
Smooth Multirate Multicast Congestion Control

Gu-In Kwon John W. Byers
guin@cs.bu.edu byers@cs.bu.edu

Computer Science Department
Boston University

Boston, MA 02215

Abstract— A significant impediment to deployment of multicast
services is the daunting technical complexity of developing, testing
and validating congestion control protocols fit for wide-area
deployment. Protocols such as pgmcc and TFMCC have recently
made considerable progress on the single rate case, i.e. where
one dynamic reception rate is maintained for all receivers in the
session. However, these protocols have limited applicability, since
scaling to session sizes beyond tens of participants necessitates
the use of multiple rate protocols. Unfortunately, while existing
multiple rate protocols exhibit better scalability, they are both
less mature than single rate protocols and suffer from high
complexity.

We propose a new approach to multiple rate congestion control
that leverages proven single rate congestion control methods by
orchestrating an ensemble of independently controlled single rate
sessions. We describe SMCC, a new multiple rate equation-based
congestion control algorithm for layered multicast sessions that
employs TFMCC as the primary underlying control mechanism
for each layer. SMCC combines the benefits of TFMCC (smooth
rate control, equation-based TCP friendliness) with the scalability
and flexibility of multiple rates to provide a sound multiple rate
multicast congestion control policy.

I. INTRODUCTION

Despite considerable effort and numerous technical ad-
vances, a suitable multiple rate multicast congestion control
mechanism fit for wide area deployment is still yet to emerge.
The primary reason appears to be the daunting complex-
ity associated with delivering different TCP-friendly rates
to different participants within the session. In all existing
schemes for multiple rate congestion control, versions of
layered multicast (originally proposed in [1]) are employed,
whereby different multicast groups within the multicast session
transmit at different rates, and participants use IGMP messages
to join and leave groups to adjust their rate. But the significant
challenges associated with this method are that the actions of
one receiver can adversely impact other receivers; moreover,
joins can place sudden load on the network, leading to
unfriendliness to protocols such as TCP. Existing methods
to mitigate these problems ultimately lead to very complex
multiple rate congestion control designs that are difficult to
evaluate.

Further evidence of the technical hurdles associated with
multiple rate schemes is given by promising recent advances
in single rate multicast congestion control, notably pgmcc
[2] and TFMCC [3]. With single rate congestion control
schemes, the sender transmits at a rate requested by the slowest

receiver in the group. While these protocols are not designed
to scale to large or heterogeneous audiences, there is building
consensus that these protocols are sufficiently mature and
well-tested for Internet deployment. In this paper, we seek
to leverage these advances. In particular, we explore a new
direction in multiple rate multicast congestion control, namely
building a multiple rate scheme from an ensemble of single
rate sessions, each of which has their own independent control.
The major advantage of this method is that it leverages proven
single rate congestion control mechanisms to provide an
effective multiple rate scheme with relatively little additional
complexity. This is in contrast to all existing multiple rate
congestion control schemes, which provide only an integrated
control mechanism across layers, and do not attempt to take
advantage of control mechanisms within layers. As a result,
these integrated controls are often extremely complex, and are
difficult to test and validate.

A. Our Work in Context

There has been a significant amount of previous work
on TCP-friendly multiple rate multicast congestion control,
including [4], [5], [6], [7], [1], [8]. All of these approaches
employ layered multicast, i.e. they employ a set of multicast
groups that transmit at different rates to accommodate a
heterogeneous, and potentially large population of receivers.
Previous work has categorized these schemes as either using
static or dynamic layers. In static schemes, such as [1], [7], the
sending rate of any given layer remains fixed over time, and
all adjustments to the reception rate are therefore exclusively
receiver-driven. This approach has some drawbacks, most
notably that the receiver may have insufficient information
to accurately conduct join attempts, as well as necessitating
abrupt rate changes. Many other schemes use dynamic layers,
or layers whose transmission rate changes over time according
to a predetermined pattern. Dynamic layers have been used
in a variety of clever ways, including implicit coordination
of receivers behind a bottleneck [8], reduction of IGMP
leave messages [4], simulation of additive increase [6], and
to achieve equation-based congestion control [9]. However,
implementations of these dynamic layering schemes typically
have a great deal of embedded complexity to realize these
benefits in practice.

One feature shared by most existing multiple rate methods is
that the layer rates are non-adaptive, i.e. the schedule of packet



transmissions on each group (whether fixed-rate or dynamic)
is known to the sender and to the receivers in advance. A
limitation of non-adaptive schemes is their inflexibility; there
are typically only a small constant number of feasible control
actions that may be taken by a receiver at a given time step.
For example, in many non-adaptive schemes, the magnitude
by which a receiver may instantaneously increase or decrease
its rate is fixed a priori, and the times at which a rate increase
can be performed are widely separated. Our work differs in
this regard, since each of the TFMCC sessions comprising the
individual layers adaptively and continuously adjust their rates
to the limiting receivers in the session, as we will describe.

Two methods for adaptive, layered multiple rate multicast
were proposed in SAMM [10] and HALM [11]. However, the
methods proposed in SAMM predated current notions of TCP-
friendliness and were not evaluated in that context, moreover,
extra router support to monitor the available bandwidth is
required to achieve the best performance. The work in HALM
is most similar to our own, in that they advocate periodic,
adaptive reallocation of layer rates in a multirate multicast
session and build upon single rate congestion control methods.
In their case though, the emphasis is on periodic optimization
of the layer rates at coarse time scales (tens of seconds) that is
not suitable for fine-grained congestion control on the Internet.

B. Contributions and Organization

We describe SMCC, a new multiple rate equation-based
congestion control algorithm for cumulative layered multicast
sessions that employs TFMCC as the primary underlying
control mechanism for each layer. Since each layer is con-
trolled independently by TFMCC, the properties of TFMCC
hold for participants in any given layer. As such, the layer
rates are both dynamic and adaptive. SMCC combines the
benefits of TFMCC (smooth rate control, equation-based TCP
friendliness) with the scalability and flexibility of multiple
rates to provide a sound multiple rate multicast conges-
tion control policy. In SMCC, each receiver cumulatively
subscribes to appropriate layers based on its estimated rate
using the TCP throughput equation [12] also employed in
TFMCC. In addition to the TFMCC functionality, SMCC
provides a new additive increase join attempt to avoid abrupt
rate increases when the receiver attempts to subscribe to
an additional layer. Ultimately, the smooth rate change of
SMCC is ideally suited to streaming multimedia applications;
but equation-based methods are general-purpose, thus SMCC
works naturally for other multicast applications, such as re-
liable downloads [8], [13]. Finally, it is worth emphasizing
that SMCC requires no additional router support beyond basic
multicast functionality, and does not place any new demands
on any existing multicast protocols.

The remainder of this paper is organized as follows. In
Section II, we review the underlying TFMCC congestion
control mechanism. In Section III, we specify SMCC and how
to orchestrate an ensemble of TFMCC sessions to build a mul-
tirate congestion control scheme. In Section IV, we propose a
new additive increase join attempt which is performed by each

receiver before joining the next layer. In Section V, we give
the results from ns simulations to demonstrate the fairness of
SMCC with competing TCP flows.

II. TFMCC OVERVIEW

TFMCC [3] is a single rate multicast congestion control
protocol designed to provide smooth rate change over time.
TFMCC extends the basic equation-based control mechanisms
of TFRC [14] into the multicast domain. The fundamental idea
is to have each receiver evaluate a control equation (Eqn. 1)
derived from the model of TCP’s long-term throughput [12],
then use this to directly control the sender’s transmission rate.

TTCP =
s

RTT

(√
2p
3 + (12

√
3p
8 )p(1 + 32p2)

) (1)

where TTCP is a function of the steady-state loss event rate
p, the TCP round-trip time RTT , and the packet size s.

A cursory overview of TFMCC functionality is as follows:

• Each receiver measures the packet loss rate.
• The receiver measures or estimates the round-trip time to

the sender.
• The receiver uses the control equation (Eqn. 1) to derive

an acceptable transmission rate from the measured loss
rate and round-trip time.

• The receiver sends the calculated transmission rate to the
sender.

• A feedback suppression scheme (additional details below)
is used to prevent feedback implosion while ensuring that
feedback from the slowest receiver always reaches the
sender.

• The sender adjusts the sending rate from the feedback
information.

In TFMCC, the receiver that the sender believes currently
has the lowest expected throughput of the group is selected
as the current limiting receiver (CLR). The CLR sends
continuous, immediate feedback to the sender without any
suppression, so the sender can use the CLR’s feedback to
adjust the transmission rate. In addition, any receiver whose
expected throughput is lower than the sender’s current rate
sends a feedback message, and to avoid feedback implosion,
biased feedback timers in favor of receivers with lower rates
are used.

A. Measuring the Loss Event Rate

One crucial detail of TFMCC which we will return to later
in the paper is the method it uses to measure packet loss.
In TFMCC, a receiver aggregates the packet losses into loss
events, defined as one or more packets lost during a round-trip
time. The number of packets between consecutive loss event
is called a loss interval. The average loss interval size can be
computed as the weighted average of the m most recent loss
intervals lk, ..., lk−m+1:

lavg(k) =
∑m−1

i=0 wilk−i∑m−1
i=0 wi



The weights wi are chosen so that very recent loss intervals
receive the same high weights, while the weights gradually
decrease to 0 for older loss intervals. The loss event rate p
used as an input for the TCP model is then taken to be the
inverse of lavg . The interval since the most recent loss event
is incomplete, since it does not end with a loss event, but it
is conservatively included in the calculation of the loss event
rate if doing so reduces p:

p =
1

max(lavg(k), lavg(k − 1))
.

B. Round-trip Time Measurements

Each receiver starts with an initial RTT estimate that is used
until a real measurement is made. A receiver measures the
RTT by sending timestamped feedback to the sender, which
then echoes the timestamp and receiver ID in the header of
a data packet. An exponentially weighted moving average
(EWMA) is used to prevent a single large RTT measurement
from greatly impacting the sending rate.

tRTT = β · tinst
RTT + (1 − β) · tRTT

The recommended value of β for the CLR is 0.05 while
all other receivers are recommended to use β = 0.5 due to
their less infrequent RTT measurements. For further details of
TFRC and TFMCC, we refer the reader to [14] and [3].

III. SMOOTH MULTIRATE MULTICAST CONGESTION

CONTROL

Like many other multiple rate congestion control schemes,
SMCC employs cumulative layered multicast. But unlike other
schemes, SMCC employs adaptive layers, i.e. each individual
layer uses TFMCC congestion control and each receiver sub-
scribes to appropriate layers based on its calculated equation-
based rate. The high-level features of our approach are as
follows:

• Each receiver subscribes to a set of cumulative layers.
We refer to a receiver as being an active participant in
the uppermost layer to which it subscribes, and a passive
participant in all other layers.

• Each layer i of SMCC transmits at a rate within a
designated interval and the rate floats within that interval
according to TFMCC congestion control regulated by
active participants in that layer.

• The current limiting receiver (CLR) for each layer is
selected from among the active participants of that layer
to adjust the sending rate.

• Each receiver calculates its expected throughput.
• If the expected throughput calculated from the equation

is above the maximum sending rate of its current sub-
scription level, the receiver performs a join attempt using
additive increase methods.

• If a receiver’s computed throughput is below the min-
imum receiving rate of the layer i, it drops its highest
layer i. (Note that this bounds the extent to which a CLR
can drag down a single TFMCC session).

4 Mbps

2 Mbps

1 Mbps

Join Attempt

Layer 0

Layer 1

Layer 2

Throughput of receivers
Throughput(Mbps)

Time

Fig. 1. SMCC Overview

In the following section, we describe how to set up the
layers and define how the CLR is selected for each layer. Then,
in Section III-B, we describe how each receiver sends feedback
and how changes of the CLR on each layer are realized. In
Section IV, we describe our methods for additive increase join
attempts.

Term Description
Bi the maximum cumulative sending rate up through layer i
Ci CLR on layer i
Li layer i
Ri actual sending rate on layer i
Sj subscription level of receiver j
Ti aggregate target rate requested by Ci

TABLE I

SMCC TERMS

A. Setting up Layers and CLRs

We employ a cumulative layering scheme so that each
receiver subscribes and unsubscribes to layers in sequential
order. For simplicity, in the following discussion and in the
remainder of the paper, we will assume that the maximum
cumulative sending rates through layer i, which we denote
by Bi, follow the natural 1, 2, 4, 8, . . . progression. Figure 1
briefly shows the configuration of layers and how the sending
rate of each layer is set, and Table I describes the terms we
use in the following sections to describe SMCC. Our approach
is amenable to other multiplicative layer rate increases, as
advocated in [4], or to finer-grained rates of increase. We
define the maximum cumulative sending rates of the layers
formally as follows: We let B0 be the maximum sending
rate of the base layer, and we set Bi = 2i ∗ B0 for i ≥ 1.
From this setting of the rates, we can associate each desired
reception rate with a set of subscription layers: a receiver
j desiring rate rj should subscribe to all layers i such that
Bi ≤ 2rj . In addition, a receiver which has a computed
throughput in the range [0,B0] always subscribes to the base
layer L0. In this sense, we can map each receiver to the layer
on which they are active. We say that layer Li is responsible
for receivers with rates in the range [Bi−1, Bi]. Equivalently,



we define the subscription level Sj of receiver j to be the
layer responsible for that receiver. The subscription level of
receiver with expected throughput x is:

Sj =
⌈
log2

x

B0

⌉
.

For example, a receiver with expected throughput 6 Mbps
where B0 = 1 Mbps has a subscription level of 3 (i.e. it
subscribes to L0, L1, L2, and L3) and L3 is responsible for this
receiver. At any instant in time, we let Ci denote the current
limiting receiver of a given layer i, i.e. the active receiver j that
has the lowest expected throughput in the range [Bi−1, Bi].

B. Dynamically Adjusting Layer Rates

Now we consider the setting of the layer rates, starting with
the base layer, L0. The sender adjusts the sending rate of the
base layer based on the feedback sent by C0, the CLR for the
base layer, and we denote the actual sending rate on the base
layer that results from this process by R0. The other active
receivers on the base layer do not send feedback unless their
calculated rate is less than R0. In all other respects, the sender
and the active receivers in L0 follow the TFMCC scheme.

Receivers with expected throughput in the range of [B0,
2B0] subscribe to L1 as well as L0. Let T1 denote the total
aggregate rate requested by the limiting receiver subscribing
to L1. Then, the actual sending rate R1 on layer 1 is set to
the difference between T1 and R0.

In general, the same principle is used to set the rate Ri on
layer i:

Ri = Ti −
i−1∑

j=0

Rj , (2)

where Ti is the aggregate target rate requested by Ci, the
current limiting receiver on Li. From this setting, it is easy to
show the following bounds on Ri:

∀i : 0 ≤ Ri ≤ Bi − Bi−2.

As in the TFMCC approach, the active participants in Li do
not send feedback unless their calculated rate is less than Ti,
thus avoiding feedback implosion. The CLRs are permitted to
send immediate feedback without any form of suppression,
so the sender can use the CLRs’ feedback to adjust the
transmission rate (upward or downward) for each layer.

The CLR for a layer can change in one of two ways: either
a new receiver becomes the CLR or the existing CLR leaves
the group. Each of these cases is relatively easy to handle.
If a receiver whose subscription level is i sends feedback
that indicates a rate that is lower than the current rate of
Ci, but still larger than Bi−1, the sender will sets Ci to
that receiver and immediately reduce its rate for Li to the
requested rate in the feedback message according to Equation
(2). If a receiver on Li has a calculated rate which is less
than Bi−1, it unsubscribes from layer Li. The receiver needs
to issue one IGMP leave message to drop the layer. While
dropping the highest layer does not guarantee a particular

amount of multiplicative decrease, on average, the reception
rate is decreased by half.

If the departing receiver is the CLR on Li, a new CLR for
layer i must be elected. To accomplish this, a departing CLR
first sends a control message to the sender notifying it of the
departure. Upon receipt of this signal, the sender multicasts
a control message to the group asking active participants to
select a new CLR. As in TFMCC, each receiver which is an
active participant on layer Li will set a random timer before
sending feedback to the sender. To avoid feedback implosion,
biased feedback timers in favor of receivers with lower rates
are used.

If there are no active participants on layer i (which can
happen when other participants are active on other layers j
such that j > i), no CLR is assigned to layer i. The actual
sending rate of layer i is then set to (Bi −

∑i−1
j=0 Rj) and the

rates on higher layers are adjusted according to Equation (2).
If any receiver which is active in layer j > i subsequently
drops layers i + 1 through j and becomes active in layer i,
this receiver will become the CLR in layer i, as will a receiver
who joins layer i from below. The sending rate of layer i is
then adjusted by this active receiver’s feedback rate.

C. Subscribing to an Additional Layer

Even though the receivers in the same group have similar
calculated throughput, they may not share the same congested
links. So, measured packet loss events across active receivers
in a layer will vary. Often, some receivers may compute
a calculated throughput value which is in the range of the
next layer, and those receivers will attempt to join the next
layer. As motivated in the introduction and in related work
[1], naive join attempts using a single IGMP join request are
problematic, as they introduce a sudden rate increase along
a network path. Such a spurious join attempt may cause
significant packet loss prior to the time at which the attempt
is rescinded [4]. In severe cases, this substantial increase on
the bottleneck link may drive TCP flows into timeout. For
this reason, join attempts which mimic fine-grained additive
increase [5], [6] are preferable. Here, instead of joining the
next layer, the receiver increases the receiving rate slowly, i.e.
by one more packet per RTT, during the join attempt.

Another compelling reason for proceeding to the next layer
slowly is due to inaccuracies in estimating the target through-
put when it differs substantially from the current reception
rate using TFMCC methods. As described earlier in section
II-A, the loss rate is computed from the loss interval, which is
defined as the number of received packets since the last loss
event. Hence, the loss interval clearly depends on the sending
rate. But since the sending rate is controlled by the CLR’s
feedback, the loss rate currently measured by a non-CLR is
not the same as if the sending rate adjusted to its feedback.
In section V, we show simulation results demonstrating that
the loss rate measured by non-CLR is not a sufficiently
accurate estimate to conclusively determine whether or not
to join the next layer. In practice, depending on the specific



scenario considered, the calculated throughput can either be
an overestimate or an underestimate.

Our methods for performing additive increase joins are the
glue that holds an ensemble of TFMCC sessions together, and
constitute the key additional feature needed to provide a sound
multiple rate congestion control scheme. As such, we describe
them fully in Section IV.

D. Avoiding Oscillation

Recall that both loss rate and RTT are input parameters
to calculate the transmission rate, thus even slight increases
in RTT cause the calculated rate to be slightly reduced. If
we allow the receiver to join layer Li+1 when the receiver’s
calculated transmission rate is very close to Bi, even a slight
increase of RTT is enough to force the receiver to drop the
highest layer so that it goes back to its previous layer. This
may cause significant oscillation when the RTT fluctuates.

We employ a conservative method to avoid this oscillation.
The receiver will join the next layer Li+1 if the calculated rate
is in the range of [α · Bi, Bi+1] for a damping factor α such
that 1 < α < 2. A fixed value, such as α = 1.2, can be used
for all receivers. In practice, methods for computing a receiver-
specific damping factor which incorporates the variance in
that receiver’s RTT can produce better performance and less
oscillation. We describe those methods more fully in the full
version of the paper [15].

IV. ADDITIVE INCREASE JOIN ATTEMPTS

We now describe a new additive increase scheme to con-
duct join attempts between successive layers in our multicast
session. Although other work has proposed the use of additive
increase in multiple rate multicast congestion control, such as
FGLM [5] and STAIR [6], those methods are designed as an
integral part of complex, non-cumulative multicast layering
schemes, and have technical limitations which make them
unsuitable for this application. In contrast, the layers we
propose for additive increase are only used when a receiver
wishes to attempt to join the next successive layer. Our scheme
has the following properties.

• True additive increase with respect to end-to-end band-
width consumption.

• Employs no IGMP messages (which can be slow to take
effect).

• Uses only a small number of additional IGMP join
messages.

Once a receiver performing a join attempt from layer Li

attains a total reception rate equal to Ti+1, the target rate sent
by Ci+1, it joins layer Li+1 and drops the special additive
increase layers. If, however, there is a packet loss during
the join attempt, the receiver ceases the join attempt. We
incorporate the information gained from both successful or
failed join attempts into loss interval and loss rate calculations.
The sender sends the next layer rate information in the packet
header.

11 12 13 14 15 162 3 4 5 6 7 8 9 10 Time(s)1 ... ...

11 12 13 14 15 162 3 4 5 6 7 8 9 10 Time(s)1 ... ...

BCL3

11 12 13 14 15 16

Number of
Sending Packet

1 10 11 12 13 14 15 162 3 4 5 6 7 98

BCL0

Time(s)... ...

BCL1

BCL2

2 3 4 5 6 7 8 9 10 Time(s)1 ... ...

Fig. 2. Binary counting layers targeted for an RTT of 1 second

A. Introducing Binary Counting Layers

The key to our additive increase methods are binary count-
ing layers, so named because the rates on the layers mimic
aspects of counting in binary.

• Binary Counting Layers (BCL): The rate transmitted on
BCLi(x) is an on/off function with a sending rate of 2i

packets during each on time, and where the duration of
each on and off time is x ·2i.

In TCP, the rate of additive increase is a function of the
round-trip time: the window opens by one additional packet
per RTT. The set of BCL(x) layers provide the same func-
tionality as TCP’s additive increase with a measured RTT of
x seconds. BCLs accommodate asynchronous join attempts for
different receivers in the multicast session, and accommodate
receivers with different target rates for the join attempt.

All layers are initially synchronized at time zero, which
corresponds the beginning of an off time for all layers.
Figure 2 shows how each Binary Counting Layer is organized,
assuming a 1 second RTT, which we use throughout this
discussion for simplicity.

To achieve additive increase starting at time zero, the
receiver simply subscribes to BCLi at 2i∗ RTT seconds. In
Figure 2, where the RTT is 1 second, the receiver subscribes
to BCL0, BCL1, BCL2, and BCL3 at 1s, 2s, 4s, and 8s
respectively. Once the receiver subscribes up through BCLi,
the number of receiving packets per RTT has increased by
2i+1 − 1 with only i IGMP joins and no additional IGMP
leaves. Avoidance of IGMP leaves is crucial, since in current
versions of IGMP, it often takes a number of seconds before
the leaves actually take effect; moreover, other extant methods
for additive increase require use of IGMP leaves.

Previous work has defined join and leave complexity, i.e. the
number of IGMP joins and leaves per operation, to be useful
performance metrics for layered multicast [5]. For SMCC, the
notion of operation does not map cleanly onto the additive
increase process, so we will consider the complexity of N
successive additive increases. From the description above, it is
clear that this process requires log N joins (and no leaves). In



42

42

42 1086 12 14 16 18 20 22 24

EBCL2

EBCL0

EBCL1

4

8

24 Time(s)

Time(s)

Time(s)1086 12 14 16 18 20 22 24

1086 12 14 16 18 20 22

Fig. 3. Extended Binary Counting Layers

other approaches to additive increase, such as [6], the receiver
periodically increases its rate by a constant amount c using a
constant number of operations (typically 1 join and 2 leaves).
Thus the complexity of N successive additive increases in
these schemes is N/c, i.e. linear in N .

B. Extended Binary Counting Layers

One limitation of the basic binary counting layer scheme
is that the receiver has to wait until certain specific times to
join the BCLs. Suppose the receiver wants to increase its rate
from 1 to 14 packets per RTT in Figure 2. If the receiver
wants to join BCLs at 5 seconds, it has to wait until the next
cycle (time 17) to initiate additive increase. One solution is
to allow receivers to jump-start their additive increase with an
initial set of joins (i.e. an immediate increase of 5 packets per
RTT in the example above). However, this can induce sudden
rate increase, and in the worst case, reduces to a naive join
attempt. An alternative is the following improvement.

• Extended Binary Counting Layers: The rate transmitted
on EBCLi(x) is a cyclic two step function. The number
of sending packet during RTT x seconds is 2i and 2i+1

in the low step and in the high step respectively.

Figure 3 shows the transmission rate of each binary counting
layer targeted for an RTT of 1 second. The receiver subscribes
to EBCLi at (2i+1−1)·RTT seconds to perform the additive in-
crease. In Figure 3, the receiver subscribes to EBCL0, EBCL1,
EBCL2, and EBCL3 at 1s, 3s, 7s, and 15s respectively to get
the additive increase up to 30 packets per RTT. Now consider
the waiting time if the receiver misses the join time. If the
receiver has to start the increase from 1 packet to 2i − 1
packets, a new cycle for that increase starts at 2i·RTT seconds
after the previous cycle starts in the basic BCL. However, in
the extended BCL the new cycle for that increase starts at
(2i−1 + 1)·RTT seconds after the previous cycle starts. For
example, for the increase from 1 to 30 packets, the new cycle
starts at 33 seconds and 17 seconds in the basic BCL and in
the EBCL respectively.

So far we have accommodated receivers with a specific RTT
(1 sec. in our example). In practice, receivers may have widely
varying RTTs, and it is desirable to simulate TCP behavior
of one packet per RTT additive increase for each receiver.

Extended BCLs can achieve this. The full version of this paper
[15] shows how EBCLs can be organized to simultaneously
accommodate receivers with various RTTs which are powers
of two.

C. Cost of additional BCLs for join attempt

One cost of additional layers to facilitate additive increase is
that they consume additional bandwidth beyond what is used
by the normal cumulative layers. To measure this cost, we use
the measure of dilation, defined in [5] and recapitulated here.

Definition 1: For a layering scheme which supports recep-
tion rates in the range [1, R], and for a given link l in a
multicast tree, let Ml ≤ R be the maximum reception rate
of the set of receivers downstream of l and let Dl be the
bandwidth demanded in aggregate by receivers downstream of
l. The dilation of link l is then defined to be Dl/Ml. Similarly,
the dilation imposed by a multicast session on tree T is taken
to be maxl∈T (Dl/Ml).

Lemma 1: The worst case dilation of SMCC with single set
of BCLs is 1.75.

Proof: Let us suppose the highest layer subscribed to by
any downstream receiver is the jth layer. The maximum rate
induced by the join attempt of a receiver k is Bj − Bj−2
when the following case holds: 1) the cumulative sending
rate up through Lj is the maximum rate Bi, and 2) the
cumulative sending rate up through Lj−1 is slightly higher
than the minimum rate Bj−2.

When an active receiver k in Lj−1 has a calculated rate
that is in the range of Lj , it performs a join attempt, which
lasts until the total reception rate is equal to the next layer’s
cumulative sending rate Bj . Therefore, the maximum rate
induced by the join attempt is Bj − Bj−2. The maximum
reception rate of the set of receivers is Bj and the bandwidth
demanded in aggregate by receivers is Bj + Bj − Bj−2.
Therefore,

dilation =
Bj + Bj − Bj−2

Bj
= 1.75

Even though this worst-case dilation is not negligible, in
practice it occurs only rarely (when a join attempt occurs
across a bottleneck link); moreover, the average dilation during
a join attempt is much smaller than this worst-case.

V. EXPERIMENTS

We have tested the behavior of SMCC using the ns simulator
[16]. In most of the experiments we describe here, we use
RED gateways, primarily as a source of randomness to remove
simulation artifacts such as phase effects that may not be
present in the real world. Use of RED vs. drop-tail gateways
does not appear to materially affect the performance of our
protocol. The RED gateways are set up in the following way:
we set the queue size to twice the bandwidth-delay product of
the link, set minthresh to 5% of the queue size and maxthresh
to 50% of the queue size with the gentle setting turned on. Our
TCP connections use the standard TCP Reno implementation
provided with ns.



Sender

SMCC Receiver

TCP Receiver

TCP Receiver

TCP Receiver

TCP Receiver

SMCC Receiver

100Mbps

21Mbps

6Mbps

SMCC

TCP1

TCP2

TCP4

TCP3

R4

R1 R2

R3

T2

T1

S1

S2

T3

T4

Fig. 4. Topology used to study TCP-fairness

0

5

10

15

20

0 50 100 150 200 250

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

S1
S2
T1
T2
T3

Fig. 5. Two SMCC receivers with TCP flows,B0 = 4Mbps

A. Preliminary Fairness Tests

Since the single rate TFMCC was well tested on the
“dumbbell” topology [3], we set our initial topology to have
multiple bottlenecks so that various SMCC receivers expe-
rience different network conditions. This initial topology is
depicted in Figure 4. We set the propagation delay on each
link is set to 8ms; each receiver therefore has a 64ms RTT
in our simulations. Varying the delay on the links did not
materially impact the performance of our protocol in the
simulations we conducted. In this experiment and all of our
other experiments we present, we used a damping factor of
α = 1.2. A full set of all the experiments we conducted as
well as the ns source code are available online at http://cs-
people.bu.edu/guin/smcc.html.

We consider a single SMCC session with two SMCC re-
ceivers and two parallel TCP flows sharing the same bottleneck
link for each SMCC receiver. SMCC receiver S1 competes
with 2 TCP connections on a 6Mbps link, giving a fair rate of
2 Mbps. S2 competes with 2 TCP flows on a 21Mbps link, for
a fair rate of 7Mbps. We set B0 to 4Mbps so that the sender’s
maximum transmission rate on the base layer L0 is 4Mbps.
The throughput of each of the flows is plotted in Figure 5.
S2 joins the base layer L0 at 30.0 seconds, and it performs
a join attempt at 47.6 seconds. After S2 subscribes to L1 at
48.2 seconds, it shares fairly with the parallel TCP flows on
the 21Mbps bottleneck link, while low-rate SMCC 1 shares
fairly with 2 TCP flows on the 6Mbps link.

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

S1
S2
T1
T2
T3

(a) Throughput of each receiver

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

Sending rate of L0
Sending rate of L1

(b) Sending rate of L0 and L1

Fig. 6. Late join of low-rate SMCC receiver. B0 = 4Mbps

B. Late Join of Low-rate Receiver

In TFMCC, a late join by a low-rate receiver results in that
low-rate receiver being selected as CLR, causing the sending
rate of the entire session to be adjusted by its feedback. In
SMCC, the late join of a low-rate receiver does not affect other
receivers’ throughput on higher layers. Figure 6 (a) shows the
throughput of SMCC receivers when the low-rate receiver, S1,
joins late.

At the time S1 joins the session (70 seconds), the trans-
mitted rate on the base layer is the maximum 4Mbps, while
the rate on L1 has been smoothly adjusting between 1 and
4Mbps to accommodate S2. The fair share for S2 behind
the 6Mbps bottleneck link with two TCP competing flows
is roughly 2Mbps, thus it immediately starts to experience
a high loss rate. S1 is selected as C0 within a second, and its
feedback subsequently controls the transmission rate of L0.
While the transmission rate of L0 has changed from 4Mbps to
S1’s feedback, the throughput of S2 is not adversely affected,
since S2 is the CLR for L1, and the rate on L1 instantaneously
increases to compensate for the rate decrease on L0. Figure
6 demonstrates the discontinuities in the sending rates across
L0 and L1 after time 70 seconds due to the late join of the
low-rate receiver.

However, had there been other receivers subscribing only
to the base layer, then the late join of a low-rate receiver
clearly would affect other receivers at a same subscription
level. The following rule is one of the keys to the scalability of
our approach: degradation in the form of additional congestion



TCP2

TFMCC

TCP1
100Mbps

4ms

100Mbps

100Mbps

2Mbps

8Mbps

R1 R2

R3

R4

200Mbps

4ms

T1

TF1

T2

TF2

40ms

40ms

Sender

Fig. 7. Topology for calculated rate inaccuracy

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

C
al

cu
la

te
d 

R
at

e 
(M

bi
t/s

)

Time (s)

TF1 
TF2 

T1
T2

Fig. 8. Throughput of TF1 and TF2 over time. Competing TCP connections
plotted in the background.

Receiver Parameter Time
50 s 100 s 150 s 200 s 250 s

RTT (second) 0.111 0.135 0.115 0.110 0.113
TF1 Loss rate (%) 1.097 0.358 0.811 0.811 0.799

Rate (Mbps) 0.761 1.175 0.880 0.919 0.902

RTT (second) 0.106 0.107 0.109 0.109 0.107
TF2 Loss rate (%) 0.082 0.027 0.014 0.009 0.015

Rate (Mbps) 3.220 5.583 7.671 9.366 7.442

TABLE II

CALCULATED TARGET RATE OF TFMCC RECEIVERS

along a path to a CLR will only impose throughput degradation
to receivers at the same subscription level at that time. Rates
received at other subscription levels are generally not impacted
substantially.

C. Inaccuracy of Non-CLR Estimated Target Rate

Using TFMCC methods, a receiver which is not the CLR
may not have sufficient information to correctly estimate its
targeted rate. In particular, the loss rate measured by non-
CLR receivers does not provide accurate information about
the bottleneck bandwidth since the control equation was not
modeled for this case, when the sender’s transmission rate is
independent of the receiver’s packet loss events. The relevance
of this point for SMCC is that a non-CLR receiver may not
always be able to accurately assess whether it can safely join
the next layer.

Figures 7 and 8 and Table II depict this scenario. In Figure
7, TFMCC receivers TF1 and TF2 are competing with two

R1 200Mbps

SMCC

TCP1

TCP2

TCP9

R2

T9

T5

S3

T4

T3

S2

T2

T1

12Mbps

100Mbps

R4

S1

40Mbps
100Mbps

R5

100Mbps

R3

40Mbps

Fig. 9. Topology for assessing impact of dynamics of competing flow

TCP connections, T1 and T2, over a 2 Mbps bottleneck link
and an 8 Mbps bottleneck link, respectively. TF1 and TF2
are not sharing the same bottleneck link, thus their losses
are largely independent. Figure 8 shows each TCP flow’s
throughput and each TFMCC receiver’s target rate calculated
from the measured RTT and the loss rate. In the simulation,
TF1 is quickly selected as C0 and it fairly shares the 2
Mbps link with T1 throughout the simulation. Indeed, TF1’s
target rate over time, as depicted in Table II, is a reasonable
approximation to its fair rate. In contrast, TF2’s target rate,
also depicted in Table II, is initially inaccurate (and badly
underestimates the target rate) up through time 150 seconds. It
then briefly overestimates its fair rate at time 200 seconds, and
also overshoots its target subscription level, before converging
around time 250 seconds. These estimation inaccuracies are
another reason why we recommend and use conservative
additive increase join attempts.

D. Responding to dynamics of competing traffic

We used a topology (Fig 9) to test the responsiveness to
dynamic changes of local competing traffic, i.e. how increased
traffic on local bottleneck links affects the receivers’ through-
put on different bottleneck links. As the competing traffic
increases across a bottleneck, proportional fairness ensures that
an SMCC receiver sharing the same bottleneck will get less
throughput, and in the event that receiver is selected as CLR,
the other receivers with the same subscription level also get
less throughput even though they do not share the bottleneck
with the CLR. However, the extent of the degradation is
bounded by a penalty of at most a factor of 2 on all layers
except for the base layer. Moreover, we will show that in
practice, the degradation is typically much smaller than this
worst-case bound.

In Figure 9, receiver S1 is competing with two TCP flows
for a 12Mbps bottleneck link, while both S2 and S3 are com-
peting with two different TCP flows for a different 40Mbps
bottleneck link. We now set B0 = 8Mbps and all receivers
have an RTT of 32ms. S2 and S3 do not share the same
bottleneck link but their expected throughput is initially the



0

5

10

15

20

25

30

35

50 60 70 80 90 100 110 120

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

S2
S3

S1
S2
S3

CLR change
Join Attempt Fail

0

5

10

15

20

25

30

35

50 60 70 80 90 100 110 120

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

S2
S3

S1
S2
S3

CLR change

(a) With Additive Join Attempt (b) Without Additive Join Attempt

Fig. 10. Impact of dynamic competing traffic, B0 = 8 Mbps

same. Therefore, they have the same subscription level until
new competing traffic starts.

Figure 10 (a) shows the throughput of each of the three
SMCC receivers over time, as well as the CLR (either S2
or S3) on L1 over time. Initially, the simulation starts with
the three SMCC receivers and TCP flows 1 through 6. At
70 seconds, 3 additional TCP flows (T7, T8, T9) sharing the
40Mbps bottleneck enter the system . Therefore, S3’s fair share
drops from roughly 13Mbps to roughly 7Mbps. S3 is selected
as C1 at 70.3 seconds and the sending rate for L1 steadily
decreases, once it is controlled by its feedback. The receiver
with the same subscription level, S2, suffers performance
degradation as it gets the packets sent at the S3 feedback rate.
But S2’s receiving rate is adversely affected by the increase
of traffic on the path to S3 only so long as S3 is C1. At time
75.7 seconds, S3 drops its highest layer, L1 when its calculated
rate drops to 7.74Mbps. S2 is elected as new CLR for L1 at
76.2 seconds and its feedback controls the sending rate of L1,
which then quickly rebounds. Meanwhile, L0 continues to be
limited by S1, who continues to have a lower fair share than
S3, so S3 receives at a rate of approximately 5Mbps during
this time.

Although S3’s fair share is only 7Mbps, for reasons de-
scribed in Section III-C, it cannot make a highly accurate
assessment of its expected throughput while receiving at only
5Mbps, and these inaccurate estimates induce it to make join
attempts to L1. S3 experiences two join attempts, both of
which fail due to packet loss, between 70 seconds and 100
seconds. These two join attempts, marked by small spikes
away from the S1 baseline, occur at 87.1 seconds and at 98.3
seconds. The little spikes around this time indicate these join
attempt failures.

Finally, the three additional TCP flows leave at time 100
seconds. S3 performs a successful join attempt at 103.4
seconds and it reaches L1 at 103.9 seconds, at which time
it resumes sharing with S2.

Figure 10 (b) shows the identical simulation of each SMCC
receiver but without the benefits of additive increase join
attempts. Instead, in this simulation, the receiver naively joins
an additional layer whenever the calculated rate is in the range

Sender

110Mbps

33Mbps

TCP 60

TCP 2

TCP 1

SMCC

Receiver

T 11~20

T 51~60

T 41~50

T 31~40

T 21~30

T 1~10

S 2

S 3

S 4

S 5

S 6

S 1

R6

R5

R4

R3

R2

R1

44
M

bp
s

77M
bps

66Mpbs

55Mbps.

.

.

.

.

.

.

.

.

.

.

.

Fig. 11. Topology for Many Heterogeneous Receivers, B0 = 4Mbps

of the sending rate of the higher layer. S3 joins the next layer
at 86.8 seconds and it becomes CLR for L1 until 88.8 seconds.
During this time, the sending rate of L1 is dragged down
to the rate of S3, impacting the reception rate of S2. After
dropping back down, S3 joins L2 at 96.1 seconds again and
it is selected as C2 until 99.3 seconds. Spurious joins such
as these can cause significant performance degradation; an
effect which is that much more severe when multiple receivers
perform spurious joins, thereby constantly dragging down the
rates on higher layers.

In contrast, with additive increase joins, even when a
receiver initiates joins which are ultimately unsuccessful, it
does not diminish the throughput received by other session
participants during that time.

E. Fairness with heterogeneous receivers

Finally, we used a topology with multiple bottlenecks
(Figure 11) to test the performance of SMCC with a set of
heterogeneous receivers where the differences between the
receivers’ target rates is relatively small. We consider a single
SMCC session with six SMCC receivers and ten parallel
TCP flows sharing the same bottleneck link for each SMCC
receiver, but each SMCC receiver is not behind the same
bottleneck link. S1 competes with 10 TCP connections on a



0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

AVG TCP: 2.83Mbps

S1: 3.12Mbps
T1 : 2.92Mbps

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

AVG TCP: 3.79Mbps

S2: 3.53Mbps
T14 : 3.76Mbps

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

AVG TCP: 4.57Mbps

S3: 5.01Mbps
T28 : 4.55Mbps

(a) S1 and T1 (b) S2 and T14 (c) S3 and T28

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

AVG TCP: 5.59Mbps

S4: 5.31Mbps
T38 : 5.56Mbps

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

AVG TCP: 6.48Mbps

S5: 5.75Mbps
T48 : 6.55Mbps

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

AVG TCP: 9.10Mbps

S6: 10.16Mbps
T56 : 9.07Mbps

(d) S4 and T38 (e) S5 and T48 (f) S6 and T56

Fig. 12. Throughput of SMCC receivers, B0 = 4 Mbps

33Mbps link, giving a fair rate of 3 Mbps and the fair rates
of the other SMCC receivers (S2 to S6) are 4Mbps, 5Mbps,
6Mbps, 7Mbps, and 10Mbps respectively.

We plot the throughput of each SMCC flow and the through-
put of one of the competing TCP flows in Figure 12. In
each case, we chose the TCP connection whose mean rate
was closest to the average of the ten competing flows as our
representative. The throughput of each SMCC receiver fairly
shares the bottleneck link with the parallel TCP flows even
though lower-rate receivers are often present and drag down
the rate on each level. In practice, non-CLR receivers tend
to periodically join the next higher layer as their estimated
throughput begins to deviate substantially from the CLR’s
target rate. The receiver S6 in panel (f) of Figure 12 is an
example of relatively frequent subscription changes; note that
its performance is still not as bursty as the competing TCP
connection.

Next, consider Figure 13 (a) which plots the reception rate
of S1 and S2. Like S6, S2 has relatively high subscription
changes since its fair rate of 4Mbps is equal to B0. S1, with
a fair rate of 3Mbps, is typically selected as the CLR on
L0. Whenever S2 joins L1, it quickly becomes the CLR and
may impact the throughput of receivers on that layer. The plot
depicted in Figure 13 (b) shows this impact. For example, at
time 67.08 seconds, S2 becomes C1 and drags the cumulative
rate T1 down from 6.7Mbps to 5.0Mbps. At 99.6 seconds
and 176.4 seconds, the sending rate is set from 7.1Mbps to
4.1Mbps and from 6.8Mbps to 4.6Mbps, respectively. There
are other cases where the newly joined S2 becomes CLR on
L1, but its degradation of rate is within 10%.

VI. CONCLUSION

We have presented SMCC, a multirate equation-based mul-
ticast congestion control that leverages a proven single rate
congestion control method (TFMCC) by orchestrating an
ensemble of independently controlled single rate sessions. A
compelling argument for this new methodology is its evident
simplicity: unlike all other viable multiple rate congestion
control protocols, ours requires only a small amount of care-
fully crafted new functionality. By maintaining appropriate
invariants on the session rates of the individual TFMCC
flows, specifying a clean mapping from reception rates to
subscription levels and providing a non-disruptive method for
additive increase join attempts, we build a sound multiple
rate multicast congestion control scheme. A final advantage
of our approach is its modular design; TFMCC could easily
be replaced by an alternative, or an improved equation-based
rate control mechanism.

ACKNOWLEDGMENTS

We thank the anonymous INFOCOM 2003 reviewers for
their helpful comments. This work was supported in part by
NSF grants ANI-9986397 and ANI-0093296.

REFERENCES

[1] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-Driven Layered
Multicast,” in Proc. of ACM SIGCOMM ’96, August 1996.

[2] L. Rizzo, “pgmcc: A TCP-friendly single-rate multicast congestion
control scheme,” in Proc. of ACM SIGCOMM ’00, 2000.

[3] J. Widmer and M. Handley, “Extending equation-based congestion
control to multicast applications,” in Proc. of ACM SIGCOMM ’01,
2001.



0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

S1
S2

0

2

4

6

8

10

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (s)

S2
S3

(a) Throughput of S1 and S2 (b) Throughput of S2 and S3

Fig. 13. Throughput Comparison of S1, S2, and S3

[4] J. Byers, G. Horn, M. Luby, M. Mitzenmacher, and W. Shaver, “FLID-
DL: Congestion Control for Layered Multicast,” IEEE J-SAC Special
Issue on Network Support for Multicast Communication, vol. 20(8), pp.
1558–1570, Oct. 2002, A preliminary version appeared in NGC ’00.

[5] J. Byers, M. Luby, and M. Mitzenmacher, “Fine-Grained Layered
Multicast,” in Proc. of IEEE INFOCOM ’01, April 2001.

[6] J. Byers and G. Kwon, “STAIR: Practical AIMD Multirate Multicast
Congestion Control ,” in Proc. of NGC ’01, 2001, Full version appears
as BU-CS-TR-2001-018, Boston University, 2001.

[7] A. Legout and E. Biersack, “PLM: Fast convergence for cumulative lay-
ered multicast transmission schemes,” in Proc. of ACM SIGMETRICS,
2000.

[8] L. Vicisano, L. Rizzo, and J. Crowcroft, “TCP-like Congestion Control
for Layered Multicast Data Transfer,” in Proc. of IEEE INFOCOM ’98,
April 1998.

[9] M. Luby, V. Goyal, S. Skaria, and G. Horn, “Wave and Equation Based
Rate Control Using Multicast Round Trip Time,” in Proc. of ACM
SIGCOMM ’02, 2002.

[10] B. J. Vickers, C. Albuquerque, and T. Suda, “Source-adaptive multilay-
ered multicast algorithms for real-time video distribution,” IEEE/ACM
Transactions on Networking, vol. 8, no. 6, pp. 720–733, 2000.

[11] J. Liu, B. Li, and Y. Zhang, “A Hybrid Adaptation Protocol for TCP-
friendly Layered Multicast and Its Optimal Rate Allocation,” in Proc.
of IEEE INFOCOM ’02, June 2002.

[12] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Reno
Performance: A Simple Model and Its Empirical Validation,” IEEE/ACM
Transactions on Networking, vol. 8, no. 2, pp. 133–145, Apr. 2000.

[13] J. Byers, M. Luby, and M. Mitzenmacher, “A Digital Fountain Approach
to Asynchronous Reliable Multicast,” IEEE J-SAC Special Issue on
Network Support for Multicast Communication, vol. 20(8), pp. 1528–
1540, Oct. 2002, A preliminary version appeared in ACM SIGCOMM
’98.

[14] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” in Proc. of ACM SIGCOMM
’00, 2000.

[15] G. Kwon and J. Byers, “Smooth multirate multicast congestion control,”
Technical Report BU-CS-TR-2002-025, Boston University, 2002.

[16] ns: UCB/LBNL/VINT Network Simulator (version 2).
Available at http://www-mash.cs.berkeley.edu/ns/ns.html.


