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ABSTRACT
We introduce Liquid Data Networking (LDN), an ICN architecture
that is designed to enable the benefits of erasure-code enabled object
delivery. A primary contribution of this work is the introduction of
SOPIs, a simple and efficient naming mechanism enabling clients to
concurrently download encoded data over multiple interfaces for the
same object, to optimize caching efficiency, and to enable seamless
mobility. LDN offers a clean separation of security into object secu-
rity and data packet security. An evaluation of the architecture and
its use with various types of erasure codes is provided.
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1 INTRODUCTION
Information Centric Networking (ICN), and in particular NDN [31],
has many architectural benefits, notably in naming, a transparent
approach to security, and in caching content near interest. Several
recent proposals have sought to augment NDN with erasure codes,
in an effort to realize a range of reliability and performance benefits
– we discuss these in more detail in Section 1.2.

This paper introduces Liquid Data Networking (LDN), an ICN
architecture designed explicitly to leverage encoded data and erasure
codes. Our exploration of the design space highlights the benefits of
close integration between naming of objects and naming of encoded
data symbols, an aspect not fully explored in prior work. LDN
provides provable reliability, performance, and security benefits, is
simple, and enables a scalable implementation with low overheads.
In this paper we present the basic design of LDN and discuss how
the design achieves key evaluation objectives.

1.1 Erasure codes and erasure code architectures
A long stream of research has advocated the use of an erasure code
approach to reliable object delivery and storage. Example domains
include reliable multicast, parallel downloads, network coding, and
distributed storage [3], [4], [5], [7], [8], [10], [15], [22], [25]. Briefly,
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an erasure code takes as input a data object consisting of 𝐾 source
symbols, and produces a set of 𝑀 repair symbols from the object
through an erasure encoding process. The key property of an erasure
code is in the decoding process: the object can be recovered from
any subset of at least 𝐾 of the 𝐾 +𝑀 symbols (any mix of source and
repair symbols), together with their unique identifiers. With erasure
codes, the source and repair symbols can be viewed as liquid data,
by which we mean that symbols are interchangeable; the number of
distinct symbols at the decoder determines whether or not an object
is recoverable, and not the specific set of symbols. Our proposed
architecture is based on leveraging this fundamental distinction.

As examples of networking benefits achieved with erasure codes
in prior work, clients can download objects faster across multiple
interfaces [19], packet loss resiliency is provided automatically in
transmission protocols [4], [22], simpler protocols for mobile clients
are enabled [27], storage of objects is more resilient [8], [10], [15],
caching efficiency can be improved [21], and dynamically changing
interfaces are simpler to handle. In this work, we seek to obtain all
of these benefits in the context of a unified ICN network architecture
in which erasure codes are integrated directly – we refer to such a
design as an erasure code architecture (ECA). Our proposed archi-
tecture, Liquid Data Networking (LDN), is framed in the context
of NDN and is principled on the desirable properties that any ECA
should seek to obtain. In defining these properties and the metrics
we propose for evaluation of ECAs, we identify object to network
data name-mappings, request-response paradigms, and security con-
siderations as critical components that necessitate careful design and
deep integration in the design and realization of an ECA.

1.2 ECAs in the context of prior work
NDN [31] is the starting point of a majority of the previous work
on integrating erasure codes into an ICN. In NDN, each object is
partitioned into packets, where each packet is assigned a name based
on the object name and the position of the packet within the object.
Clients request and receive objects. Each object can be individually
requested by a client via interest messages. To receive an object, a
client requests each packet of the object, and can recover the object
after all packets are received. Each object is initially provided to
one or more publisher nodes (PNs). A node provides routing and
caching functionality: it accepts interest messages for packets of
the object and responds with the packets if they are cached locally,
and otherwise stores and forwards the interest messages towards a
publisher node, and responds with the packets when they arrive.

There have been numerous proposals to augment NDN based on
Random Linear Network Coding (RLNC), fountain codes, and other
types of erasure codes [1], [11], [12], [13], [17], [18], [20], [23],
[24], [28], [30]. All designs incorporate encoding nodes (ENs), nodes
augmented with the ability to generate encoded data, to provide some
of the reliability and performance benefits described earlier.
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Evaluation metrics for ECAs: Metrics relevant to evaluating era-
sure code architectures, in a variety of use cases, are:

• Signaling overheads: The size of the signaling information in
interest messages and their responses, and the time complex-
ity of computing this signaling information.

• Latency overheads: For real-time objects, the latency between
when an object is published and when the object downloaded
by a client is available at the client. For on-demand objects,
the latency between when a client expresses interest in the
object and when the object is available at the client.

• Security overheads: The time complexity of object verifica-
tion and packet verification (See Section 3).

• Response overheads: The amount of redundant encoded data
received for an object from multiple nodes over multiple
interfaces. Redundantly received encoded data is not useful
for recovery of an object.

• Storage overheads: The amount of storage used for caching
encoded data in the network.

While all of these types of overheads are evaluation criteria for
ICN architectures broadly, use of erasure codes have potential to
introduce new costs, so we specifically consider evaluation of that
incremental overhead in ECAs.

Many prior proposals allow blind encoding, where blind refers
to the setting where an encoding node generates encoded data from
other encoded data of an object when it does not have the full object.
See e.g., [1], [12], [13], [17], [18], [23], [24], [28], [30]. Blind en-
coding incurs significant signaling overheads, and can incur highly
variable response overheads, as for example discussed in [29]. Fur-
thermore, as detailed in Section 3, there are some serious security
issues with the usage of blind encoding in an ECA. Thus, we here-
after focus on ECAs that disallow blind encoding.

Request paradigms for ECAs: Another central issue in designing
an ECA is the request paradigm a client uses to request data from a
node to recover an object. The three request paradigms described in
prior work are:

• Specific data: The client asks for specific encoded data for
the object by name, and the encoding node responds with the
specific named data. This generalizes the approach taken by
NDN [31] to the case of encoded data.

• Random data: The client requests an amount of encoded data
generated from the object, and the encoding node responds
with randomly generated encoded data. See e.g., [11], [12],
[17], [23] and [24].

• Useful data: The client specifies data it has already received
for the object, and the encoding node calculates and responds
with useful encoded data that will help the client recover the
object. See e.g., [18] and [28].

There are pros and cons to each of these approaches, but none is
ideal. The specific data approach ensures that whatever data each
client receives is useful and has low signaling overhead, but this
uncoordinated approach has poor caching behavior and results in
high storage and latency overheads.

The most popular heuristic is the random data approach, which
also has low signaling overhead, and sometimes has good cache
behavior, but has several other drawbacks. Both response and latency
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Figure 1: Turkey network topology

overheads are unpredictable, since in general there is no assurance
that received encoded data will be useful to the client.

To illustrate, consider the turkey-shaped network shown in Fig-
ure 1. Suppose that each of the two clients send interest messages
for one-half of the encoded data needed to recover an object over
each of their two interfaces. If the policy of encoding nodes 𝐴 and
𝐵 is to aggregate interest messages received on distinct interfaces
(e.g., to improve cache behavior), then encoding node 𝐴 ends up
requesting only one-half of the encoded data needed to recover the
object. Although both clients will technically receive a total amount
of encoded data equal to the object size, it will consist of two dupli-
cate copies of the encoding data requested by 𝐴, routed on different
paths. If instead the policy of encoding nodes 𝐴 and 𝐵 is to keep
all of their received interest messages disaggregated, then encoding
node 𝐴 receives four halves, or 2x the encoded data needed (𝐵 also
receives more than it needs) and thus the response overheads and
cache overheads are high. For comparison, see the description in
Section 2.4 with respect to Figure 1.

Finally, the useful data approach is intuitively appealing but
is technically problematic for several reasons described in prior
work [24]; moreover, it still has unpredictable latency overheads and
additional signaling overheads.

2 LDN DESIGN OVERVIEW
The review of prior work in context highlights the key design chal-
lenge for ECAs: How does or can one retain the simplicity and
security of the NDN interest-response paradigm while infusing all
of the reliability benefits of erasure codes? As the review of request
paradigms in prior work illustrates, it is not sufficient to graft codes
on top of an ICN. Instead, it turns out to be imperative to integrate
codes fundamentally into the architecture itself, with design of ap-
propriate naming and security policies. The key consideration is
coordination, as the benefits of an ECA described previously (and
other benefits we discuss later) are fully realized when certain co-
ordination properties are guaranteed. But before embarking on that,
we present basic terminology and concepts of our design.

2.1 LDN terminology
LDN nodes (NNs) have routing and caching functionality, and thus
are akin to elements in the spirit of NDN [31]. An encoding node is
a NN with the additional ability to generate encoded data from an
object, and to recover objects by decoding received encoded data for
the object. Each object is initially provided to one or more encoding
nodes. An EN is said to be a publisher node for an object if the EN
has the entire object in its cache. The two ways an EN can become



a publisher node are either by directly ingesting the object, or by
downloading enough encoded data to recover the object.

A client (CLI) receives requests for objects to download from the
application layer, issues requests for encoded data for those objects,
and generates the objects from the received encoded data responses.
Requests for encoded data of an object percolate from the client
towards one or more publisher nodes for the object.

Applications operate on objects, which are sequences of data that
are useful to an application, e.g., a video file, a video segment, an
audio segment, a photo, etc. LDN is designed to deliver objects to
clients, where an object is immutable and has a unique identifier.
When creating encoded data from an object, there is an associated
symbol size that is used to partition the object into source symbols
which are used for erasure encoding and erasure decoding. The
symbol size is a parameter that can be automatically determined
based on factors such as the network packet MTU.

Additional mechanisms are needed to provide object identifiers
for objects to interested clients. Encoding nodes also require routing
protocols to determine over which interfaces to send requests for
encoded data for particular objects, i.e., along interfaces that are
typically closer to publisher nodes of objects. While defining these
protocols are out of scope for this short paper, we anticipate that
methods described for other ICN architectures would be applicable
here, for example those described in NDN.

2.2 Coordination in LDN
Maintaining the low overheads described in the introduction is pos-
sible only if the following coordination properties are guaranteed
simultaneously:

• Cacheability: Different clients should receive overlapping
encoded data for an object from the same node. This ensures
caching efficiency and low storage overheads.

• Additivity: Any and all encoded data for an object received by
a client should be useful to recover the object. This ensures
that network resources are used efficiently. For example, a
client should receive different and useful encoded data for
an object from different nodes. This is necessary to enable
efficient reception of encoded data for an object over multi-
ple interfaces and to support mobile clients that download
encoded data from different nodes over time.

The LDN design in many ways resembles NDN, but introduces
an object to network data name-mapping and a request-response
paradigm that harmonizes with erasure codes. In particular, when a
client wants to download an object, the client sends interest messages
requesting specific amounts of encoded data from specific sets of
encoded data generated from the object. This generalizes the specific
data approach used by NDN, but (provably) sidesteps the latency
and storage overheads of the naive approach. It can also be viewed
as a generalization of the random data approach.

The stream object permutation identifier (SOPI) is a key to the
LDN design of the object to network data name-mapping and request-
response paradigm. SOPIs are used to control the specific set of
packets containing encoded data that clients will request from spe-
cific nodes within the system. This simple mechanism ensures the
coordination properties described above. Furthermore, the signaling
protocols to distribute and use SOPIs are relatively straightforward,
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Figure 2: SOPI illustration

and the additional signaling complexity a client incurs is independent
of the number of objects downloaded by the client.

2.3 SOPIs and stream objects
Stream objects are fundamental to the design of LDN: they enable
a diversity of encoded data to be available for download within the
network for each object, while at the same time ensure that different
clients request the same encoded data for an object from the same
neighboring node. Stream objects can be described in terms of an
erasure code with optimal recovery properties and with the property
that 𝑁 symbols can be generated from any object, where 𝑁 is a large
number (and without loss of generality, 𝑁 is prime).

A stream object for an object logically consists of the 𝑁 available
symbols of encoded data for the object in a specified order. The
essential idea is that different stream objects specify completely
different orderings of the available encoded data for an object, and
thus a client can simply request prefixes of different stream objects
for an object to receive different, and thus useful, encoded data.
While a stream object is conceptually massive compared to the
underlying object, typically only a very small portion of a stream
object is present in the network at any one time.

A stream object permutation identifier (SOPI) specifies the or-
dering of encoded data for a stream object. A SOPI 𝑃 identifies
a permutation 𝜋 (𝑃) of the 𝑁 available symbol identifiers. Thus, a
stream object identifier (𝐷, 𝑃) is the combination of the identifier 𝐷
of the object from which it is generated and a SOPI 𝑃 . We consider
SOPIs of the form 𝑃 = (𝐴, 𝐵), where 𝐴 ∈ {0, 1, 2, . . . , 𝑁 − 1} and
𝐵 ∈ {1, 2, 3, . . . , 𝑁 − 1} define the permutation of symbol identifiers

𝜋 (𝑃) = {𝐴,𝐴 + 𝐵,𝐴 + 2 · 𝐵, . . . , 𝐴 + (𝑁 − 1) · 𝐵},
where each term is taken modulo 𝑁 .1 The number of possible stream
objects for an object is 𝑁 · (𝑁 − 1).

SOPIs are a mechanism to control what encoded data is requested,
delivered, and stored in the network. A SOPI is associated with each
node. To download an object, clients request a prefix2 of a stream
object associated with the SOPI of an edge node reachable over the
interface. SOPIs ensures that same encoded data for an object will be
requested from the same edge node by all clients, but that different
encoded data will be requested from different edge nodes.

Figure 2 shows the available encoded data for a a given data
object at the top, and the caches of two edge NNs with associated
SOPIs 𝑃1 and 𝑃2 at the bottom, where the green arrows show the
mapping of encoded data to a prefix of stream object 𝑃1 in the left
cache, and the red arrows show the mapping the encoded data to a

1Note that 𝜋 (𝑃 ) is a permutation of {0, . . . , 𝑁 − 1} since 𝑁 is prime.
2The length of the prefix can be flexible, depending on network conditions, for example.



prefix of stream object 𝑃2 in the right cache. Clients request a prefix
of stream object 𝑃1 from the left NN, and a prefix of stream object
𝑃2 from the right NN, and encoded data received by a client for an
object from both NNs is useful to recover the object.

The SOPI and stream object design allows client decisions of
which encoded data to request to be simple, robust, and efficient. In
particular, SOPIs simultaneously obtain the benefits of the request
paradigms for ECA described in Section 1.1, achieve the two coor-
dination properties described in Section 2.2, and incur negligible
signaling overhead. Clients request specific data from ENs by virtue
of SOPIs, and the SOPI coordination mechanism also ensures the
data at each EN is cacheable for many clients. When requesting
from a given SOPI, the requested encoded data appears random with
respect to the canonical order of the available encoded data. And
finally, the requested data is provably useful with high probability,
by virtue of the additivity property that SOPIs enable (statement of
guarantees appears in Section 2.5).

2.4 LDN request-response paradigm
The client sends SOPI probe messages over an interface when the
client joins the interface, and the responses are the SOPIs of the edge
nodes reachable over that interface. A client interest message sent
over an interface for receiving encoded data for an object includes
the object name 𝐷, the SOPI 𝑃 of an edge node reachable over the
interface, a starting position 𝑆 and ending position 𝐸 within the prefix
of stream object (𝐷, 𝑃) from which to receive encoded data, and the
amount 𝐴 of encoded data that should be included in the response.
The response should be to send an amount 𝐴 of encoded data within
the range 𝑆 to 𝐸 of stream object (𝐷, 𝑃).

Normally, 𝑆 = 0 and 𝐸 >> 𝐴 when a client sends a first interest
message for encoded data from a stream object. Allowing 𝐸−𝑆 >> 𝐴

allows great flexibility, i.e., nodes can respond with already cached
encoded data from the stream object as long as it is in range.

When a client discontinues downloading an object and then con-
tinues downloading again at a later point in time from the same
stream object, 𝑆 can be reset to the smallest position in a prefix of
the stream object for which the client has not received any encoded
data at or beyond that position. This simple mechanism allows a
client to seamlessly continue downloading useful encoded data.

The client encoded data request protocol is simple: A client re-
quests enough prefixes of stream objects in aggregate from neighbor-
ing nodes so that the amount of encoded data that arrives is at least
the object size. If some requested encoded data does not arrive, the
client requests more of the prefixes from the same stream objects.

Responses to encoded data interest messages for an object re-
ceived by a node are provided by the node if the requested encoded
data is cached at the node. The same holds for an encoding node, but
an encoding node can also respond if it is a publisher node for the
object and is therefore able to generate the requested encoded data.
Similar to NDN, if neither of these cases hold, a decision is made
on whether to forward the full or partial encoded data interest mes-
sage toward a publisher node, based on whether or not previously
forwarded interest messages have already requested overlapping en-
coded data. Similar to NDN, when responses to forwarded requests
are received, they are passed back over the interfaces from which the
original interest messages were received. Publisher nodes respond

to encoded data interest messages with cached encoded data or with
encoded data generated from the object.

The encoded data request protocols ensure:
• Bandwidth efficiency: The response overheads are minimal.
• Cache efficiency: The storage overheads are minimal.
• Responsiveness: The latency overheads are minimal.

To illustrate, consider again the network shown in Figure 1. Sup-
pose that each of the two clients send interest messages for one-half
of the encoded data needed to recover an object over each of their
two interfaces. Because of the SOPI design, the interest messages
from both clients to encoding node 𝐵 request the same encoded data,
and the interest messages sent to the other two bottom encoding
nodes request different encoded data. Encoding node 𝐴 receives
three interest message requests for different encoded data, and for-
wards two of the requests to the publisher node. Encoding node
𝐴 passes received responses down, recovers the object, and gener-
ates and sends the remaining responses down. The bottom encoding
nodes pass responses down as they are received from above, and
both clients are able to recover the object. Overall, the amount of
encoded data received by encoding node 𝐴 and encoding node 𝐵 is
the object size and one-half the object size, respectively. Thus, the
response overheads and cache overheads are low. For comparison,
see the description in Section 1.2 with respect to Figure 1.

2.5 SOPI response overhead guarantees
Suppose a perfect erasure code is used to generate encoded data
from an object and recover the object from received encoded data,
i.e., an object with 𝐾 source symbols can be recovered from any 𝐾
encoded symbols among the 𝑁 available encoded symbols.

The paper [14] proves probabilistic response overhead guaran-
tees when SOPIs are randomly chosen and deterministic response
overhead guarantees when SOPIs are generated systematically. As
an example of a probabilistic guarantee, when 𝑁 = 231 − 1 and
𝐾 ≤ 50, 000, an object with 𝐾 source symbols can be recovered
with probability at least 0.999995 from 1.01 · 𝐾 symbols received
from any number of stream objects with different SOPIs. Alterna-
tively, when 𝑁 = 231 − 1 and 𝐾 ≤ 30, 000, a set of 15 billion SOPIs
can be generated with the following deterministic guarantee: an ob-
ject with 𝐾 source symbols can be recovered with certainty from
1.01 · 𝐾 + 1 symbols received from prefixes of any pair of stream
objects with different SOPIs. As another example, when 𝑁 = 231 − 1
and 10, 000 ≤ 𝐾 ≤ 30, 000, a set of 150 million SOPIs can be gener-
ated with the following guarantee: an object with 𝐾 source symbols
can be recovered with certainty from 1.015 · 𝐾 symbols received
from prefixes of any ten stream objects with different SOPIs.

2.6 Which erasure codes are right for LDN?
Marrying an ideal erasure code to LDN is a key design decision. To
minimize overheads, two highly desirable properties of an erasure
code for use within LDN are:

• Encoding and decoding are linear time operations, and thus
the size of an object that can be efficiently encoded and de-
coded can be very large and is not constrained.

• 𝑁 >> 𝐾 , i.e., the number 𝑁 of available symbols of encoded
data for an object is much much larger than the number 𝐾 of
source symbols in the object.



While the desirability of linear-time encoding/decoding is apparent,
the rationale for 𝑁 >> 𝐾 may be less clear. SOPIs benefit directly
from the availability of a large amount of encoded data, because
this keeps incidental cross-collisions of encoded data in prefixes of
SOPIs to a minimum. Conversely the cost of 𝑁 >> 𝐾 is negligible
under the assumption of an erasure code for which each incremental
symbol needed can be generated (or decoded) in constant time.

Many types of erasure codes can be used in LDN, although some
are better suited than others. RLNC codes exhibit a significant trade-
off between encoding/decoding complexity and response overheads
as a function of the source block size, and Reed-Solomon codes
exhibit a similar but slightly less severe trade-off.

Our recommended erasure code for LDN is a fountain code. The
BAT fountain code described in [29] exhibits a reasonable trade-off
between encoding/decoding complexity and response overheads as
a function of the source block size, and the RaptorQ fountain code
described in [16], [26] exhibits a close to optimal trade-off.

3 SECURITY IN AN ECA
Object verification has been identified as a critical aspect of any ICN
architecture. An established provenance approach to support object
verification is to enable the data source, which we call the originator,
to digitally sign objects as they are generated.

Another important security aspect is to protect against a denial
of service attack. In particular, packets that contain data that are
either not useful to recover an object or are bogus can waste valuable
network resources and pose a denial of service attack.

We summarize these two ECA security properties as follows:

• Object verification: Ensure that objects recovered at clients
are identical to objects generated by originators.

• Packet verification: Ensure that only useful packets are trans-
ported and cached with the network.

3.1 ECA security in context
NDN [31] uses a simple and elegant security design to provide both
object verification and packet verification. A publisher node uses a
standard digital signature scheme to sign each packet of an object,
and trust of the publisher node credentials implies trust that if the
packet signature is valid than the packet is valid. This provides packet
verification, since a node can verify the signature of a packet, and
accepts the packet only if the signature is valid. This also provides
object verification, since an NDN object equates to an ordered set of
packets, so an object is valid iff all packet signatures are valid.

NDN does not distinguish between originators and publisher
nodes, and the most natural assumption is that originators and pub-
lisher nodes are synonymous. This is not ideal, as it forces origi-
nators to be network-aware, i.e., originators are providing object
verification on packets, not objects, and thus originators must par-
tition objects into packets of a size suitable for delivery over the
network and sign the individual packets. A cleaner and more flexible
architecture would be to limit originator functionality to creating
objects and limit publisher node functionality to being the source of
objects available within the network.

Many prior ECA approaches allow blind encoding (see Sec-
tion 1.2), which makes packet verification impossible based on the
NDN approach to packet verification using standard digital schemes.

As pointed out by [2], even if an encoding node correctly generates
and signs a packet with private credentials (as in [12]), it cannot be
certain the packet is correct, since it cannot be certain the packets
from which the packet is generated are correct (they could be gener-
ated by misbehaving encoding nodes). Thus it is impossible to blame
an encoding node if a packet it generates is found to be corrupt.

The paper [2] introduces an elegant extension of the NDN security
scheme based on the homomorphic signature scheme described in [6]
that provides object verification and packet verification when blind
encoding is allowed. However, homomorphic signature schemes are
orders of magnitude more complex than standard digital signature
schemes, so the efficacy of this approach is highly impractical at
present. Also, as with NDN, originators must be network-aware.

3.2 LDN security
LDN introduces originators to enable end-to-end object verification
that is independent of packet structure. LDN also includes packet
verification which allows blame to be assigned to publisher nodes
that generate corrupt packets. The design cleanly separates object
provenance security requirements from network delivery security
requirements. Both object verification and packet verification use
standard digital signature schemes. Databases of public credentials
(e.g., stored in a blockchain) are assumed to be available.

Object verification is simple: The originator of an object signs the
object, and a client or publisher node verifies a signed object using
the public credentials of the originator.

Packet verification works as follows. Before generating an en-
coded data packet for any object, a publisher node must first perform
object verification on the object. Then it generates encoded data from
the object, packetizes the encoded data into a packet, and signs the
concatenation of the packet, the object signature, and the originator
public credentials.

A node, encoding node or client that receives a signed packet can
use the publisher node public credentials to verify the packet. (We
assume that public credentials for originators and publisher nodes
can be securely obtained through standard mechanisms that are out
of scope for this paper). If the signed packet is not verified then it
is discarded. If the signed packet is verified then it is accepted and
deemed useful for recovering the object from which it was generated.

However, a signed packet that is verified is still untrusted. A mis-
behaving publisher node can generate and sign a corrupt packet, a
corrupt object will be recovered from use of the corrupt packet, and
the corrupt object will later be discarded based on its invalid signa-
ture. Thus, a misbehaving publisher node can mount a successful
denial of service attack. But to stop an attack, it is now possible
for any other trustworthy publisher node to produce a short proof
that can be used to identify and blackball the misbehaving publisher
node. The input to the proof is the signed correct object, the signed
corrupt packet, and the originator and misbehaving publisher node
public credentials. The proof consists of verifying the correct object
and corrupt packet signatures, generating the correct packet from
the object, and verifying that the correct and corrupt packets differ.

4 LDN USE CASES
It is useful to study some basic use case examples of LDN to under-
stand and evaluate the design in a variety of network environments.



4.1 Tree
Consider a tree network of encoding nodes with a publisher node at
the root, and clients connecting to one or more neighboring encoding
nodes at the leaves to download encoded data for an object. It can
be verified that with the SOPI approach, the amount of encoded
data cached at an encoding node, and the amount of encoded data
that flows out of an encoding node is minimized with compared
to any other design with the same network topology. Furthermore,
the amount of encoded data that flows through or is cached in any
encoding node for an object is at most the object size.

4.2 Lossy Multi-Hop Wireless
Consider a multi-hop wireless network with a publisher node storing
an object 𝐷 at one end, a linear series of encoding nodes, and a client
at the other end that wants to download 𝐷 , where the packet loss rate
across each hop is known to be 25%.

The client can request a prefix of stream object (𝐷, 𝑃) of size
around 1.33 times the object size (enough to protect against 25%
packet loss). As encoded data generated by the publisher node ar-
rives at its neighboring encoding node it is sent to the next encoding
node, and when enough encoded data arrives to recover the object
at the neighboring encoding node it generates any additional unsent
requested encoded data for the object and sends it to the next en-
coding node. Each subsequent encoding node acts similarly. The
SOPI-based solution provides hop-by-hop protection against packet
loss, transmitting the minimum possible encoded data per-hop.

4.3 Roadside Transmitters
Consider a mobile client that travels in and out of the range of
transmitters, e.g., a client embedded in an automobile traveling
through an area of roadside transmitters equipped with nodes. The
client can seamlessly download encoded data for an object, since
there is no need to ensure that packets in transit from a transmitter
that is no longer in range are redirected to a transmitter that is
currently in range. If no client requests more than 20% of the object
from any one node, then each node caches encoded data that is at
most 20% of the object size. On the other hand, each client recovers
the object as soon as it receives encoded data from nodes that is
in aggregate the object size. This provides a simple, robust and
seamless solution, using concepts similar to those in [9].

4.4 Load Balancing at the Edge
Suppose that a cache server farm is located near a set of clients. In
the current Internet, each cache that serves a popular object 𝐷 to
any client stores a full copy of 𝐷 , and thus each such object is fully
replicated in each cache. When a request for 𝐷 is received from a
client at the load balancing switch, the switch picks a cache server
to handle the request in a way that spreads out the downloads of 𝐷
evenly across the caches.

How this can be handled by LDN is quite different: Each node
stores a prefix of a different stream object for 𝐷 that is a small
fraction 𝑓 of the object size, and the client issues requests for 1/𝑓
prefixes of different stream objects generated from the object. Load
balancing of stream object downloads occurs naturally, and a much
greater amount of popular content can be cached compared to the
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Figure 3: Edge with a load-balancing switch
current Internet for the same amount of caching storage, using prin-
ciples also elaborated in [15].

Figure 3 shows a publisher node for objects, eight nodes that cache
encoded data, a load balancing switch, and seven clients download
encoded data for objects. The switch has the SOPI of each node, and
provides each client with four of the eight SOPIs (chosen either at
random, or to achieve a load balance condition). Each client requests
a prefix of length slightly more than 1/4 of the object size from each
of the four stream objects with the SOPIs it received from the switch,
so that the aggregate amount of encoded data requested is slightly
more than the object size. The switch sends received requests to the
appropriate nodes, which provide the response to the client if the
encoded data is already in cache. Otherwise, nodes send requests to
the publisher node, and when encoded data responses return, they
are sent to the client and are also cached. Since every NN caches a
prefix of 1/4 the object size, this example yields a factor of four space
savings when compared to current load balancing architectures.

5 SUMMARY AND CHALLENGES
Our work explores the use of erasure codes in an ICN that goes
beyond inclusion of encoded data as a feature. We draw motivation
from basic use cases where the benefits of erasure codes appear
substantial, but are difficult to fully realize absent an approach that
provisions for encoded data within the network architecture. We
identify the architectural components of naming encoded data and
establishing appropriate request-response paradigms as key chal-
lenges in such a design. With an approach based on novel identifiers
(SOPIs), our LDN design specifies an erasure code architecture that
builds architectural scaffolding for encoded data within NDN. LDN
maintains the underlying integrity and simplicity of the NDN design,
including security guarantees, and derives the full benefits of erasure
codes with low marginal overheads.

Future research areas include protocols for identifying and black-
balling misbehaving publisher nodes, assigning SOPIs to nodes
(see [14]), and practical implementation and analysis of LDN.
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