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Abstract

We consider the distributed allocation problem of assigning rates to a set of network

flows from a new game-theoretic standpoint. Our setting is a fixed capacitated network

in which a set of long-lived flows is given and the routes these flows use are pre-ordained

and fixed through the duration of the algorithm. Each flow is then given a set of tokens

which it may place on the links that it intends to use. The flows then play an iterative

game that runs in a sequence of distributed rounds. In each round, the flows place

their tokens, then the links provide a tentative rate allocation in proportion to the

number of tokens that it receives. Flows are then constrained to a rate that is the

minima of the rates allocated to them by their incident links. The flows may then

repeatedly reallocate their set of tokens across links to improve their allocation. We

characterize the Nash equilibria of this game, relate them to the equilibria in the TCP

Vegas analysis, and describe strategies which converge to the equilibria.

1 Introduction

The performance of high speed networks is to a large extent determined by the way the
network resources (i.e. bandwidth, buffer space, or processing power) are allocated to the
different flows. In ATM networks, this is done explicitly at the switches by the available
bit rate (ABR) service class [4], while in the TCP/IP framework the resource allocation is
done by a combination of the end to end flow control mechanism of TCP and the queue
management policy at the routers.

More broadly, a widely studied class of combinatorial optimization problems seek to
optimize the assignment of rates to a set of long-lived network flows in a fixed, capacitated
network. In practice, a typical network tends to exhibit complex dynamics that includes
the arrival and departure of flows, outages that affect connectivity, and routing changes
that impact the routes that flows take through the network. While some of the theoretical
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literature can address these issues in part, much of the classical work focuses on the static
case, in which the network is fixed, as is the set of flows, and the routes (paths) they use to
route data through the network.

Where flow allocation methodologies differ is with regard to the large set of possible
objective functions. Researchers and network operators alike could be concerned with is-
sues ranging from fairness to congestion control to aggregate utility maximization. As these
diverse objectives may have conflicting priorities, or work at cross-purposes, there is a con-
siderable body of work on each topic, much of which is distinct from the other related work.
However, one over-riding theme that is common to these objectives is a focus on obtaining
distributed solutions, i.e. solutions that can be obtained whereby flows and links operate
with only local information. A typical definition of local information is that each flow may
communicate with its incident links, typically by transmitting control packets along the flow
path (or by setting control bits in packet headers), and each link may similarly communi-
cate with its incident flows. While a lengthy discussion of the large body of related work
in flow allocation is well beyond the scope of this paper, we briefly recapitulate three main
thrusts of research in Section 2: work on defining and achieving fair allocations, work on
aggregate utility maximization, and work on developing a rigorous analytical understanding
of congestion control algorithms. Each of these tie in to our later findings.

One limitation of the optimization-driven approach discussed above is that it requires
careful orchestration and interaction between parties to execute the algorithms correctly.
For example, in the context of primal-dual algorithms for either throughput maximization
or aggregate utility maximization, convergence is predicated on correct adherence to the
algorithms by all flows and all links in the network. In a similar vein, equilibria for TCP
Vegas congestion control requires that all endpoints correctly implement (and then use!) the
algorithms. Neither of these methods provide strong incentives for users to cooperate, as
has been widely documented. For this reason, a game-theoretic approach to rate alloca-
tion problems is of interest (see e.g. [6]), especially if the outcomes that it produces either
relate closely to or coincide directly with the outcomes of the optimization approaches dis-
cussed above. From a practical standpoint, providing a diverse set of mechanisms to achieve
quantitatively similar outcomes in the context of rate allocation is highly useful, as a given
mechanism may be much more amenable to deployment in a certain network setting, while
less helpful in others.

The particular form of our game, which we present formally in Section 4, allows flows
to operate autonomously and in their own self-interest, by apportioning a fixed amount of
currency across the set of network resources (links) that they intend to consume. On the
other hand, the links operate according to a specific set of rules that they must enforce. The
key rule in particular that we propose requires links to allocate their resource (bandwidth)
in proportion to the amount of currency that flows have invested. Flows are informed of the
allocation from each of their incident links and must adhere to a rate that is the minimum of
these link allocations. (In the event a flow attempts to exceed its allocated rate, the incident
link would drop the excess traffic, affording the flow no advantage in doing so).

We believe our approach has a number of useful properties. First, our game is built on
a simple and natural rule that fairly apportions link bandwidth to flows. Second, our game
does not require cooperation among flows, as flows that act in their own self-interest can par-
ticipate while not adversely affecting other users. Third, our game places the simple policing
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functionality only on the network entities that are most likely to be able to implement that
functionality: on network links and their incident routers. Moreover, the only information
needed by these routers is available locally, and no global operation is needed.

Our main contributions in the remainder of the paper are the following: we formalize the
game outlined above, define conditions for the Nash equilibria for this game, and demon-
strate that an equilibrium allocation always exists. We then draw connections to how our
equilibrium allocation compares with the results of other optimization methods. We show a
striking similarity between our equilibria and the equilibria that TCP Vegas seeks to achieve,
as proven in [10], and also relate our work to max-min fair and throughput-maximizing al-
locations. Finally, we describe our work in progress on several distributed algorithms for
iterative token allocation, including experimental results that show their convergence in
practice, as well as a discussion of theoretical running time analysis.

2 Related Work

Early work on optimal resource allocation in high-speed networks focused on global measures
such as maximizing the overall throughput of the network, and maximizing the power of the
network [5]. Unfortunately, many of these early results were negative, and demonstrated
that certain global objectives could not be exactly realized with local resource allocation
techniques. For that reason, work has moved away from achieving global objectives which
cannot be checked locally to objectives which can both be defined and checked locally. The
prime example is the rate allocation policy known as max-min fairness [3]. In a max-min
fair equilibrium, no connection can be allocated a higher rate without reducing the rate of
another connection of equal or smaller rate. A max-min fair solution has many desirable
fairness properties, as well as the distinction that routers and connections can efficiently check
whether the current setting of rates is max-min fair. Of course, the optimization criterion is
far removed from that of maximizing resource utilization, and algorithms achieving max-min
fairness can and do perform poorly with respect to these measures.

In the last few years several papers question the hegemony of max-min fairness. Kelly
[7, 8] studied the connection between the local resource allocation criterion and the global
optimized function. He argued that in fact a measure which he calls proportional fairness
optimizes a natural global function which is proportional to the sum of a logarithmic utility
function of the different flows. Massoulié and Roberts [13] and Kunniyur and Srikant [9]
coontinued this line of research and focused on distributed algorithms that can achieve
resource allocation using end-to-end mechanisms. It turns out that sliding window AIMD
congestion control (like that used in TCP) tends to converge to proportional fairness rather
than max-min fairness [8, 11].

A related line of work in the algorithms literature considers fast approximate solutions to
positive linear programs, including the seminal work of Plotkin, Shmoys and Tardos [14, 12].
One of the central tenets employed here are primal-dual methods, which were subsequently
fitted to distributed approximation algorithms for the problem of flow allocation, first by
Awerbuch and Azer [1], and later by Bartal, Byers, and Raz [2], who obtained (1 + ǫ)-
approximate convergence in a polylogarithmic number of rounds.

The seminal work of Kelly also focused on primal-dual algorithms for flow control, but
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with a more general notion of optimizing concave utility functions [7, 8]. Kelly’s notion of
interpreting dual variables as link prices was widely adopted, and then used to interpret and
analyze a variety of window-based congestion controllers, culminating in the full analysis
of TCP Vegas [10]. This trend towards an integrated analytical understanding of complex
congestion controls has been one of the recent success stories in networking research.

3 Preliminaries and Problem Statement

Before contrasting the pros and cons of particular optimization measures and specific fairness
measures, let us revisit the maximization problem we are interested in studying. We assume
that we have a set of long-lived connections each of which use a fixed path through the
network. (We assume that routes are selected by other network policies and that routes
remain stable over large time scales, thus we do not concern ourselves with issues associated
with route changes which could occur within the timeframe of a connection). The goal is
to assign each of these connections an end-to-end rate so that no edge capacity constraints
are violated and so that either a specific function of the rates (such as the sum of the rates)
is maximized, or a specific constraints regarding the rates (which reflects fairness criterion)
holds throughout the network. In this basic problem, there is no minimum or maximum
rate that a given connection may receive, although introduction of these additional side
constraints does not fundamentally alter the problem under consideration.

Formally, consider a set of m bandwidth-intensive flows which use fixed-path routes
through a network of n links. Each of the links ℓi has a capacity ci, and each flow j uses a
path Pj that comprises a subset of the links. An allocation of flow rates Fj is feasible if:

∀i,
∑

j|i∈Pj

Fj ≤ ci.

An important question that arises in this context is: What is strict fairness? As described
above max-min fairness is one possible answer, and proportional fairness is another. To
understand better the different approaches and their connection to the total amount of flow
thought the network let us consider the following example.

Consider the case where m parallel flows pass through k internal network nodes. In any
of these nodes, there exists additional l flows that use it (see Figure 1). Assume that the
capacity of each node is 1, and the demand of each flow is 1. In the case where m = l = 1, we
have one long flow with k cross flows. In this case max-min fairness allocation will give half
a unit to each of the flows and the overall utilization is k/2, while if we want to maximize
the throughput we will starve the long flow and allocate one unit to each crossing flow. This
results in a total utilization of k, a factor of 2 better than the max-min allocation.

Max-min fairness can provide considerably worse throughput than in this simple case.
Let m =

√
k−1, and l = 1, then max-min fairness will allocate 1√

k
unit for each flow, and the

total utilization is k+
√

k−1√
k

which is an O(
√

k) factor from the best achievable throughput.
Going back to the problem of fairness definition, the question here is whether we should

treat both cross flows and long flows the same way. Note that long flows use more resources
per one unit of flow since they go through many more links, and therefore it could be that
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Figure 1: An Example of a Basic Resource Allocation Scenario

in order to be fair these flows should get a smaller allocation of resources at each link. To
address this point we introduce a new model in which each flow gets a certain amount of
tokens, it can divide these token among all links that it uses, and then the router incident to
each link uses some policy based on the number of token put by each flow to decide upon the
actual allocation of resources. In this way, if we give all flows the same amount of tokens,
we force the network to give more local resources to short flows, and if we decide to give
each flow a number of tokens that is proportional to its length, we give the flows an equal
opportunity to compete on local resources.

4 Game Formulation

In order to establish a rate allocation, we have flows participate in the following distributed
game, which we describe as operating in a sequence of synchronous rounds for the purpose of
analysis, but where asynchronous execution is possible. In the first phase of each distributed
round, each flow j has a set of Tj tokens from which it may assign a quantity tij to each link
i along Pj , subject to the constraint that for all j,

∑

i tij ≤ Tj . We assume that arbitrary
fractions of tokens may be placed on any link. We also let wi denote the total amount of
tokens placed by all flows at a link i in a given round, i.e. wi =

∑

j tij .
In the second phase of each distributed round, each link i then computes a “fair” allo-

cation to each of its participating flows. It does so by computing an allocation fij that is a
weighted proportion of its capacity ci weighted by the number of placed tokens, if any tokens
were placed on it. If no tokens were placed on link i, then the allocation fij is unrestricted,
i.e. fij = ci. (In the event that a flow tries to game the system by not placing any tokens
on a bottleneck link, then it risks getting an allocation of zero once any other flow places
tokens on that link). Formally, we have:

fij =







ci · tij
wi

if wi > 0

ci otherwise
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Each flow then receives an allocation Fj equal to the minimum of the allocations provided
by the incident links: Fj = mini fij . From this discussion, it should be clear that a round
proceeds in three steps: the flows autonomously allocate tokens tij , the links then compute
a proportional allocation fij , then the flows must accept the minimum of the fij ’s they have
been allocated. Note that each link i can easily enforce the local allocation of the allocation
fij , and thus no flow j can obtain an end-to-end rate that exceeds Fj .

We now provide some simple facts and definitions, before formulating the equilibrium for
this problem in an optimization framework.

Definition 1 An allocation is tight if for all j and for all i such that tij > 0, fij = Fj.

A tight allocation is one in which every flow has wasted none of the tokens it has placed,
i.e. removal of any token from any flow would cause that flow’s allocation to be reduced.

Definition 2 An allocation is at equilibrium if it is a tight allocation in which for all j,
∑

i tij = Tj.

We have an equilibrium allocation when every flow has placed all of its tokens, and has
wasted none of the tokens it has placed.

4.1 One interesting example

To exemplify the definitions and to demonstrate certain properties of the game, we consider
the following example in the simple case where all links have unit capacity and all flows are
allocated the same number of tokens, i.e. ∀j, Tj = 1.

Consider a network which is a ring with 5 links labelled 1 through 5, plus an additional
link bisecting the ring labelled link 6, and consider the set of six flows using sets of links
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1} and {1, 3, 6} respectively.

Under the assumption of unit capacities, the max-min fair allocation gives 1/3 to the five
flows which use one of the two links which have three competing connections (i.e. links 1
and 3), and 2/3 to the flow using the less loaded links {4, 5} for a total throughput of 7/3.
The throughput-maximizing allocation gives 1/2 to each of the flows around the ring and
nothing to the cross-cutting flow, for a total throughput of 5/2.

To compute the equilibrium allocation of the game, first note that there is considerable
symmetry. The flows using links {1, 2} and {2, 3} are equivalent, and will place all of their
tokens on the loaded links, and none of their tokens on link 2. The flow using lightly loaded
links {4, 5} will place equal weight on each link. The flow using links {1, 3, 6} will place no
weight on link 6, and equal weight on the other two. The remaining two flows must then
solve an equivalent problem. Consider the flow using {1, 5}. It must place x units on the
heavily loaded link 1 and 1 − x on the less loaded link 5 to balance the allocation, i.e. to
satisfy:

x

1.5 + x
=

1 − x

1/2 + 1 − x
,

which solves for x = 3/4.
The result is that the {4, 5} flow gets an allocation of 2/3, the flow using links {1, 3, 6}

gets an allocation of 2/9, the two flows using only one heavy link each get an allocation

6



of 4/9, and the final two flows where we solved for x get an allocation of 1/3. The total
allocation is 22/9. In this case, 7/3 < 22/9 < 5/2, and in the full version of this manuscript
we prove the following more general result.

Theorem 1 The aggregate throughput, i.e.
∑

j Fj, in the equilibrium of the game always
lies between (but not strictly between) the throughput achieved in a max-min fair allocation
and that achieved in a throughput-maximizing allocation.

5 Equilibria

We start our discussion of the equilibria of this game with two simple observations for which
we defer the proofs to the full version.

Claim 1 If an allocation is at equilibrium then for all j and for all i ∈ Pj such that tij > 0

Fj =
tij
wi

.

Claim 2 If an allocation is at equilibrium then for all j

Fj =
Tj

∑

i∈Pj,tij>0 wi

.

We now prove that the flow allocation game described in Section 4 has a Nash equilibrium.
To do so, we prove the following theorem.

Theorem 2 At equilibrium, the allocations in the game solve the following optimization
problem:

max
j

Tj log xj

s.t.∀i,
∑

j|i∈Pj

xj ≤ ci

Proof: We follow the general line of the proof in the framework of Kelly, Maulloo and Tan
[8] to demonstrate convergence properties of primal-dual algorithms for optimizations of this
form.

First, consider the Lagrangian relaxation of the problem above with Lagrange multipliers
yℓ associated with edges of the network. This relaxation has the form

L(x, y) =
∑

j

Tj log xj −
∑

i

yj

(

∑

j

xj − cℓ

)

.

Then, consider the partial derivatives with respect to the primal variables xj :

δL(x, y)

δxj

=
Tj

xj

−
∑

i

yi.
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Each of these partial derivatives gives a local maximum for xj when the partial derivative

evaluates to zero, i.e. when xj =
Tj

P

i yi
. If we now interpret the Lagrange multipliers yi as the

total token allocation at link i (that is yi = wi), then we have that the the balance equation
for xi corresponds to a setting where the tokens are placed in an equilibrium allocation,
according to Claim 2.

5.1 Comparison to Vegas equilibrium

The conditions for equilibrium are strikingly similar in form to the conditions achieved in
the TCP Vegas equilibrium [10]. The primal form of the TCP Vegas optimization is:

max
s∈X

asds log xs

s.t.
∑

s∈S(ℓ)

xs ≤ cℓ, ℓ ∈ L

In this formulation, the ds are interpreted as round-trip propagation delay values associated
with flow s, while as reflects a tunable Vegas parameter that sets a threshold for tolerable
error between the expected rate and the actual measured rate. When the difference exceeds
this as threshold, the window size is updated according to the Vegas algorithm. Full details
can be found in [10].

6 Algorithms

Given the similarity between the equilibria between the Vegas optimization and that obtained
by our game, a first natural consideration is to draw a correspondence between algorithms
which obtain convergence for the former and those that do so for the latter. In fact, it is
possible to show that an “emulation” of methods which converge to proportional fairness,
or more specifically, to the Vegas equilibrium, can be performed in the context of our game.
This can be done by using the notions of price and duality of link variables to set the
corresponding token allocation at the sender.

However, these methods are not especially fast, and we are interested in deriving provable
time bounds on convergence. We currently have several proposed algorithms that converge
extremely quickly to a (1 + ǫ)-approximation of the Nash equilibrium in experimental set-
tings, but we cannnot yet prove a strong upper bound on their distributed running time.
Experimental results are described in more detail in the full version of the manuscript. The
fastest of the algorithms we are considering uses the following additional definition. Let gj

be the tokens that are wasted for connection j in a given round, i.e. those that could have
been removed without changing the value of Fj .

For the 1 − gj tokens that flow j did not waste, it received a flow value of Fj . If it had
allocated the remaining gj tokens usefully and in proportion to the ones it did not waste, it
would have received a flow value of of Fj/(1 − gj). So we can compute a notion of wasted
flow:

zj = Fj −
Fj

1 − gj

=
Fj(1 − gj) − Fj

1 − gj

=
Fjgj

1 − gj

.
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Here is a summary of the algorithm:

1. At each round, for each flow j, flow j places a token allocation tij .

2. Each link divides each tij by wi to arrive at a tentative flow value fij .

3. The flow receives Fj = mini fij, removes its garbage tokens gj and computes its wasted
flow zj .

4. To compute tij in the next round, it scales up the non-wasted tokens by a factor of
1

1−gj
.

From this definition, we have that,

t̂ij =







(

1 +
gj

1−gj

)

tij if fij = fi
(

1 +
gj

1−gj

)

Fjwi otherwise

In the above description, it is also noteworthy that we can count the waste in two different
ways. We have counted the tokens lost on a per-flow basis, but we can also count the tokens
lost on a per-router basis. Define Ri to be

∑

j fij −Fj. We can also define a router’s wasted
capacity (analogous to wasted flow) by Ri/Wi. It follows immediately that

∑

i Ri =
∑

j gj.
Our current line of attack attempts to define appropriate potential functions related to these
quantities, although identifying a quantity that is provably monotone through the course of
the algorithm appears difficult.

7 Conclusion

In the natural problem domain of deciding upon a distributed allocation of rates to long-lived
flows in a network, among the first questions to consider is to determine what to optimize.
But an equally natural question is to consider whether the optimization of interest is also in
line with the presumptive self-interest of individual connections. Our main contribution is
a new class of distributed games that model this flow allocation problem in a natural way
that does not necessitate cooperation among flows, and places the policing functionality at
network routers. We demonstrate that our game has a Nash equilibrium that is a variant of
proportional fairness that penalizes flows traversing more bottleneck links, and discuss our
ongoing work to develop fast algorithms to converge to these equilibria.
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