techniques of [6], [32], and others. We conclude
with additional research directions we are pursuing which in-
stantiate the digital fountain approach for other content distri-
bution methods.

II. REQUIREMENTS FOR ANIDEAL PROTOCOL

We recall an example application in which millions of re-
ceivers want to download a new release of software over the
course of several days. For this application, we assume that there
is a single distribution server, and that the server will send out a
stream of packets (using either broadcast or multicast) as long as
there are receivers attempting to download the new release. This
software download application highlights several important fea-
tures common to many similar applications that must distribute
bulk data. In addition to keeping network traffic to a minimum, a
protocol for distributing the software using multicast should be:

• Scalable:Server load remains constant whether there are
one or a million receivers.

• Reliable: An exact copy of the original file is recon-
structed by each receiver.

• Reception-efficient:The total number of packets each re-
ceiver needs to reconstruct the file is minimal. Ideally, the
aggregate length of packets needed is equal to the length
of the original file.

• Time-efficient: The amount of processing required to
generate packets at the server and to reconstruct the file
from received packets at the receiver is minimal.

• Time-independent:Receivers may initiate the download
at their discretion, implying that different receivers may
start the download at widely disparate times. Receivers
may sporadically be interrupted and continue the down-
load at a later time.

• Server-independent:Receivers may collect packets for
the file from one or more servers that are transmitting
packets. No coordination between servers should be re-
quired for this.

• Tolerant: The protocol should tolerate a heterogeneous
population of receivers, especially a variety of end-to-end
packet loss rates and data rates.
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We also state our assumptions regarding channel character-
istics. Internet protocol (IP) multicast on the wired Internet,
or group communication over satellite, wireless, and cable are
representative of channels we consider. Perhaps the most im-
portant property of these channels is that the return feedback
channel from the receivers to the server is typically of limited ca-
pacity or is nonexistent. This is especially applicable to satellite
transmission. These channels are generally packet-based, and
each packet has a header including a unique identifier. They are
best-effort channels designed to attempt to deliver all packets,
but frequently, packets are lost or corrupted. Wireless networks
are particularly prone to high rates of packet loss, and all of the
networks we describe are prone to bursty loss periods. We as-
sume that error-correcting codes (used independently from the
erasure codes we consider) are used to detect and correct errors
within a packet. If a packet contains more errors than can be
corrected by these codes, the error detection is used to recog-
nize that the packet still contains uncorrectable errors, and the
packet is discarded and treated as a loss. Thus, a packet either
arrives completely intact and error-free, or it is lost.

The requirement that the solution be reliable, reception-effi-
cient, and either time-independent, server-independent, or tol-
erant implies that receiver robustness to any pattern of missing
packets is crucial. For example, a receiver may sporadically be
interrupted, resuming the download one or more times before
completion. During the interruptions, the server will continue
sending out a stream of packets (to other interested receivers)
that an interrupted receiver will miss. The efficiency require-
ment implies that the total length of all the content that a receiver
must receive in order to recover the file should be approximately
equal to the total length of the file.

III. D IGITAL FOUNTAIN SOLUTION

In this section, we outline an idealized solution that achieves
all the objectives laid out in Section II for the channels of in-
terest to us. In Sections IV–VII, we describe and evaluate a new
approach that implements an approximation to this ideal solu-
tion that is superior to previous approaches.

A universe of receivers wish to acquire a source file. In the
idealized solution, one or more servers send out a stream of en-
coding packets (each packet distinct from all others) that contain
encoding data generated from the source file. The servers will
generate and transmit encoding packets whenever there are any
receivers joined to the sessions carrying the packets. A client
remains joined to sessions from a subset of the servers until the
aggregate length of all encoding packets it has received is equal
to the length of the source file. In this idealized solution, each re-
ceiver can reconstruct an exact copy of the original file from the
received encoding packets, independent of which servers gener-
ated the encoding packets, independent of losses, and indepen-
dent of the intervals of time the receiver was joined to the ses-
sions. Ideally, the amount of processing required by the servers
to generate encoding packets and by the receivers to reconstruct
the file from received encoding packets is minimal.

We metaphorically describe the stream of encoding packets
produced by one of the servers in this idealized solution as a
digital fountain. The digital fountain has properties similar to a
fountain of water; drinking a glass of water, irrespective of the

particular drops that fill the glass, quenches one’s thirst. The
digital fountain approach has all the desirable properties listed
in Section II and functions over channels with the characteristics
outlined in Section II.

An ideal way to implement a digital fountain is to directly use
an erasure code that takes source data consisting ofsource
packets and produces sufficiently many encoding packets to
meet user demand. Indeed, standard erasure codes such as RS
erasure codes have the ideal property that a decoder at the client
side can reconstruct the original source data whenever it receives
any of the encoded packets, but as we shall show in Section IV,
a straightforward implementation of a digital fountain using a
RS code is impractical.

IV. L IMITATIONS OF BUILDING A DIGITAL FOUNTAIN

WITH RS CODES

We now consider implementation issues associated with
building a digital fountain from RS codes. There are two
related considerations. The first is running time, specifically the
time it takes to generate an encoding, and the time it takes to
decode. The second and more subtle consideration is a practical
limitation on the size of an encoding that can be generated.

We begin with some terminology. Erasure codes are typically
used to stretch a file consisting ofsource packets into en-
coding packets, where bothand are input parameters. We
refer to as thestretch factorof an erasure code. This
finite stretch factor naturally limits the extent to which erasure
codes can approximate a digital fountain; a reasonable approx-
imation proposed by other researchers (e.g., [23], [28], [29],
[32]) is to set to be a multiple of and then repeatedly cycle
through transmission of theseencoding packets.

For RS codes, the size of the finite field symbol alphabet is
an upper bound on, and this size limits the stretch factor. In
most practical implementations, the alphabet size is 256 (each
symbol is one byte), which limits to values of 256 or less. It is
possible to use a larger alphabet size for RS codes, e.g., 65 536
(each symbol is two bytes), but in this case, the practical stretch
factor is severely limited to small values due to processing con-
siderations. On the encoding side, the operations needed to gen-
erate encoding packets requires 2 exclusive-ORs
of source packets, whereis the length of a symbol (16 in this
example). Thus, for example, if 10 000, and 20 000 (a
moderate stretch factor of two), then it takes 800 000 000 exclu-
sive-ORs of source packets to produce 20 000 encoding packets
from 10 000 source packets or around 80 000 exclusive-ORs of
source packets per source packet, which is prohibitively expen-
sive. Thus, even a moderate stretch factor of two is not practi-
cally possible for moderate values of. For all but very small
values of , the practical limitation on is a few hundred
at most, as the processing overhead to produce the encoding per
source packet is linear in 2. (Values used in [25], [29],
[31], and [32] have and ranging from 8 to 256). The de-
coding time is typically comparable to the encoding time for RS
codes.

There are several other significant limitations with constant
stretch factors. The first limitation regards packet loss in the net-
work—for any prespecified value of, under sufficiently high
loss rates, a receiver may not receiveout of packets in one
cycle. In such a setting, a receiver may receive useless duplicate
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transmissions in cycles subsequent to the first before being able
to reconstruct the source data, thereby decreasing the channel ef-
ficiency. A similar effect would occur if a user wished to pause
during a download. Upon resuming a download, the receiver
might obtain a significant number of duplicate transmissions,
depending on where in the cycle they resume. A more signifi-
cant limitation arises when receivers do not obtain transmitted
packets for reasons other than packet loss in the network. An
example we consider in more detail in Section VII-B is that of
a cumulative layered multicast scheme used to serve heteroge-
neous receivers with different transfer rates. Slow receivers re-
ceive only a fraction of the packets transmitted to the fastest
receiver by virtue of their lower subscription level. Hence, data
encoded with a constant stretch factor must be scheduled very
carefully among the layers to reduce the incidence of duplicate
transmissions. Similar considerations arise in the case of a par-
allel download, where a source may download encoding packets
from several receivers concurrently. A finite stretch factor re-
quires proper scheduling to reduce the incidence of duplicate
transmissions, as explained in [7]. For all of these reasons, sys-
tems where encoding packets can be generated on-the-fly may
be preferable in many situations.

The first alternative we propose to avoid the problems of RS
codes is to use Tornado codes [18]. The main drawback of using
Tornado codes relative to RS is that the decoder requires slightly
more than of the transmitted packets to reconstruct the source
data. This tradeoff is the main focus of our comparative simu-
lation studies that we present in Section VI. We also suggest
a second alternative: LT codes [17]. Whereas Tornado codes
admit only moderate stretch factors and have a decoding time
that depends on, LT codes can generate encodings with ef-
fectively unbounded stretch factorsandcan be decoded in time
depending only on (and not ). We provide a description of
the constructions used to build these codes and their properties
in Section V.

V. TORNADO AND LT CODES

In this section, we describe in some detail the construction of
a specific Tornado code and explain some of the general princi-
ples behind Tornado codes. We also briefly describe the proper-
ties of the LT code, which are similar in some respects to Tor-
nado codes but exhibit additional key properties which provide
a better approximation to an idealized digital fountain. We first
outline how the theoretical basis for these codes differs from
the traditional RS erasure codes. Then, we give a specific ex-
ample of a Tornado code based on [18], [19] and compare its
performance to a standard RS code. For the rest of the discus-
sion, we will consider erasure codes that take a set ofsource
data packets and produce a set ofredundant packets for a total
of encoding packets, all of a fixed length.

A. Theory

We begin by providing intuition behind RS codes. We think
of the th source data packet as containing the value of a vari-
able and the th redundant packet as containing the value
of a variable that is a linear combination of over
an appropriate finite field. (For ease of description, we asso-
ciate each variable with the data from a single packet, although
in our simulations, each packet may hold values for several

variables). For example, the third redundant packet might hold
, where is some primitive ele-

ment of the field. Typically, the finite field multiplication opera-
tions are implemented using table lookup, and the addition oper-
ations are implemented using exclusive-OR. Each time a packet
arrives, it is equivalent to receiving the value of one of these
variables.

RS codes guarantee that successful receipt of anydistinct
packets enables reconstruction of the source data. When
redundant packets and source data packets arrive, there
is a system of equations corresponding to theredundant
packets received. Substituting all values corresponding to the
received packets into these equations takes
exclusive-ORS of source packets, where is the length of a
symbol. The remaining subsystem hasequations and un-
knowns corresponding to the source data packets not received.
With RS codes, this system has a special form that allows one
to solve for the unknowns in time proportional to via a
matrix inversion and matrix multiplication. Theoretical work
demonstrates methods for RS encoding and decoding which
are asymptotically faster than quadratic time but nevertheless
perform more slowly than the quadratic algorithms for practical
values of and .

The large decoding time for RS codes arises from thedense
system of linear equations used. Both Tornado and LT codes are
built using a set of random equations that aresparse, i.e., the
average number of variables per equation is small. This spar-
sity allows substantially more efficient encoding and decoding.
The price paid for much faster encoding and decoding is that
packets no longer suffice to reconstruct the source data; instead,
slightly more than packets are needed. Designing the proper
structure for the system of equations so that the number of ad-
ditional packets and the coding times are simultaneously small
is a difficult challenge [18], [19].

For both Tornado and LT codes, the linear equations have the
form , where is bitwise exclusive-OR. Tor-
nado codes also use equations of the form ;
that is, redundant packets may be derived from other redundant
packets, and in general, there may be several layers of redun-
dant packets, each depending on the previous layer of packets.
For Tornado codes, the equations of various forms are carefully
chosen in advance. In particular, the number of encoding packets

must be predetermined before encoding and, thus, the stretch
factor for Tornado codes is fixed at encoding time. For prac-
tical purposes, the stretch factor for Tornado codes is restricted
to be a small multiple of , i.e., the stretch factor is generally
ten or less. This restriction causes similar limitations to those
described earlier for RS codes, albeit not as severe. The number
of exclusive-ORs of source packets per source packet to produce
the encoding is a small constant, e.g., in the Tornado Z imple-
mentation in Section V-B, where 16 000 and 32 000;
this constant is 14. Thus, unlike RS codes, the encoding time
per source packet does not grow asand grow. The decoding
time for Tornado codes is essentially the same as the encoding
time.

For LT codes, there is no predetermined value of, as the
equations placed into each encoding packet are generated inde-
pendently of all other encoding packets. Thus, the stretch factor
for LT codes is inherently unlimited, as an unlimited number of
encoding packets can be generated. For LT codes, the average
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number of exclusive-ORs to generate each encoding packet and
to reconstruct each source packet is upper bounded by the av-
erage number of variables in each equation. For values ofthat
are in the hundreds of thousands, for current commercial imple-
mentations of LT codes, this average is around 20. Thus, unlike
RS codes, the average time to produce each encoding packet and
to decode each source packet does not grow dramatically as
grows.

The decoding process for both Tornado and LT codes repeat-
edly uses the following simplerecovery rule. Find any equation
with exactly one variable, recover the value of the variable by
setting it equal to the value of the equation (this uses up the equa-
tion), and then remove the newly recovered variable from any
other equations which appears in exclusive-ORing its value into
each of these equations. For example, consider the equations

, , , and .
Then, we apply the recovery rule repeatedly as follows.

1) The value of is recovered from the equation .
Then, the value of is XORed into and , yielding
new simplified equations and , together
with the unchanged equation .

2) The value of is recovered from the equation
. Then, the value of is XORed into , yielding the

new simplified equation together with the
unchanged equations .

3) The value of is recovered from the equation .
Then, the value of is XORed into , yielding the new
simplified equation .

4) The value of is recovered from the equation .

The applicability of the recovery rule usually remains minimal
until slightly more than encoding packets have arrived. Then,
often, the single arrival of a new encoding packet containing an
equation triggers a whirlwind of applications of the rule, leading
to the recovery of all source packets. This whirlwind explains
the origin of the name Tornado codes.

The decoding may stop as soon as enough packets arrive so
that the source data can be reconstructed. Note that the fast era-
sure codes use only exclusive-OR operations and avoid both the
field operations and the matrix inversion inherent in decoding
RS codes. The total number of exclusive-OR operations for de-
coding is at most the number used for encoding and, in general,
is less.

For Tornado codes and LT codes, we say that thedecoding in-
efficiencyis 1 if 1 encoding packets are required to re-
construct the source file consisting ofsource packets. For both
of these codes, the loss pattern associated with encoding packets
is immaterial as to whether or not a receiver can recover the
source file from a given number of encoding packets, but there
is some variance in the number of encoding packets needed to
recover the source file due to the randomness used by the en-
coding algorithms. For the Tornado Z code implementation de-
scribed in Section V-B, the decoding inefficiency is more than
1.06 with probability 1/10 and was not more than 1.10 in 10 000
trials. Nevertheless, these implementations of Tornado codes do
not have tight enough bounds on the decoding inefficiency for
commercial applications. For the current Digital Fountain com-
mercial implementations of LT codes, the decoding inefficiency

TABLE I
PROPERTIES OFTORNADO VERSUS RS CODES

WHEN A FIXED STRETCH FACTOR IS EMPLOYED

TABLE II
PROPERTIES OFLT VERSUSRS ON-THE-FLY CODES

is more than 1.05 with probability less than 10for almost any
size source file.

One of the advantages of Tornado codes and LT codes over
standard codes is that they trade-off a small degradation in de-
coding inefficiency for a substantial improvement in encoding
and decoding times. Recall that RS codes have encoding and
decoding times proportional to 2, where is the
size of the finite field symbol alphabet andis the packet size.
In contrast, Tornado codes have asymptotic inencoding and
decoding times proportional to 1 with decoding inef-
ficiency 1 . A summary comparing the asymptotic properites
of encoding packet generation and file reconstruction for Tor-
nado codes and RS codes is provided in Table I.

Tornado codes have the drawback that a stretch factor must
be predetermined before encoding takes place and that the de-
coding time is proportional to the stretched encoding length.
Furthermore, the stretch factor in practice can only be a small
multiple, e.g., four. Tornado codes are not entirely suitable for
situations where there are substantial loss rates, when the re-
ceiver may request to receive only a fraction of the encoding
packets transmitted, or when the receiver may receive encoding
packets from multiple senders for the same file. LT codes do not
share any of these limitations. With LT codes, each encoding
packet is produced on-the-fly from an extremely large set of
possibilities at the same average processing cost as every other
encoding packet. Because of this, the fraction of duplicate en-
coding packets produced is tiny. Thus, a receiver is unlikely to
receive any significant number of duplicate encoding packets,
even if receiving packets from multiple senders for the same
file and even if receiving only a small fraction of generated en-
coding packets, independent of loss patterns. The analysis of
the decoding inefficiency for LT codes accounts for this possi-
bility, and as stated previously, the probability of failing to re-
cover the source file from any set of 1.05encoding packets
is tiny for commercial implementations of LT codes. LT codes
have asymptotic in time per encoding packet proportional to

and decoding time for the source file proportional to
with decoding inefficiency that is asymptotically one.

Thus, LT codes are a practical realization of an idealized digital
fountain. A summary comparing the asymptotic properties of
encoding packet generation and file reconstruction for LT codes
and RS codes is provided in Table II.
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Fig. 1. Structure of Tornado codes.

In Section V-B, we present an example of a fast Tornado code
with decoding inefficiency 1 1.054, whose performance
we compare directly with RS codes.

B. Example

We now provide a specific example of a Tornado code. It
is convenient to describe the association between the variables
and the equations in terms of a layered graph, as depicted in
Fig. 1. The nodes of the leftmost layer of the graph correspond
to the source data. Subsequent layers contain the redundant data.
Each redundant packet is the exclusive-OR of the packets held
in the neighboring nodes in the layer to the left, as depicted on
the right side of Fig. 1. The number of exclusive-OR operations
required for both encoding and decoding is thus dominated by
the number of edges in the entire graph.

We specify the code by specifying the random graphs to place
between consecutive layers. The mathematics behind this code,
which we call Tornado Z, is described in [18] and [19] and will
not be covered here. This code has 16 000 source data nodes and
16 000 redundant nodes, i.e., it employs a stretch factor of two.
The code uses three layers; the number of nodes in the layers
are 16 000, 8000, and 8000, respectively.

The graph between the first two layers is the union of two
subgraphs and . The graph is based on atruncated
heavy taildistribution. We say that a layer has a truncated heavy
tail distribution with parameter when the fraction of nodes
of degree is for .
The graph connects the 16 000 source data nodes to 7840
of the nodes at the second layer (the remaining 160 nodes at
the second layer are used in ). The node degrees on the left
hand side are determined by the truncated heavy tail distribu-
tion, with 200. For example, this means that there are

nodes of degree 2 on the
left-hand side. Each edge is attached to a node chosen uniformly
at random from the 7840 on the right-hand side.1 The distribu-
tion of node degrees on the right-hand side is therefore Poisson.

1Notice that this may yield some nodes of degree 0 on the right-hand side;
however, this happens with small probability, and such nodes can be removed.
Also, there may be multiple edges between pairs of nodes. This does not affect
the behavior of the algorithm dramatically, although the redistribution of such
multiple edges improves performance marginally.

TABLE III
COMPARISON OFENCODING TIMES

In the second graph , each of the 16 000 nodes on the left
has degree 2. The nodes on the right are the remaining 160 nodes
at the second layer, and each of these nodes has degree 200. The
edges of are generated by randomly permuting the 32 000
edge slots on the left and connecting them in that permuted order
to the 160 nodes on the right. The graphhelps prevent small
cycles in from halting progress during decoding.

The graph between the second and third layers of nodes uses a
specific distribution, designed using a linear programming tool
discussed in [18] and [19]. The linear program is used to find
graphs that have low decoding inefficiency. In this graph, all of
the 8000 nodes on the left have degree 12. On the right-hand
side there are 4093 nodes of degree 5, 3097 nodes of degree
6, 122 nodes of degree 33, 472 nodes of degree 34, one node
of degree 141, 27 nodes of degree 170, and 188 nodes of degree
171. The connections between the edge slots on the left and right
are selected by permuting the edge slots on the left randomly
and then connecting them to the edge slots on the right. In total,
there are 222 516 edges in this graph, or approximately 14 edges
per source data node. The sparseness of this graph enables the
very fast encoding and decoding.

C. Performance

In practice, Tornado codes where values ofand are on
the order of tens of thousands can be encoded and decoded in
just a few seconds. In this section, we compare the efficiency
of Tornado codes with standard codes that have been previously
proposed for network applications [11], [25], [28], [29], [31],
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TABLE IV
COMPARISON OFDECODING TIMES

Fig. 2. Decoding inefficiency variation over 10 000 trials of Tornado Z.

[32]. The erasure code listed in Tables III and IV asCauchy
[4] (available at [13]) is a standard implementation of RS era-
sure codes based on Cauchy matrices. The Tornado Z codes
were designed as described earlier in this section. The imple-
mentations were not carefully optimized, so their running times
could be improved by constant factors. All experiments were
benchmarked on a Sun 167 MHz UltraSPARC 1 with 64 MB of
RAM running Solaris 2.5.1. Although this hardware is no longer
state of the art, the running times nevertheless reflect the essen-
tial asymptotic and behavioral difference between RS codes and
Tornado codes. All runs are with packet length KB. For
all runs, a file consisting of packets is encoded into 2
packets, i.e., the stretch factor is two.

For the decoding of the Cauchy codes, we assume that2
original file packets and 2 redundant packets were used to
recover the original file. This assumption holds approximately
when a carousel encoding with stretch factor two is used, so that
roughly half the packets received are redundant packets.

Tornado Z has an average decoding inefficiency of 1.054, so
on average 1.054 2 original file packets and 1.054 2 re-
dundant packets were used to recover the original file. Our re-
sults demonstrate that Tornado codes can be encoded and de-
coded much faster than RS codes, even for relatively small files.

We note that there is a small variation in the decoding ineffi-
ciency for decoding Tornado codes depending on which partic-
ular set of encoding packets are received. To study this variation,
we ran 10 000 trials using the Tornado Z code. In Fig. 2, we show
the percentage of trials for which the receiver could not recon-
struct the source data for specific values of the decoding inef-
ficiency. For example, using Tornado Z codes with each node

Fig. 3. Waiting for the last blocks to fill.

representing one packet, a decoding inefficiency of 1.064 corre-
sponds to receiving packets. Over 90%
of the receivers were able to reconstruct the source data before
receiving this many packets.

In our trials, the average decoding inefficiency was 1.0536,
the maximum reception inefficiency was 1.10, and the standard
deviation was 0.0073. For all 10 000 trials, the same graph was
used; this graph wasnotspecially chosen but was generated ran-
domly as described in Section V-B. In practice, one can achieve
slightly better performance by testing various random graphs
for performance before choosing one. Our tests suggest that the
performance given in Fig. 2 is representative.

VI. SIMULATION COMPARISONS

From Section V, it is clear that using RS erasure codes to en-
code over large files for bulk data distribution has prohibitive en-
coding and decoding overhead, but another approach, described
in the introduction, is the method of interleaving suggested in
[25], [28], [29], and [31]. Interleaved codes are constructed as
follows: Suppose encoding packets are to be produced
from source packets. Partition the source packets into
blocks of length , so that there are blocks in total.
Stretch each block of source packets to an encoding block
of packets using a standard RS erasure code by adding

redundant packets. Then, form the encoding of
length by interleaving the encoding packets from each
block, i.e., the encoding consists of sequences ofencoding
packets, each of which consist of exactly one packet from each
block.

The choice of the value of the parameterfor interleaved RS
codes is crucial. To optimize encoding and decoding speed of
the interleaved codes,should clearly be chosen to be as small
as possible, but choosingto be very small defeats the purpose
of using encoding, since any redundant packet that arrives can
only be used to reconstruct a source data packet from the same
block. Moreover, redundant packets that arrive for data blocks
that have already been reconstructed successfully do not benefit
the sender.

To explain this in more detail, let us say that a block isfull
from the viewpoint of a receiver when at leastdistinct en-
coding packets associated with that block have been received.
The entire file can only be decoded by the receiver when all
blocks are full. The phenomenon that arises whenis relatively
small is illustrated in Fig. 3; while waiting for the last few blocks
to fill, the receiver may receive many encoding packets from
blocks that have already been reconstructed successfully. These
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useless packets contribute directly to the decoding inefficiency.
To summarize, the choice of the value offor interleaved codes
introduces a tradeoff between decoding speed and decoding in-
efficiency.

To compare various protocols, we compare the decoding in-
efficiency and decoding speed at each receiver. Recall that the
decoding inefficiency is 1 if one must obtain1 dis-
tinct encoding packets in order to decode the source data. For
both Tornado and LT codes, there is some overhead in the de-
coding inefficiency due to the sparse nature of the codes and the
randomness used in their construction. For interleaved codes,
decoding inefficiency arises because in practice one must ob-
tain more than encoding packets to have enough packets to
decode each block. We emphasize that for interleaved codes the
decoding inefficiency is a random variable that depends on the
loss rate, loss pattern, and the block size. The tradeoff between
decoding inefficiency and coding time for interleaved codes mo-
tivates the following set of experiments.

• Suppose we choosein the interleaved setting so that the
decoding inefficiency is comparable to that of Tornado Z.
How does the decoding time compare?

• Suppose we choosein the interleaved setting so that the
decoding time is comparable to that of Tornado Z. How
does the decoding inefficiency compare?

While we have chosen Tornado Z codes to perform this com-
parison, a similar comparison can be made with the LT codes
which have comparable decoding inefficiency and strictly faster
decoding time than Tornado Z.

In our initial simulations, we assume probabilistic loss pat-
terns in which each transmission to each receiver is lost inde-
pendently with a fixed probability. Using bursty loss models
instead of this uniform loss model does not impact our results
for Tornado code performance; only the overall loss rate is im-
portant. This is because when using Tornado codes, we com-
pute the entire encoding ahead of time and send out encoding
packets in a random order from the source. Therefore, any loss
pattern appears equivalent to a uniform loss pattern on the re-
ceiver end. The choice of the uniform loss model does, how-
ever, impact the performance results of the interleaved codes,
which (unless the same randomization of the transmission order
is used) are highly dependent on the loss pattern. In particular,
we expect interleaved codes to have slightlybetterperformance
under random losses than under bursty losses. To confirm this
intuition, in our previous work [8], we provided results from
trace-driven simulations of Internet traffic taken from [33]. The
following results focus on the random loss model, since this is
the easiest model to analyze, and because it provides a lower
bound on the decoding inefficiency for interleaved RS codes. In
the cases we measured on the Internet trace data, the difference
in the decoding inefficiency for interleaved RS codes between
random and bursty losses is small.

A. Equating Decoding Inefficiency

Our first simulation compares the decoding time of Tornado Z
with an interleaved code with decoding inefficiency comparable
to that of Tornado Z. In Section V, we determined experimen-
tally that Tornado Z codes have the property that the decoding
inefficiency is greater than 1.076 less than 1% of the time. In

TABLE V
SPEEDUP OFTORNADO Z CODES OVER INTERLEAVED RS CODES

WITH COMPARABLE INEFFICIENCY

Table V, we present the ratio between the running time of an in-
terleaved code for which is chosen so that this property is also
realized and the running time of Tornado Z. Of course, this ratio
changes as the loss probability and file size change.

We explain how the entries in Table V are derived. To com-
pute the running time for interleaved codes, we first use sim-
ulations to determine for each loss probability value the max-
imum number of blocks the source data can be split into while
still maintaining a decoding inefficiency less than 1.076 for less
than 1% of the time. (For example, a 2-MB file consisting of
2000 1-KB packets can be split into at most eleven blocks while
maintaining this property when packets are lost with probability
0.10.) We then calculate the per block decoding time and mul-
tiply it by the number of blocks to obtain the decoding time
for the interleaved code. With a stretch factor of two, one half
of all packets injected into the system are redundant encoding
packets, and the other half are source data packets. Therefore,
in computing the decoding time per block, we assume that half
the packets received are redundant encoding packets. Based on
the data previously presented in the Cauchy codes column of
Table IV, we approximate the decoding time for a block of
source data packets by/31 250 s. To compute the running time
for Tornado Z, we simply use the decode times for Tornado Z
as given earlier in Table IV.

As an example, suppose the encoding of a 16-MB file is trans-
mitted over a 1-Mb/s channel with a loss rate of 50%. It takes
just over 4 min to receive enough packets to decode the file
using either Tornado Z or an interleaved code (with the desired
decoding inefficiency guarantee). However, the decoding time
is almost 8 min for the interleaved code compared with just
over 2 s for Tornado Z. Comparisons of encoding times yield
similar results. We note that by using slightly slower Tornado
codes with less decoding inefficiency, we would actually obtain
even better speedup results at high loss rates. This is because in-
terleaved codes would be harder pressed to match stronger de-
coding guarantees.

B. Equating Decoding Time

Our second set of simulations examines interleaved codes that
have comparable decoding times to Tornado Z. Cauchy codes
with block length 20 are roughly equivalent in speed to the
Tornado Z code. We also compare with a block length 50,
which is slower but still reasonable in practice.
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(a)

(b)

Fig. 4. Comparison of decoding inefficiency for codes with comparable
decoding times.

Using these block sizes, we now study the maximum de-
coding inefficiency observed as we scale to a large number of
receivers. The sender carousels through a 2-MB encoding of a
1-MB file, while receivers asynchronously attempt to download
it. We simulate results for the case in which packets are lost in-
dependently and uniformly at random at each receiver at rates
of 10% and 50%. The 10% loss rates are representative of con-
gested Internet connections, while the 50% loss rates are near
the upper limits of what a mobile receiver with poor connec-
tivity might reasonably experience. The results we give can be
interpolated to provide intuition for performance at intermediate
rates of loss. For channels with very low loss rates, such as the
1% loss rates studied in [25], interleaved codes and Tornado
have generally comparable performance.

Fig. 4 shows, for different numbers of receivers, the worst
case decoding inefficiency experienced for any of the receivers
averaged over 100 trials. In these figures,refers to the proba-
bility a packet is lost at each receiver. Since the leftmost point in
each graph corresponds to the case of one receiver, this point is
also just the average decoding inefficiency. The interesting fea-

ture of this figure is how the worst case decoding inefficiency
grows with the number of receivers.

For packet loss rates of 10% and a block size of 50, the
average inefficiency of interleaved codes is comparable to that
of Tornado Z, but as packet loss rates increase, or if a smaller
block size is used, the inefficiency of interleaved codes rises
dramatically. Also, the inefficiency of the worst-case receiver
does not scale with interleaved codes as the receiver size grows
large. Tornado codes exhibit more robust scalability and better
tolerance for high loss rates.

C. Scaling to Large Files

Our next experiments demonstrate that Tornado codes also
scale better than an interleaved approach as the file size grows
large. This is due to the fact that the number of encoding packets
a receiver must receive to reconstruct the source data when using
interleaving grows super-linearly in the size of the source data.
(This is the well-known “coupon collector’s problem” [16]). In
contrast, the number of encoding packets the receivers require to
reconstruct the source data using Tornado codes grows linearly
in the size of the source data, and in particular, the decoding
inefficiency does not increase as the file size increases.

The effect of this difference is easily seen in Fig. 5. In this
case, both the average decoding inefficiency and the maximum
decoding inefficiency grow with the length of the file when
using the interleaving approach. This effect is completely
avoided by using Tornado codes.

VII. I MPLEMENTATION OF AN ASYNCHRONOUSRELIABLE

MULTICAST PROTOCOL

In this section, we describe our simulations for distributing
bulk data to a large number of heterogeneous receivers that
may access the data asynchronously. Our implementation is de-
signed for the Internet using a protocol built on top of IP Multi-
cast. We outline our techniques to handle receiver heterogeneity
using layered multicast [21], [23] and describe how our digital
fountain approach for reliability cleanly integrates with TCP-
friendly, receiver-driven congestion control methods such as the
work of Vicisanoet al. [32]. In a companion paper [6], we con-
sider multirate multicast congestion control (especially suitable
for content encoded using a digital fountain approach) in its own
right. While we note that the system developed and described
here constitutes a feasibility study, we emphasize that we have
leveraged this prototype design to create a completely functional
multicast protocol which is now shipping in product form.

We expect that the digital fountain approach via fast erasure
codes will also prove useful in other environments besides a
multicast-enabled Internet, such as satellite or wireless based
systems. In these settings, different channel characteristics
would suggest different approaches for congestion control
and tolerance to receiver heterogeneity. However, the general
approach for reliability which we advocate would remain es-
sentially the same, even under varying end-to-end bandwidths
and packet loss rates.

We now present the design of our multicast protocol. The two
main issues are the use of layered multicast and the approach
the receiver uses to decode the message. Then, we describe the
experimental setup and performance results of our system.
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(a)

(b)

Fig. 5. Comparison of decoding inefficiency as file size grows.

A. Integration With Layered Congestion Control

The approach to accommodating receiver heterogeneity with
appropriate congestion control mechanisms which we propose
follows the lead of other authors who advocatelayeredmulti-
cast [21], [23], [32]. The main idea underlying this approach is
to enable the source to transmit data across multiple multicast
groups, thereby allowing the receivers to subscribe to an appro-
priate subset of these layers. When such a scheme is also used
to provide congestion control, it is typically called amultirate
congestion control scheme. Of course, practical considerations
warrant keeping the number of multicast groups associated with
a given source to a minimum. A receiver’s subscription level is
based on factors such as the bottleneck bandwidth en route to
the source and network congestion. Basic ideas common to the
proposed layered schemes are the following.

• The server transmits data over multiple layers, where the
layers are ordered by increasing transmission rate.

• The layers arecumulative, i.e., a receiver subscribing to
layer also subscribes to all layers less than. We say that

a receiver subscribes tolevel when it subscribes to layers
zero through .

For example, in the simplest version of our implementation,
we use geometrically increasing transmission rates:
is the rate of theth layer. Thus, a receiver at subscription level

would receive bandwidth proportional to 2 for 1. A
protocol with which our approach is compatible, and which we
use in our basic evaluation, is the scheme described in work
of Vicisanoet al. [32] that proposes the following novel ideas,
summarized here briefly.

• Congestion control is achieved by the use ofsynchroniza-
tion points(SPs) that are specially marked packets in the
stream. A receiver can attempt to join a higher layer only
immediately after an SP, and keeps track of the history of
events only from the last SP. The rate at which SPs are sent
in a layer is inversely proportional to the layer bandwidth,
thus, lower bandwidth receivers are given more frequent
opportunities to add higher layers.

• Instead of explicit join attempts by receivers, the server
generates periodicburstsduring which packets are sent at
twice the normal rate on each layer. This has the effect
of creating network congestion conditions similar to those
that receivers would experience following an explicit join.
If a receiver witnesses no packet losses during and after
the burst, it adds a layer at the next SP.

• Receivers also use packet loss events as an indication of
congestion. If a receiver witnesses packet losses during or
after a burst, it does not add a layer at the next SP; more-
over, receivers drop to alowersubscription level whenever
a packet loss event occurs outside of a burst.

Both the sending of SPs and burst periods are driven by the
sender, with the receivers reacting appropriately. The most
attractive feature of this approach is scalability—since the
transmission schedule at the sender is fixed in advance, the
sender behaves the same whether there are a handful or a million
receivers. Moreover, this method of congestion control prevents
feedback implosion as it does not require receivers to send
explicit feedback to the sender, since joins and leaves can often
be processed at downstream routers. Another attractive feature
of this general approach is that receivers can act autonomously,
i.e., receivers need not coordinate join attempts with one
another. These features of the congestion control algorithm
are particularly important when integrating with the digital
fountain approach to reliability in which receiver-to-source
and inter-receiver communication are undesirable. See [32] for
further details, including evaluation of the TCP-friendliness of
this scheme.

B. Scheduling Transmissions Across Multiple Multicast
Groups

As described earlier, a receiver at levelsubscribes toall
layers zero through. Therefore, when using codes with a con-
stant stretch factor, it is important to schedule packet transmis-
sions carefully across the multiple layers so as to minimize the
number of duplicate packets that a receiver receives. In our pre-
vious work [8], we provided heuristics for scheduling packets
from a finite Tornado encoding across multiple layers, following
the work of Bhattacharyyaet al. [3], who demonstrated that
a packet scheduling scheme for cumulative layered multicast
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exists whereby the sender transmits a permutation of the entire
set of encoding packets on any given set of cumulative layers
before repeating a packet.

However, the LT codes make this scheduling consideration
obsolete, as the encoding process is on-the-fly and memoryless;
thus, these codes can naturally be employed with a memory-
less scheduling process, where any packet on any given layer is
constructed independently from any other packet. In brief, this
eliminates correlations between packets across layers, and any
subset of packets of a given size is equally likely to restitute the
source file, regardless of which layers those packets were trans-
mitted on.

C. Reconstruction at the Receiver

As detailed in Section VII-B, the receiver is responsible for
performing receiver-driven joins and leaves to facilitate conges-
tion control. The other activity that the receiver must perform
is the reconstruction of the source data. There are two ways to
implement the receiver decoding protocol. The first is an incre-
mental approach in which the receiver performs preliminary de-
coding operations after each packet arrives. This approach leads
to some redundant computation; reconstructed source data may
later arrive intact. Moreover, there may be a modest overhead in
processing individual packets immediately on arrival. A second,
patient approach that reduces these effects is to wait until a fixed
number of packets arrive from which it is likely that the source
can be reconstructed, based on statistical observations. If the de-
coding cannot be completed at this time, then additional packets
may be processed individually or in small groups. While the in-
cremental approach has the benefit of enabling some decoding
computation to be overlapped with packet reception, we found
the patient approach to be simpler to implement in practice, with
little loss of decoding speed. In the Tornado Z implementation
we describe, we wait until 1.06packets arrive,2 attempt to de-
code, and then process additional packets individually as needed
until decoding is successful.

D. Experimental Setup and Results

Now, we turn to measurements of the efficiency of our experi-
mental system. First, we clarify the two sources of inefficiency.
Recall that thedecoding inefficiency1 captures the
inefficiency due specifically to our use of sparse codes. It is de-
fined as

of distinct packets rceived before reconstruction
of source data packets

There is, however, another possible source of inefficiency: a
receiver could obtain duplicate packets. Thedistinctness inef-
ficiency captures the loss in efficiency caused by receiving
duplicate packets. This can occur either by cycling through the
carousel under high loss rates by temporarily suspending the
transfer or by changing the receiver subscription layer as de-
scribed in Section VII-B. It is defined as

total of packets received
of distinct packets received

2This quantity is carefully chosen based on statistical observations and de-
pends on both the code used and the file size.

Combining these two effects yields thereception inefficiency,
. It is defined as

of packets received prior to reconstruction
of source data packets

It is clear that .
The experimental results measure our prototype implemen-

tation. Besides testing the layered protocol we have described,
we also test a single layer protocol. That is, we also measure
the reception inefficiency when the server transmits the file on
a single multicast group at a fixed rate. These results allow us to
focus on the efficiency of the packet transmission scheme inde-
pendent of the layering scheme for congestion control. In both
cases, the server encodes using Tornado Z to produce the en-
coding. The server runs two threads: a UDP unicast thread that
provides various control information such as multicast group in-
formation and file length to the receiver and a multicast trans-
mission thread. For both protocols, the receivers connect to the
server’s known UDP port for control information, and on re-
ceipt of the information, subscribe to the appropriate multicast
groups.

Our test source data consisted of a Quicktime movie (a
clip available from www.nfl.com) with size slightly over
2 MB. The encoding algorithm used a stretch factor of
to produce 8264 packets of size 500 B. The packets were
additionally tagged with 12 B of information (packet index,
serial number and group number) to give a final packet size
of 512 B. The server and receivers were on three different
subnets, located at Berkeley, CMU, and Cornell. There were
16 hops on the path from Berkeley to CMU, and the bottleneck
bandwidth (obtained by usingmtraceandpathchar[14]) was
8 Mb/s with an RTT of 60 ms. There were 17 hops on the path
from Berkeley to Cornell, and the bottleneck bandwidth was
9.3 Mb/s with an RTT of 87 ms. The base layer bandwidth was
set to a rate ranging from 64 to 512 Kb/s. We ran experiments
with the server both at Berkeley and at CMU and with the
receivers located at the other two subnets. Locating the server
at CMU tended to generate higher packet loss rates for the same
transmission bandwidth. The machines used at all three sites
were running Solaris 2.5.1. When running the layered protocol,
we used four layers.

In our initial experiments, in some cases, we witnessed loss
rates over the course of the transmission of nearly 20%—rates
that are admittedly far higher than the congestion control tech-
niques of [32] were intended to handle. To generate even higher
loss rates that might arise in other environments, such as mobile
wireless networks, we turned off congestion control and set the
base layer rate artificially high, causing a router within our LAN
to drop packets persistently.

The data from the two sets of experiments are shown in Fig. 6.
As seen from the graphs for the single layered case, for packet
losses of less than 50%, the distinctness inefficiency is almost
always one, as is to be expected. Thus, for low loss rates, the
reception inefficiency is effectively the decoding inefficiency,
which in our example was roughly 1.07 on average. (This de-
coding inefficiency is slightly higher than for Tornado Z because
a slightly different code was used in these experiments and be-
cause we wait until at least 1.06 k packets arrive before trying to
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(a)

(b)

Fig. 6. Experimental results of the prototype. (a) Single layer. (b) Four layers.

decode.) We further observe that the transmission scheme is ro-
bust even under severe loss rates—even at loss rates approaching
50%, the reception inefficiency is generally below 1.4. This re-
ception inefficiency can be mitigated either by the use of Tor-
nado codes with a larger stretch factor or by the use of LT codes.

Fig. 6 also shows experimental data for the multilayered case.
We observe that the use of multiple layers for congestion con-
trol increases the distinctness inefficiency. This is natural as
switching among subscription levels can cause the receiver to
receive packets that had already been obtained at other subscrip-
tion levels. For high loss rates, the distinctness inefficiency re-
mained low because receivers generally subscribed only to the
base layer. Again, this cost can be mitigated with the use of LT
codes.

VIII. C ONCLUSION

The introduction of fast erasure codes yields significant new
possibilities for the design of reliable multicast protocols. To
explore these possibilities, we formalized the notion of an ideal
digital fountain and explained how Tornado codes and LT codes
can yield a much closer approximation to a digital fountain than
previous systems based on standard RS erasure codes. The pro-
totype multicast data distribution system which we built demon-
strates that simple protocols using Tornado codes are effective
in practice.

Given that we can closely approximate a digital fountain with
Tornado and LT codes, we conclude with other possible ap-
plications for such encoding schemes. One application is dis-
persity routing of data from endpoint to endpoint in a packet-
routing network. With packets generated by a digital fountain,
the source can inject packets along multiple paths in the net-
work. Those packets that experience congestion are delayed, but
the destination can recover the data once a sufficient number of
packets arrive, irrespective of the paths they took. This appli-
cation dates back to the seminal works on dispersity routing by
Maxemchuk [20] and information dispersal by Rabin [27]. Both

suggested using standard erasure codes, but we expect that faster
codes and the digital fountain approach will lead to improved
practical dispersity routing schemes.

Related applications which we have considered include down-
loading content in parallel from multiple mirror sites [7] and con-
tent delivery in overlay networks such as peer-to-peer networks
[5]. By encoding the content, clients, servers, and peers are freed
from complex negotiations that arise when all of the individual,
unencoded packets from the source file must be collected across
heterogeneous end-to-end connections. Instead, by using the
digital fountain paradigm, receivers can draw encoded content
from servers or peers in parallel until they receive sufficiently
many encoded packets to reconstruct the file.
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