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ABSTRACT

With the growing number of proposed clean-slate redesigns of the

Internet, the need for a medium that enables all stakeholders to par-

ticipate in the realization, evaluation, and selection of these designs

is increasing. We believe that the missing catalyst is a meta network

architecture that welcomes most, if not all, clean-state designs on

a level playing field, lowers deployment barriers, and leaves the

final evaluation to the broader community. This paper presents

Linux XIA, a native implementation of XIA [13] in the Linux ker-

nel, as a candidate. We first describe Linux XIA in terms of its

architectural realizations and algorithmic contributions. We then

demonstrate how to port several distinct and unrelated network ar-

chitectures onto Linux XIA. Finally, we provide a hybrid evalu-

ation of Linux XIA at three levels of abstraction in terms of its

ability to: evolve and foster interoperation of new architectures,

embed disparate architectures inside the implementation’s frame-

work, and maintain a comparable forwarding performance to that

of the legacy TCP/IP implementation. Given this evaluation, we

substantiate a previously unsupported claim of XIA: that it readily

supports and enables network evolution, collaboration, and inter-

operability — traits we view as central to the success of any future

Internet architecture.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network com-

munications

Keywords

Meta network architecture; network evolution; future Internet ar-

chitecture; XIA; Serval; zFilter; Linux

1. INTRODUCTION
The growing number of clean-slate redesigns of the Internet re-

flects the sensible effort of the network community to address the

need of finding successors to the long reign of TCP/IP. However,

this effort lacks a medium to bring all stakeholders to participate

in the realization, evaluation, and selection of the next Internet ar-

chitecture. On the one hand, most existing clean-slate designs are

siloed and elevate a few network use cases above others, which fails

to facilitate a collaborative environment for the myriad of Internet

stakeholders, whose goals are not generally aligned. Further evi-

dence comes from the fact that there are few, if any, examples of

cross-pollination of running code across clean-slate proposals. On

the other hand, and in the community’s defense, designers have jus-

tifiably found it difficult to bring a new design into fruition, demon-

strate its merits, and have the community at large experiment with

it, due to the lack of a suitable comparative evaluation platform on

which to do so.

In this work, we advocate a meta network architecture that nur-

tures coexistence of clean-slate designs, letting stakeholders exper-

iment with and choose the designs that best suit their needs. We en-

visioned the eXpressive Internet Architecture (XIA) [13] as a can-

didate, and implemented it as a native network stack in the Linux

kernel. XIA is briefly reviewed in Section 2. Then, we ported sev-

eral rather different architectures to this platform to demonstrate

coexistence, and furthermore, built an exemplifying application to

show interoperability. As a side effect, we substantiated XIA’s

claim of supporting architectural evolution. To demonstrate that

Linux XIA is indeed a realistic platform for other clean-slate de-

signers, we benchmarked its forwarding performance against the

Linux IP routing algorithm.

The three architectures that we ported to Linux XIA are IP, Ser-

val [25], and zFilter [17]. In addition, we give a brief description of

how one could realize Named Data Networking (NDN) [16] and

Active Networks (ANTS) [31] in XIA. Each of these ports adds a

unique perspective to Linux XIA. First, any successful clean-slate

architecture will need to coexist with IP indefinitely. Our port of

IP to XIA shows both how XIA can emulate IP and how it can

progressively wean itself off of IP by removing dependencies in

a staged deprecation. Serval is a service-centric architecture that

complements Linux XIA with a mobile, multipath, reliable trans-

port; moreover, it aligns well with our goals because, like us, its au-

thors pursued a realistic implementation in the Linux kernel. zFil-

ter, a key component behind the European PURSUIT project, is a

multicast architecture that does not require state related to multi-

cast groups on routers. Finally, NDN is a content-centric architec-

ture and ANTS is an early meta architecture with a high degree

of generality, both of which provide interesting insights for Linux

XIA.

The embedding of various alien designs is only one aspect of

the evolvability story, however. Linux XIA is capable of a higher

form of evolvability because it encourages interoperability be-

tween ported architectures as well. In this way, Linux XIA can

combine functionality from different architectures to enable a more

powerful, componentized network protocol. In an exemplifying

demonstration of this idea, we have built a reliable multicast ap-

plication that is capable of pushing video content across a hetero-

geneous network by combining XIA, IP, zFilter, and erasure codes

[3]. These technologies were never intended to interoperate, but

work together under Linux XIA.

The contributions of this paper are fourfold:

1. providing clarifying interpretations of network architecture

terminology, as well as providing a taxonomy of meta net-

work architectures (§3);



2. realizing a native implementation of XIA (§4), a meta archi-

tecture that empowers the networking research community at

large to crowdsource the future Internet;

3. substantiating the expressiveness of XIA by porting three

alien designs: IP, Serval, and zFilter (§5); and

4. demonstrating the viability of Linux XIA through a multi-

tiered evaluation consisting of evolvability considerations and

by testing the forwarding performance against the mature

Linux implementation of TCP/IP (§6).

2. XIA IN A NUTSHELL
The central premise underlying XIA is to design for evolvability.

By evolvable, we mean having an explicit, well-defined, incremen-

tal path to introduce changes to the XIA network protocol, which

is called the eXpressive Internet Protocol (XIP). As with today’s IP

protocol, the XIP protocol facilitates hop-by-hop, best-effort for-

warding of datagrams, but does so with a considerably more com-

plex address space than IP. Moreover, the meaning of addresses

within this address space is intended and designed to dynamically

evolve over time. As XIP is the central focus of this paper, we fo-

cus on support for evolvability in XIP and the composition of XIP

addresses. Readers interested in other aspects of XIA can refer to

the original XIA paper [13].

The unit of evolvability within XIA is an XIA principal, each of

which must introduce its own class of identifiers, called eXpressive

IDentifiers (XIDs), that name objects defined by a given principal.

Each XID is the pairing of a principal type (32 bits) and a name

or ID (160 bits). Examples of principals and corresponding XIDs

are the Autonomous Domain (AD) principal, which names XIA

networks, the Host (HID) principal, which names any physical or

virtual machine with an XIA stack, and the Content (CID) princi-

pal, which names immutable content. A further recommendation

associated with XIA identifiers is intrinsic security: each XID is

expected to draw from a namespace that provide a cryptographic

linkage between that XID and a security property. For example, in

XIA, AD XIDs are the hash of public keys of the networks they

name, HID XIDs are the hash of public keys of the machines they

name, and CID XIDs are the hash of the contents of the file they

name.

The primary connection between XIA principals and XIP is the

manner in which XIP addresses are built from multiple XIDs. XIP

addresses express an application-level intent through a connected

single-source, single-sink directed acyclic graph (DAG) of XIDs.

The ultimate intent of a packet is expressed in the XID of the sink

node of the destination address. The entry node of an address, rep-

resented by a dot (•), has the sole purpose of pointing to where

the navigation of the DAG begins, and thus the simplest nonempty

XIP address is • → XID1. While destination addresses must be

nonempty, source addresses can be empty; this behavior is impor-

tant to support architectures that do not have source addresses, such

as NDN. All other (internal) nodes of an address represent XIDs,

and each node is associated with between one and four strictly pri-

oritized outgoing edges; four being the maximum fanout supported

in XIP addresses.

Routers are required to forward packets according to the intent

expressed in each DAG destination address. Therefore, a valid set

of packet forwarding decisions at routers must correspond to a suc-

cessful traversal of the DAG from entry node to sink to achieve the

final intent. How is this accomplished? First, the XIP header stores

the DAG as a collection of nodes and their prioritized edges. Ad-

ditionally, the XIP header records a dynamic LastNode pointer to

one of the nodes in the DAG. This pointer, initially set to the entry

node, reflects the portion of the DAG in this packet that has been

traversed by forwarding decisions so far. When the packet reaches

the intended destination, the LastNode will point to the sink.

To forward a packet, a router first inspects the LastNode field

to identify the progress made through the DAG so far. For each

of the outgoing edges from the referenced node, in priority order,

the router attempts to forward on the corresponding XID. If that

XID is local to that router (for example, the XID is an AD and the

router is in that domain), the router updates the LastNode field of

the packet and either recurses on the forwarding decision, or, when

LastNode points to the sink, delivers the packet to the correspond-

ing principal of the sink node. Otherwise, if the XID is non-local,

the router forwards the packet toward the designated XID. Finally,

if the router cannot forward along any of the outgoing edges of the

DAG, the address is not reachable and the packet is dropped.

Among the many address structures that DAGs support, three

addressing patterns are commonly used to date: scoping, fallback,

and iterative refinement. Scoping a CID to a given host can be ac-

complished with an address that requires packets first be forwarded

to host HID1, and from there, on to CID1:

HID1 CID1

When a new XIA principal is being deployed, chances are that

many routers in the network do not know it, this can be addressed

with the fallback pattern, which uses a lower priority edge to route

to a well-known principal in case the new principal is not known

by the router making the routing decision. For example, assuming

that the CID principal is not widely deployed, one can still reach

CID1 even if HID1 is the only host aware of the CID principal

(dashed edges reflect lower priority):

HID1 CID1

Finally, the iterative refinement pattern combines scoping and

fallback patterns. In the event host addresses such as HID1 are

not globally routable, we can have CID1 fall back to an AD XID

(AD1) where HID1 is presumed to reside:

AD1 HID1 CID1

3. META ARCHITECTURE TAXONOMY

3.1 Definitions
To provide context for Linux XIA’s place in the literature and to

enable architectural comparisons, we have developed a vocabulary

for architectural components of networks. We found it necessary

to provide clarifying interpretations of basic terms like network ar-

chitecture, as the literature did not offer consistent definitions that

apply to and encompass a diverse array of works and authors like

our definitions do. In so doing, we make use of a new building

block, network factor, that underlies an architecture, as well as clar-

ify what we believe to be the role of a meta network architecture.

We believe that the lack of a suitable meta architecture definition

in the literature may explain why prior work has focused on point-

wise comparisons instead of contrasting meta architecture designs

directly. Our definitions proceed bottom-up.



Definition 1. A network factor is a data plane com-
ponent that specifies abstractions, data formats, procedures,
protocols, and at least one class of identifiers that, together,
enable the instantiation of functional network configurations
of data processors.

IP, TCP, and UDP are all examples of factors. Although there

are many criteria in the factor definition, furnishing a class of iden-

tifiers is a central requirement. IP fulfills this requirement with IP

addresses, and TCP and UDP do so with port numbers. These ex-

amples contrast with XIP, which does not define identifiers of its

own, and thus is not a factor. Instead, each XIA principal defined

within XIP constitutes an example of a network factor, since every

principal must define an addressing scheme as an XID format.

Except for the identifier requirement, the definition of network

factor does not impose any restrictions on the size of a factor. We

refer to an important side-effect of this flexibility as factor multi-
plicity, that is, combining any number of factors leads to a single

factor, analogous to how numeric expressions are defined. There-

fore, the TCP/IP suite – TCP, UDP, and IP combined – is also a

factor.

Definition 2. A network architecture is a self-suffi-
cient factor.

Continuing our earlier examples, IP accomplishes its existen-

tial goal of sending packets between hosts on its own, so IP is a

self-sufficient factor and therefore IP is also an architecture. Since

TCP/IP is also a factor and IP is self-sufficient, TCP/IP is an ar-

chitecture as well. The same is not true for TCP and UDP, which

depend either on IP or an alternative internetwork factor to func-

tion.

Definition 3. A meta network architecture is a frame-
work that harmonizes a broad spectrum of factors within its
framework without imposing any static dependencies among
factors.

In order to harmonize factors, a meta architecture framework

must define an interface that enables factors to be embedded. This

definition also mandates support for a broad spectrum of factors,

since we view designs that narrowly support a limited amount of

architectural diversity as insufficiently general to warrant the meta

architecture designation. XIA’s framework for harmonizing factors

is defined by the XIP protocol. §3.2 presents a taxonomy of meta

architectures spanning numerous examples and how they harmo-

nize their supported factors.

Finally, this definition requires that there must be no static de-
pendencies between factors. We define a static dependency to be

present whenever removing one factor from the set of deployed fac-

tors also requires removing or recoding additional factors. For ex-

ample, if IP were dropped from TCP/IP, TCP and UDP would need

to be recoded to work with another internetwork factor. Therefore,

despite its support for many applications, TCP/IP cannot be con-

sidered a meta architecture because all supported factors statically

depend on IP. Importantly, our meta architecture definition does not

forbid runtime dependencies among factors (a technique we sup-

port and whose benefits we articulate later). Interested readers can

find an extended presentation of our definitions in [23, Section 1.1].

3.2 Related work on meta architectures
For decades, researchers have been enticed by the notion of a

meta network architecture that evolves to accommodate unforeseen

network use cases. Softnet [34], developed in the early 1980s, is

the first meta architecture of which we are aware. The degree to

which meta architectures isolate their factors is enlightening be-

cause it highlights the value that a meta architecture offers to its

applications, which ultimately reflects the utility functions of the

end users of the meta architecture. This section classifies meta ar-

chitectures according to the degree of isolation between their fac-

tors from highest isolation to lowest, and distinguishes Linux XIA’s

place in this taxonomy.

Network virtualization [1, 28] and SDN [10, 4] are natural meta

architectures; they do not limit the number of supported factors,

nor do they impose static dependencies among the supported fac-

tors. At a high level, these meta architectures slice network infras-

tructure into independent, isolated resources that support their fac-

tors; we call this group slicing meta architectures. The degree

of factor isolation, however, is sufficiently high that applications

are solely responsible for the necessary work to leverage multiple

factors, and supported factors must be self-sufficient to properly op-

erate their slices. As a result, these meta architectures only support

full-blown architectures.

The next group of meta architectures, the translating meta ar-
chitectures, encompasses Plutarch [8], FII [18], OPAE [12], Omega

[26], and SDIA [27]. These meta architectures segment the net-

work into independent regions, map each region to supported fac-

tors, and promote bridges between regions to translate the protocols

in both directions. Similar to slicing meta architectures, supported

factors must be organized into network architectures, but appli-

cations are not solely responsible for interoperability between re-

gions. The troubling aspect of this group is that facilities for trans-

lation between these pluralistic architectures are not provided, and

may not always be possible. For example, there is no clear map-

ping between a host-centric architecture, such as IP, and a content-

centric one, such as NDN [16]; §6.2 returns to this point.

The third group, active meta architectures, is centered on ac-

tive networks [29], and most notably ANTS [31], the meta archi-

tecture that pursued programmable networks as the standard-bearer

for active networks. ANTS does not slice or segment a network; its

factors share the whole network. Factor designers build factors with

mobile code that is shipped through the network from applications

to routers with the help of a code distribution protocol. While appli-

cations can interoperate with multiple factors at the same time, the

runtime environment of mobile code intentionally isolates factors

to address security issues. Due to isolation in the runtime environ-

ment, factors still have to be self-sufficient, as with the previous

groups of meta architectures.

XIA distinguishes itself from other meta architectures by pro-

moting interoperability among all of its supported factors in the

form of XIA principals. This interoperability is made possible by

(1) XIA factors sharing the whole network, as in ANTS, (2) net-

work addresses enabling factor composition in every address (§2),

and (3) factor designers postponing dependencies among factors

until runtime through routing redirects, an extension of XIA’s rout-

ing algorithm that we introduce in Linux XIA (§4). Thanks to these

mechanisms, XIA factors can delegate functions and responsibili-

ties to other factors, which in turn enables XIA factors to specialize.

A key novelty is that XIA factors do not have to be self-sufficient,

unlike the factors of all the meta architectures cited above.

Because XIA constitutes a meta architecture, stakeholders must

choose a set of factors that, together, instantiate XIA as an architec-

ture in order for it to be useful to applications. One plausible base-

line XIA architecture, according to our terminology, would consist

of the AD, HID, and CID principals. This set would provide basic

inter-domain routing, host-to-host communication, and a form of

information-centric networking.



Figure 1: Overview of the TCP/IP and XIA stacks
in the Linux kernel. Only the Serval and XDP prin-
cipals touch the POSIX Socket API, and thus can be
used to create sockets; all other current principals
can only be used to compose XIP addresses.

4. LINUX XIA
In order to substantiate the claim that XIA is a viable meta archi-

tecture, we needed a full-blown network stack to accommodate the

implementations of other architectures. Furthermore, a native im-

plementation providing competitive routing performance is a nec-

essary step to show that XIA is deployable in production network

environments.

At a block-diagram level, Figure 1 depicts TCP/IP and XIA as

parallel stacks in the Linux kernel. In the figure, the matching col-

ors guide the analogy between the stacks: IP maps to XIP, TCP to

Serval, and UDP to XDP. Although the figure suggests that TCP,

UDP, and IP are individual kernel modules, in practice, the TCP/IP

stack is implemented as a single module in Linux. In contrast, each

block on the XIA stack corresponds to a distinct Linux kernel mod-

ule that we implemented. In this section, we focus on the realiza-

tion of XIP and the implementation of core XIA principals like HID

and AD. Later, when we integrate alien designs with XIA, we de-

scribe the realization of 4ID to provide interoperability with IP, and

describe our implementations of Serval and zFilter.

We next discuss the impact that our experience developing Linux

XIA had on our architectural design (§4.1), and cover the algorith-

mic details of how Linux XIA forwards packets and keeps its for-

warding cache synchronized (§4.2).

4.1 Architectural realization of evolvability
Building Linux XIA from scratch gave us many opportunities

to explore the kernel design space and to avoid barriers to future

evolution of our network stack. Since evolution is the central ar-

chitectural premise of our work, we developed a radically different

design than that of the native TCP/IP implementation. We report on

experiences that reinforce the power of modular design and clarify

how new principals must themselves be architected for evolvability.

The first influential decision we made was to map each principal

to a kernel module. This decision, premised on modular design,

ended up interacting with XIA in unexpected ways: it led us to (1)

make XIP a truly standalone protocol, in contrast to IP, which needs

ARP and ICMP to operate; and (2) conceive of routing redirects, a

facility for supporting runtime dependencies between principals.

Mapping each principal to a kernel module may seem to be pri-

marily an implementation decision. In truth, the fact that such a

clear mapping exists emphasizes that the principal is the the key ab-

straction that enables modularity within XIA. As a reference point,

the abstraction of layering underlies the modular design of TCP/IP

and, more generally, underlies the architectural notion of a net-

work stack. While a network designer could conceivably imple-

ment ARP and ICMP as kernel modules in the TCP/IP stack, the

designer could only evolve ARP or ICMP by changing the speci-

fication of IP, as the latter relies on ARP and ICMP internals. In

contrast, the analogues of ARP and ICMP in Linux XIA are not

bound to XIP; they are only bound to the principals that require

them. The contrast between layers and principals is further devel-

oped in [23, Section 6.2].

As long as there are no static dependencies among kernel mod-

ules of principals, each XIA router or host can load any set of prin-

cipals into the stack. This feature avoids biasing stakeholders to-

ward principals that the implementation arbitrarily requires. Any

non-self-sufficient set of loaded principals is a valid configuration

in Linux XIA, although obviously an impractical one, since not all

addresses are reachable in these configurations.

Although static dependencies are problematic, runtime depen-

dencies among principals are a useful technique to avoid duplicat-

ing code. For example, since both the AD and HID principals need

to forward packets to neighbors, writers of AD may be tempted

to call functions from HID instead of reimplementing the code.

This would effectively link the AD principal’s implementation to

a specific version of the HID principal. Avoiding these undesirable

static dependencies among principals required routing redirects, an

enhancement of XIA’s routing algorithm that lets stakeholders ex-

press dependencies among principals at runtime. Details of this

approach, as embodied in Linux XIA’s routing mechanism, are de-

scribed next.

4.2 Algorithmic realization of evolvability
Linux XIA must accomodate more advanced routing table lookups

and updates in order for evolution to be practical, since addressing

and routing is maintained per-principal. Because these challenges

are not present in the legacy architecture, special packet forward-

ing and routing dependency algorithms are needed. This section

describes the algorithmic contributions that help efficiently realize

evolution; subsequently, in §6.3, we present our performance eval-

uation of this machinery against the Linux IP implementation.

4.2.1 Fast packet forwarding

Since the maximum fanout in an XIP address is four edges, an

XIA router may have to inspect up to four XIDs to make a routing

decision. However, even without hardware optimizations, Linux

XIA can efficiently instantiate XIA’s forwarding mechanism by not

serializing these lookups.

A diagram of the XIA routing algorithm is presented in Figure 2.

When a packet arrives on an incoming interface, Linux XIA’s rout-

ing fast path references the LastNode field of the packet to obtain

the sequence (in priority order) of outbound edges from that node

in the destination address. It then looks up this sequence of XIDs

in its routing cache, which is called a DST table. If there is a cache

hit, the DST table returns a DST entry, a data structure that holds

pointers to functions that forward packets with the same signature

sequence of edges.

Otherwise, on a DST cache miss, Linux XIA falls back to its

routing slow path. Now, Linux XIA iteratively looks up the can-

didate edges in the routing table. A software-only solution can

do these lookups in parallel, but synchronizing these results can

be costly; a solution that also uses hardware support would take

greater advantage of this parallelization. The iterator terminates ei-

ther when all edges of the LastNode generate misses in the routing



Figure 2: Linux XIA’s routing algorithm.

table (unreachable destination), or when one of the edges generates

a hit. In both cases, a new DST entry for this sequence of edges is

created, added to the DST table, and returned.

Our routing algorithm still has three challenges to overcome: (1)

working efficiently under the memory limit of the DST table, (2)

reusing principals’ code without introducing static dependencies

between them, and (3) keeping the routing cache synchronized with

the routing table.

The first challenge is that of working under stress or under at-

tack. For example, an adversary could mount a denial-of-service

attack in which undeliverable packets with unique edge sequence

signatures are sent to an XIA router. These useless entries would

require lookups on the slow path and put pressure on the DST table

to potentially drop useful entries. A proper solution for this prob-

lem is still to be investigated. The current implementation employs

simple heuristics to reclaim entries based on frequency and recency

in order to maximize the usefulness of entries.

We provide a solution to the second challenge next, and address

the third challenge in §4.2.3.

4.2.2 Routing redirects

While the machinery described to this point is sufficient to imple-

ment the XIA routing algorithm as originally specified [13], it does

not yet achieve our goal of principal independence. To allow prin-

cipals to work together but remain independent at compile-time,

we introduced the concept of routing redirects in Linux XIA. A

routing redirect takes place when the iterator in Figure 2 looks up

an XID and the routing table returns a “redirect,” in which case

another XID needs to be looked up in order to satisfy the original

lookup.

For every XID inserted into the routing table for a principal that

employs a routing redirect, an XID from a different principal must

be specified as the “gateway” for the redirection. Then, when an

XID from a redirecting principal is retrieved from the routing table,

the return value of the lookup specifies a redirect to the gateway

XID instead of a hit or miss. The routing iterator then recursively

looks up the gateway XID to decide how to forward the packet.

Note that the gateway principal may not be loaded at routing

time, in which case, XIDs that redirect to this gateway are not

routable. We consider this an acceptable behavior in exchange

for the benefit of allowing network administrators to choose which

principals to load. Moreover, routing redirects solve a more impor-

tant conceptual problem for evolution of principals: they replace

static dependencies between principals with runtime dependencies,

which permits principal independence at compile-time. This can be

useful in situations such as the example in §4.1, in which the AD

principal was tempted to call the HID principal’s code for XIDs

that simply need to be forwarded to a neighbor. For these XIDs,

the AD principal can use routing redirects to delegate work to the

HID principal, therefore avoiding code duplication.

Routing redirects have matured beyond our goal of breaking static

dependencies. For example, they could be used in the context of

routing protocols to map HIDs to XIDs that represent link layer ad-

dresses, and can be used to split functionality into separate princi-

pals. However, further details regarding these other uses of routing

redirects are outside the scope of this paper.

4.2.3 Routing dependencies

To enable the efficiency gains of DST caching, the DST table

must be kept in close synchronization with the routing table. But

changes to the routing table can affect the DST table in non-obvious

ways. For example, when an XID is added to the routing table, find-

ing the DST entries that become invalid could potentially require a

full scan of the DST table. This is because a new XID invalidates

an arbitrarily large number of DST entries, since those entries pri-

oritize the new XID at a higher priority than their currently chosen

edge.

Reviewing the shortcomings of naive solutions to this depen-

dency problem is instructive. Flushing the cache for each routing

table update is one possibility, but it causes routing hiccups; sud-

denly the cache is empty and all packets have to be analyzed on the

slow path, one edge at a time. Principals that have XIDs associated

with sockets or other user space objects (e.g. Serval) may see cor-

responding update rates high enough to render the cache a useless

burden. Another possibility is to have routing table updates trigger

a corresponding scan of the cache to remove stale XIDs. But full

table scans are prohibitively expensive, since they put pressure on a

machine’s memory cache subsystem. Moreover, unless the number

of stale cache entries is large, the scan itself is inherently ineffi-

cient. Finally, testing the freshness of a cache entry can itself be an

involved procedure – routing redirects and default routes are two

issues which introduce challenges.

Naive solutions fail to efficiently identify affected cache entries.

Linux XIA does so by building dependency chains and anchor-
ing these chains on the routing table entries that keep them up-to-

date. Although developed independently, our solution is a variant

of the Data Update Propagation algorithm [7], originally devised

for keeping caches of dynamic web pages consistent with underly-

ing data.

More specifically, our solution incrementally builds dependency

chains for each investigated edge of the DAG during the execution

of the routing slow path (i.e., by the iterator in Figure 2). These

chains thus enumerate the routing table entries on which cache

entries depend. Since some chains eventually merge with other

chains, the final data structure is a dependency forest. We refer to

each internal node in this forest as an anchor. When an anchor is

updated, its rooted subtree in the forest is stale and the correspond-

ing cache entries must be flushed.

The performance of the routing dependency algorithm is evalu-

ated in the routing update rate experiment we present in §6.3.2. To

demonstrate how routing dependencies work in concert with rout-

ing redirects, we next give an example of a DST table that must

invalidate redirected entries.



Figure 3: DST dependencies form a rooted forest
anchored at routing table entries.

4.2.4 Putting it all together

Figure 3 illustrates a small dependency forest and its related rout-

ing table and DST entries. In this example, SID1 redirects to AD1,

which in turn redirects to 4ID1. If the routing table entry for 4ID1

were removed, then the corresponding cache entries must be up-

dated by flushing the anchor associated with 4ID1. There are two

DST entries that directly depend on this anchor, and three DST en-

tries that indirectly depend on this anchor through routing redirects.

Only these five entries will be removed from the DST table and ir-

relevant entries will not be inspected. In this case, the only the DST

entry remaining is the upper-left one, which is associated with the

routing table entry for XDP1 → XXX1.

5. PORTING ALIEN DESIGNS TO XIA
We now describe how three distinct network designs never in-

tended for compatibility with XIA can be adapted to work and co-

exist in XIA. This is meant to demonstrate the value of an inter-

operable meta architecture and to provide other researchers with

instructive examples on how to adapt their own designs, or design

for XIA from scratch.

In porting a network design Y to XIA, we have found that two

architectural questions drive most of the work: how can Y ’s visible

identifiers be mapped to XIDs, and how can Y be broken into XIA

principals? Whereas the first question is simple and inevitable, it

is not always obvious a priori which of the many possible options

will prove to be best. Experience with promising options may be

required to make a meaningful selection, noting that one imple-

mented interpretation of a network design in XIA does not inhibit

other interpretations of the same design. Since many interpretations

of a single design can naturally coexist in Linux XIA, value judg-

ments are ultimately left to the stakeholders in an XIA network.

The second question adds more subtlety, as it focuses on explor-

ing interpretations of a given design typically not considered in the

original design, where the focus is self-sufficiency, not interoper-

ability. XIA’s composition of different principals to form a single

address affords principals the opportunity of specializing their be-

havior, and delegating functions to other principals.

§5.1 provides a starting point, by showing how XIA can sup-

port a legacy technology, specifically focusing on how XIP and IP

can coexist and interoperate. Then, §5.2 describes our port of Ser-

val [25], a service-centric architecture, and §5.3 presents our port

of zFilter [17], a multicast architecture, to Linux XIA.

5.1 Case study #1: IP
Any new Internet architecture has to furnish a friendly coexis-

tence with IP networks in order to be deployable. A widely used

approach for introducing new functionality onto legacy networks,

which we also adopt, makes use of encapsulation. In this sec-

tion, we describe a set of XIA principals, called 4IDs (respectively,

6IDs), that allow XIA-enabled hosts to communicate over a legacy

IPv4 (respectively, IPv6) network. A key finding, not obvious to us

a priori, is that different degrees of integration and interaction with

IP networks are suited to multiple 4ID and 6ID principal types, de-

signed to satisfy different stakeholders’ needs.

Given that there will be no support for XIA in the open Inter-

net during the early deployment of XIA, any integration must fo-

cus on retroactive compatibility; this motivates the design of the

U4ID principal. Names of U4ID XIDs are the tuple (IP address,

port number) followed by 14 zeros to make up the required 20-byte

names. To forward to a U4ID in an address, XIA encapsulates its

XIP packet into the payload of an IP/UDP packet whose destina-

tion IP address and UDP port number are copied from the XID;

from there, the TCP/IP stack delivers this new packet. The XIA

stack of the destination host must have the U4ID principal running

and listening at the UDP port number, which is provided by the

network administrator using a user space management tool, in or-

der to receive the packet. After IP and UDP header decapsulation,

the payload XIP packet is transferred to the XIA stack.

Stakeholders operating controlled environments (e.g. data cen-

ters, campuses, corporations) may prefer to trade in some compati-

bility for performance. The I4ID principal achieves this by encap-

sulating XIP packets into the payload of an IP packet and writing

XIP into the protocol field of the IP header. In the open Internet,

middleboxes are likely to drop these IP/XIP packets, but, in con-

trolled environments, I4ID would avoid UDP’s checksum, UDP’s

8-byte header, and port demultiplexing. Names of I4ID XIDs are

the destination IP addresses followed by 16 zeros.

The U4ID and I4ID principals build on-the-fly tunnels through

IP networks. Although these tunnels are necessary for retroactive

compatibility with IP, they are limiting because the edges of the

destination address of the encapsulated XIP packet are only evalu-

ated at the end of the tunnel, even when all intermediate routers

are XIA-enabled. In a later stage of XIA deployment, when a

large number of hosts have TCP/IP and XIA stacks to support both

legacy IP applications and XIA applications, the limitations of tun-

nels become salient.

Designed for a dual-stack environment, the X4ID principal lever-

ages the IP routing table to forward its XIDs, thereby avoiding tun-

nelling. X4IDs have the same trailing-zero format as I4IDs; the

distinction between these principals is the forwarding mechanism.

Routers forward X4IDs by directly looking up the corresponding

IP address in the routing table of the TCP/IP stack. Therefore, the

X4ID principal is the tightest integration between TCP/IP and XIA,

and can bridge the deployment of XIA at Internet scale because it

leverages the current BGP sessions to populate XIA routing tables

and globally forward XIP packets.

To go further, we recommend the introduction of a general-pur-

pose Longest Prefix Matching (LPM) principal, which we will also

use in Serval. In contrast to the opaque cryptographic identifiers

typically associated with XIA, IP (and Serval) identifiers have a

hierarchical structure, and, in particular, are designed to support

longest prefix matching. To support this functionality in XIA, we

designed the LPM principal to support longest prefix matching on

the underlying identifiers. An LPM XID is a typed string of bits

that XIA routers match against a prefix tree at each hop, analogous

to CIDR.



Figure 4: Example of XIA
Serval’s three-way connec-
tion handshake between a
client and a service in-
stance.

Returning to 4IDs, while the X4ID principal is a perfect fit for

dual stack hosts, it nevertheless perpetuates an undesirable depen-

dency on IP routing tables for XIA-only hosts that simply want to

tap into the BGP sessions. These stakeholders can drop the depen-

dence on IP routing tables by using the LPM principal and directly

populating the LPM forwarding table with routes from BGP ses-

sions. This achieves the same behavior as the X4ID principal, but

without the need for the TCP/IP stack. This solution is similar in

nature to how MPLS uses BGP to populate its forwarding tables.

We expect that a protocol that leverages intrinsically secure iden-

tifiers would eventually replace the use of X4ID and LPM for this

purpose; nevertheless, X4ID and LPM offer an easy deployment

path to bootstrap global interoperability for XIA.

A natural deployment plan for Linux XIA is to run natively wher-

ever possible and to interconnect XIA networks through an IP-only

Internet with the help of 4IDs, 6IDs, and LPM principals as long

as necessary. We have implemented the first step of our migration

plan, namely, the U4ID principal in Linux XIA. Mukerjee et al.
[24] have also explored the advantages of incrementally deploying

XIA with the help of U4ID or I4ID principals. Our principals X4ID

and LPM complement their work in the scenario they call “merged

clouds,” in which dual-stack hosts are commonplace.

5.2 Case study #2: Serval
Serval, a service-centric architecture, promotes services as first-

class entities, as described in detail in prior work [25, 2]. The

main goals of Serval are threefold: support replicated instances of

a single service, support multihomed access to services, and allow

for mobility at the connection endpoints. These goals are imple-

mented through three respective methods: host-agnostic late bind-

ing to servers, tightly integrated support for multiple flows per con-

nections, and a formally-verified migration protocol. Given that

Serval’s connection handshake exposes much of its internals and

provides a good working view of its design, we present Serval and

its realization in XIA from this angle.

A key enabling technology is Serval’s use of two distinct types

of identifiers, ServiceID and FlowID, both deployed in a shim

layer called the Service Access Layer (SAL), which resides be-

tween the network layer and the transport layer in the protocol

stack. ServiceIDs logically represent a distinct service, such as an

HTTP connection to www.example.com, but due to service repli-

cation, do not necessarily refer to a unique location. ServiceIDs

have a hierarchical meaning in Serval, and thus they are routed us-

ing longest prefix matching, like IP addresses. Unlike ServiceIDs,

which are used for end-to-end connection establishment and man-

agement, FlowIDs are used for established flows within a service

instance. These FlowIDs are flat identifiers and are only unique

with respect to the host that generated it.

Serval uses either the tuple (protocol, destination ServalID), or

(protocol, destination FlowID) to multiplex connections. The pro-

tocol field identifies the transport protocol above Serval; currently,

UDP and TCP are supported. These tuples simplify process mi-

gration because they do not bind to remote identifiers, in contrast

with TCP and UDP, which explicitly use source and destination IP

addresses and port numbers to multiplex connections.

We briefly remark on security considerations in Serval. In the

Serval design, ServiceIDs lack intrinsic security, that is, connec-

tion endpoints cannot verify each other’s identity without a third

party. To improve security, Serval uses a nonce field that serves as

a shared password between connection endpoints to mitigate off-

path attacks, but this cannot prevent on-path attacks.

5.2.1 Mapping Serval to XIA

Recall that a central challenge of mapping an alien technology

onto XIA is an appropriate principal decomposition. We start with

naming of services. In Serval, the use of ServiceID corresponds

naturally to the role of a new XID type in XIA: it is globally scoped,

has a well-defined meaning that corresponds to a user intent, and

is routable. While Serval’s designers chose to make ServiceID a

hierarchical identifier to ensure global routing, our preferred spec-

ification is to use flat identifiers imbued with cryptographic mean-

ing. Our disentangling of the two distinct roles of ServiceIDs,

naming services and facilitating routing, makes the analogous XIA

identifiers, which we call ServalIDs, intrinsically secure in XIA.

Thus, in our XIA interpretation of Serval, ServalIDs are the hash of

their public key, and scoping is delegated to other, potentially more

appropriate principals. For example, the address • → AD1 →

HID1 → ServalID1 scopes ServalID1 to host HID1 located

in the autonomous domain AD1.

As for FlowIDs, these local identifiers are not germane to XIP

forwarding, and thus comprise a local XID principal type that is

used exclusively at endpoints. We retain the semantics of these

identifiers as used in the original Serval and thus, when in use, it

specifies the primary intent in a destination address, but is always
scoped to a given host. Together, ServalIDs and FlowIDs define the

XIA Serval principal.

Our preference toward intrinsically secure ServalIDs does not

preclude a fallback to hierarchical identifiers. One solution would

be to have another interpretation of Serval in XIA that preserves

hierarchical ServiceIDs. A more modular solution – one in tune

with the question of how to break Serval into principals – would

use the LPM principal defined earlier to do longest prefix matching.



We can now review Serval connection establishment in the con-

text of XIA Serval. Figure 4 diagrams the packet sequencing of

the 3-way handshake between an application at left and XIA Serval

service instances replicated in the data center at right. The SYN

packet depicted in steps 1-3, destined to an arbitrary service in-

stance, is shown having a destination address with a ServalID as

the sink and with optional fallback to an LPM XID:

LPM1 ServalID1

The packet’s source address also has a ServalID as the sink, but

with scoping using ADs and HIDs, chosen by the application. Once

this packet arrives at a service instance, this source address be-

comes the destination address in the SYN-ACK, depicted in steps

4-5. Both the SYN and the SYN-ACK in XIA Serval correspond to

Serval SYN and SYN-ACK packets with ServiceIDs as the destina-

tion addresses. Finally, the ACK packet depicted in 6, as well as all

subsequent packets for this flow, have destination addressses with

XIA FlowIDs as the sink, typically preceded by host-level scop-

ing, here by AD2 and HID2. These correspond to Serval packets

which are addressed by Serval FlowIDs in the SAL layer.

Our Serval addressing scheme in XIA mimics the Serval imple-

mentation faithfully with one exception. In the SYN packet, Ser-

val uses a FlowID as the source, but in XIA Serval we require in-

stantiation of a ServalID at both endpoints to perform connection

setup, and thus defer relaying the proposed FlowID until the third

(ACK) packet of the 3-way handshake. This small change pre-

serves end-to-end security guarantees, as ServalIDs have a crypto-

graphic meaning in XIA, whereas FlowIDs do not.

5.2.2 Discussion

Integrating Serval with XIA affords several key advantages com-

pared to the original implementation over IP. First, elevating Ser-

val addresses stored in the SAL shim layer to first-class XIA ad-

dresses provides much better visibility with respect to user intent.

Whereas Serval carries its identifiers in extension headers above IP,

in XIA’s realization, those identifiers are carried in XIA’s network

addresses. Thus, XIA Serval enables every router to make de-

cisions purely based on network protocol information. As a result,

placing ServalIDs as the primary intent of connection establishment

enables routers to seamlessly realize service anycast, More impor-

tantly, hardening ServalIDs with the intrinsic security afforded by

XIA eliminates the possibility of spoofed services, and renders Ser-

val’s (weaker) methods for prevention of off-path attacks unneces-

sary. Note that this bootstrapping procedure could also be used

to harden all subsequent transmissions with cryptographic signing,

including the FlowIDs themselves.

5.3 Case study #3: zFilter
zFilter [17] is a multicast architecture that, in contrast to IP mul-

ticast (RFC 1112), requires no router state related to multicast groups.

The zFilter architecture avoids this state information by having des-

tination addresses encode the physical links comprising a given

multicast tree in a compact Bloom filter data structure. This ap-

proach contrasts with IP Multicast, whose packets carry specially

designated IP destination addresses that serve as labels, matched

on each router against a list of active multicast groups. The fol-

lowing paragraphs give more details on how zFilter works, how we

mapped zFilter onto XIA, and briefly discuss positive side effects

of having the zFilter principal type in XIA.

The key to understanding how zFilter works is the process that

the network uses to derive Bloom filter network addresses from

multicast trees. The first step of this process starts with each router

independently associating a fixed-size Link ID to each of its net-

work interfaces. Link IDs have a size of m bits, of which exactly

k bits are one, and all other bits are zero; destination addresses

are also m bits long. The parameters m and k are fixed for a

given realization of zFilter; for example, zFilter’s authors chose

m = 248, k = 5 for their implementation. Routers choose the k-

one bits of their Link IDs at random. By construction, Link IDs

are unidirectional, that is, each physical link has two Link IDs.

Given the topology of a network, including all Link IDs, the desti-

nation address corresponding to a given multicast tree consists of a

logical-OR union of all Link IDs in that multicast tree.

zFilter routers forward packets simply by checking the Link IDs

of their network interfaces against the Bloom filter addresses in the

packets. A router checks the presence of the k-one bits of a Link ID

in an address by logical-ANDing the Link ID and the address, and

comparing the result with the Link ID. Whenever the comparison

is true, the Link ID is in the address, and the packet is transmitted

across that interface. False positives arise when all the bits associ-

ated with a Link ID that is not in the tree happen to be set to 1 by

other Link IDs which are in the tree. The rate of false positives can

be tuned by varying m and k. Hardware can check all Link IDs of

a router against an address in parallel, so the test is extremely fast.

As in the previous case studies, the porting questions drive the

work to bring zFilter into XIA. The choice of XID format for zFil-

ter is straightforward: zFilter XIDs are the Bloom filter addresses.

Whereas the decision of how to delegate responsibilities to other

principals leads to an elegant solution, Link IDs do not necessarily

map to network interfaces in XIA’s realization of zFilter, instead,

Link IDs use routing redirects from §4.2.2 to map a zFilter XID

to any XID. Our zFilter principal employs routing redirects when-

ever a Link ID matches a zFilter XID. Therefore, the zFilter prin-

cipal does not itself provide code for forwarding packets, instead

it delegates this job to an appropriate principal such as AD, HID,

and 4IDs via redirection. zFilter’s authors have considered cases

in which Link IDs represent entities other than network interfaces,

but XIA zFilter’s use of routing redirects generalizes this behavior.

§6.1 showcases this feature exemplifying how a single-zFilter ad-

dress can emulate a three-XID address just using routing redirects

to the other XIDs.

Thanks to having directly mapped the Bloom filter addresses of

zFilter onto the XIDs of our zFilter principal, any feature that the

original zFilter supports, XIA zFilter supports using the same im-

plementation solution. Among these features are “Link ID Tags”

and “Virtual Links” which zFilter authors originally considered, as

well as zFormation [11], which was designed later.

Besides enabling zFilter to delegate the final action on the pack-

ets to other principals, XIA brings two other important advantages

to zFilter. XIP addresses can have multiple zFilter XIDs, which one

can leverage to reduce the number of false positive matches of the

Bloom filter. Also, XIA zFilter cleanly interoperates with TCP/IP,

as §6.1 demonstrates.

6. EVALUATION
To complete the case for Linux XIA as a platform that supports

crowdsourced innovation, we evaluate it against three criteria:

1. how do its architectural principles address the networking

needs of today and the future?

2. how effectively does the implementation realize those archi-

tectural principles?

3. how efficient is the implementation in terms of packet for-

warding performance?



Figure 5: Implemented example that showcases net-
work evolvability and principal interoperability in
Linux XIA.

These thrusts test the design’s viability at a theoretical, imple-

mentation, and performance level, respectively; a three-level eval-

uation of a network architecture similar to that advocated by Wro-

clawski [33].

The first criterion is necessary because we view the flaws of the

legacy Internet as architectural in nature, so we must evaluate the

design principles of clean-slate architectures in order to ensure that

the same shortcomings are not realized in the future Internet. §6.1

evaluates the design principles of Linux XIA.

As for the second and third criteria, we evaluate the implementa-

tion of Linux XIA in both a qualitative and quantitative manner. An

architecture that cannot be adequately instantiated is of no practical

use, and an inefficient implementation does not incentivize Internet

stakeholders to adopt it. We assess Linux XIA’s ability to instan-

tiate its architectural principles in §6.2 and to achieve data plane

efficiency in §6.3.

6.1 Architectural evaluation
Developers of clean-slate Internet architectures generally agree

that the host-centric legacy Internet is indeed a mismatch for the

needs of modern networking; most advocate elevating a new use-

case to be a first-class consideration in their architectures. In con-

trast, the distinguishing feature of XIA is an agnostic approach,

refusing to choose one principal type of communication to elevate

above all others. Instead, XIA advocates for evolution to be the

central principle in the future Internet.

The fact that XIA is welcoming of many, if not all, foreign ar-

chitectures was not immediately clear from its conception [13].

Providing an avenue for introducing new functionality at the net-

work protocol in a incremental fashion ensures that today’s types

of communication can be effectively realized, and that as-of-yet

unforeseen paradigms can be integrated. Furthermore, the Linux

implementation of XIA pushes this architectural notion of evolv-

ability even further, by additionally enabling interoperation of ar-

chitectures. It is this aspect of the design that distinguishes Linux

XIA from other clean-slate designs, including the classes of meta

architectures defined in §3.2.

We built a reliable multicast application that combines three prin-

cipals to deliver content across a heterogeneous network, to demon-

strate the value of principal interoperability. This application em-

ploys the U4ID principal to cross an IP-only link, the zFilter princi-

pal to duplicate packets in the network, the XDP principal to deliver

packets to sockets, and erasure codes to make the transmission re-

liable. Figure 5 illustrates this application in action and shows how

these principals can compose an XIP address. We have not yet

developed the control plane of Linux XIA, so we manually con-

structed the addresses for this demo.

The three-node destination address depicted at bottom left in Fig-

ure 5 can be understood as expressing the following intent: (1) tra-

verse an IP-only part of the network by encapsulating XIA packets

in UDP/IP payloads; (2) multicast the content to multiple hosts; and

(3) deliver the content to listening datagram sockets. Alternatively,

the depicted single-node destination address can be used in tandem

with routing redirects in the network to supply the same function-

ality. In both cases, this allows the TCP/IP, zFilter, and XIA ar-

chitectures to interoperate by composing their individual strengths,

despite the fact that these architectures were never intended to work

together.

Each step in Figure 5 captures a transition in the life of an XIP

packet being sent from the server to the clients. Step 1 shows the

XIP packet that the XIA stack creates once the application writes a

block of data. While routing the packet, XIP discovers that it can

only forward the packet following the edge U4ID1 of the address,

because the link between the dual-stack server and the router is IP-

only. XIP transfers control to the U4ID principal, which encapsu-

lates the XIP packet into the payload of a UDP/IP packet (Step 2),

and hands this new packet to the TCP/IP stack. Once the packet ar-

rives at the router (Step 3), the TCP/IP stack hands the packet back

to the U4ID principal running at the router. The U4ID principal at

the router decapsulates the packet, and hands the new packet to the

XIA stack to route the new packet. XIP decides on following the

edge zF1, which leads to duplicating the packet (Step 4), and send-

ing the copied packets toward the two clients. Once the packets

arrive at the clients (Step 5), the XDP principal identifies listen-

ing datagram sockets to which the data must be delivered. In order

to make the multicast transmission reliable without backchannel

feedback, our application employs erasure codes as advocated in

the Digital Fountain work [5].

This application serves as a proof of concept that XIA has a

strong notion of evolvability and that Linux XIA extends this idea

to allow interoperation and collaboration. Thus we assert that Linux

XIA can act as a meta architecture that incubates networking ideas,

old and new, and encourages cooperation, thereby enabling crowd-

sourced innovation.

6.2 Implementation evaluation
To assess the efficacy of Linux XIA as an implementation, this

section offers a qualitative evaluation in terms of its capability to

realize the desired architectural features espoused in §2: deploya-

bility and evolvability.

In order for a new network architecture to be a feasible replace-

ment for TCP/IP, it must be deployable. For a practical multi-step

deployment plan, we refer the reader to §5.1. Since the first step of

this plan has been implemented, Linux XIA already interoperates

with the legacy Internet architecture. Furthermore, since Linux is

widely used in a variety of network appliances, routers, and end

hosts, Linux XIA can be broadly deployed through updates of the

Linux kernel.

Once Linux XIA is initially deployed, new functionality should

be added incrementally such that hosts with new principals are still

able to communicate with hosts that have not yet been updated.

Linux XIA supports incremental deployment in three ways. First,

DAG addresses were implemented with compatibility fallbacks in

mind, whereby multiple edges can be considered simultaneously

using the fast routing algorithm described in §4.2.1. Second, princi-

pals can be loaded and unloaded on-the-fly because they are imple-

mented as kernel modules; consequently, principals can be intro-



duced and deprecated with a minimum of, or no, downtime. Third,

the routing dependency forest efficiently flushes stale routing cache

entries as described in §4.2.3. This is especially useful in network

settings with constant churn, for example, where the XIDs of a prin-

cipal are updated on a rolling basis.

However, this deployment plan is only a specfic case of a more

general and powerful principle at work, which we call architec-
tural embedding. This is the mechanism through which Linux

XIA fulfills the promise of evolvability that is at the heart of the

design. We have successfully embedded three distinct architectures

into Linux XIA (§5), and whitepaper-ported NDN [16], a content-

centric architecture, and ANTS [31], an early meta architecture.

These latter ports are documented in [23, Sections 4.3 and 4.4].

NDN embodies a design that is difficult to instantiate on a trans-

lating meta architecture without losing some of its characteristics,

but ultimately proved amenable to XIA. For example, there are

anonymity implications associated with the absence of source ad-

dresses in NDN that are unlike other architectures we have ported

to XIA. Moreover, NDN abstracts the network as an infrastructure

that stores and retrieves content within a hierarchical naming struc-

ture, which is not inherently built into XIA. Still, these features can

be ported to Linux XIA by taking advantage of the fact that XIA

does not require source addresses, and by leveraging each princi-

pal’s ability to define its own addressing scheme. The hierarchical

naming scheme is supported by hashing content names to XIDs,

and leaving names in NDN headers for the original NDN routing

algorithm to interpret.

As meta network architectures, ANTS and XIA share some com-

mon ground in terms of their motivation and solutions. Like XIA,

ANTS aims to lower barriers to evolve the network protocol, but

does so by supporting mobile code to define new factors. Mobile

code requires a significant amount of effort to design a code dis-

tribution protocol and a run-time environment to deal with security

issues. Still, ANTS can be ported to XIA by choosing the ANTS

XID to be the type field of an ANTS packet, which is the cryp-

tographic hash of the forwarding code that should be applied to

packets of that type. This turns out to be a natural fit in Linux XIA:

it defines a single class of intrinsically secure identifiers, and seam-

lessly interoperates with scoping principals such as ADs, HIDs, and

4IDs. ANTS is much more expressive than the other architectures

that have been ported to Linux XIA, and yet it still fits within XIA’s

framework.

In spite of the strong evidence that Linux XIA can embed many

different architectures, a proof that it can do so universally, i.e., em-

bed any architecture, is elusive. Advancing the theory of network

architecture, wherein such statements could be rigorously formu-

lated and potentially proven, is part of our future work.

Implementing XIA in the Linux kernel afforded us the ability to

leverage code that has been developed over decades to lower the

development barrier. For example, the three principals used in our

exemplifying demo (§6.1) required only a modest engineering ef-

fort: the U4ID principal took 480 lines of source code, the zFilter

principal 437 lines, and the XDP principal 724 lines according to

SLOCCount [32]. We also reused the full POSIX API, the kernel

module mechanism, and the hardware abstraction layer available

in the kernel to achieve three goals: (1) provide XIA applications a

rich API, (2) clearly scope principals code to avoid static dependen-

cies, and (3) be fully independent of TCP/IP. None of these features

are available in the XIA prototype [13].

The lessons learned here are that Linux XIA is deployable today,

there is strong evidence that Linux XIA can embed many different

architectures, and the Linux kernel affords principal developers a

rich development environment.

6.3 Performance evaluation
Our forwarding performance evaluation consists of simulating

an environment comparable to that seen by a core router, and mea-

suring the impact of various key parameters: Internet users’ pref-

erences over destinations, packet sizes, different addresses, and

update rates of the routing table on forwarding performance. We

benchmark all these measurements against the mature Linux im-

plementation of IP.

6.3.1 The testbed

This section covers three aspects of our experiments: how we

simulated the conditions a core router sees, the software and hard-

ware infrastructure we used, and the conditions under which we

took the measurements.

Our experiments simulate a core router in which input ports are

abstracted as packet writers (PWs) and output ports keep counters

of successfully routed packets. We take as possible destinations the

462,150 CIDR blocks obtained from a recent Route Views snap-

shot [30]. All PWs choose destinations according to a Zipf dis-

tribution over these CIDR blocks to account for the popularity of

the destinations. The output port for each CIDR block is chosen

uniformly at random. All IP experiments reference IP addresses

within these CIDR blocks; XIA experiments pessimistically map

each CIDR block to a distinct AD XID, and reference these as des-

tinations. We use ADs in the XIA evaluation because core routers

are most likely to forward AD instances, so we view AD routing as

representative of lookup cost. Before each run, we populate the IP

and XIP routing tables with appropriate forwarding entries for each

CIDR block.

Our experiments use a variety of representative XIP address for-

mats to assess the overhead of XIP packet processing. The VIA

address format considers the simple case of one-level AD-based

scoping, as described in §2, and the formats FB0 through FB3 con-

sider the case of AD fallback with addresses using from 0 to 3

fallback edges, respectively.

Our experiments ran on a single machine with the router and

PWs isolated by Linux Containers (LXC) [20], a lightweight virtu-

alization technology. LXC has been used by others to simplify ex-

periments and make them reproducible [19, 15, 6], and has helped

us to focus on the cost of routing instead of dealing with distract-

ing I/O overload and hardware features that we have not leveraged.

Our brawny evaluation server has two Intel Xeon Processors E5-

2690. Each processor has 8 cores plus Hyperthreading running at

2.90GHz that share 20MB of cache on chip, and a memory bank

of 192GB registered DDR3 at 1333 MHz with ECC. All experi-

ments ran with our custom kernel, which is a fork of Linux 3.11.0-

rc7. Our kernel and our evaluation code are publicly available on

GitHub [21, 22].

Our evaluation metric is the rate of succesfully forwarded pack-

ets. All evaluation graphics adopt the unit packets per second (pps)

instead of throughput or goodput units, such as bytes per second, to

reflect the fact that TCP/IP and XIA headers have different lengths.

Each box in the graphics represents 20 runs of that same experi-

ment. Further details of the evaluation setup, and more detailed

performance results than described below, are available in the first

author’s Ph.D. thesis [23, Chapter 5].

6.3.2 The results

In spite of adding dynamically loaded principals, routing redi-

rects, and routing dependencies on top of XIA’s already flexible

network addresses, Linux XIA sports performance results compa-

rable to those of IP in our simulations of a core router. The results

hold even while accounting for different packet sizes, more com-
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Figure 6: Comparing XIA to IP. Fixed parameters: 256-byte packets, 4 ports. (left) Effects of varying routing
table update rate and destination address type. (right) Varying the distribution of destination addresses.

plex addresses used in XIA, and high update rates of the routing

table. In addition, the results show that Linux XIA’s solution to

routing dependencies, the dependency forest, withstands very high

update rates.

The distribution of packet addresses is the factor that shows the

most pronounced effect between the XIA and IP routing algorithms

in our experiments (Figure 6 (right)). Although XIA only approxi-

mates IP’s forwarding performance in the most realistic range [0.5,
1.2] of the Zipf exponent, it outperforms IP below 0.5 and above

1.2. Linux XIA’s worst performance against IP happens when the

Zipf exponent is 0.8, in which case XIA’s median pps is only 42%

of that of IP. We believe that the this performance gap can shrink

significantly with more research, since Linux XIA is at version 1.0,

and many improvements have not been explored. We do not have

a proper understanding, at the time of this writing, why Linux XIA

shows a non-monotonic behavior as the Zipf exponent varies. In the

remainder of this section, we conservatively fix the Zipf exponent

at 1.0.

Beyond the distribution of addresses, we conduct sensitivity anal-

yses to quantify the impact of other variables on forwarding perfor-

mance. These experiments largely demonstrate that packet sizes,

complex addresses, and update rates (Figure 6 (left)) have a small

impact on performance for both stacks. However, the IP stack, pre-

sumably unoptimized for this case, could not keep up with very

high update rates, and as such has no box in the 100K column of

the left panel of Figure 6. The advantage of IP over XIA is in ac-

cordance with Figure 6 (right) when the Zipf exponent is 1.0.

We do not yet have an adequate justification for the surprising

performance of the VIA forwarding results shown in the left panel

of Figure 6, as it seems no easier to forward VIA packets than

FB0 packets. Although our missing justification for this better per-

formance is vexing, this shows that there is room for improving

Linux XIA’s overall performance, which we will investigate in fu-

ture work.

While our experiments are preliminary, they do make the case

that Linux XIA is already a viable platform for exploration of net-

work principals. In addition, we do not see a fundamental barrier

holding XIA back from matching the performance of IP. We be-

lieve that the performance gap is rooted in the fact that Linux XIA

is much less polished than Linux IP at this stage. Therefore, closing

this gap could be a matter of time, implementing solutions available

in the literature, e.g., [9, 35, 14].

7. CONCLUSIONS
Through a Linux implementation, the porting of diverse alien de-

signs, a demonstration of interoperability, and performance bench-

marks, we have tested the previously unsupported claim of the

evolvability of the XIA framework, which we re-classify as a meta

architecture. We view this evaluation of XIA as successful based

on the fact that it has met our imposed challenges while remaining

largely faithful to its original description [13]. This experience has

provided us with deeper insight into XIA and has corroborated our

view of an interoperable meta architecture being a catalyst to bring

future Internet architectures closer to fruition.

Believing that the community at large is well-placed to both

crowdsource and evaluate emerging efforts, we have made a con-

sistent effort not to favor any one principal above another in the

implementation of Linux XIA, but to have a level playing field for

all principals. This lack of bias has guided all of our implemen-

tation choices, for example, Linux XIA does not require any prin-

cipal to be loaded into the kernel, which leaves principal selection

entirely to stakeholders. Ultimately, we expect that the aggregate

of utility functions of stakeholders would select and evolve the set

of principals deployed in large scale in an XIA Internet.

Those awaiting the arrival of a clean-slate replacement architec-

ture may wish to consider reining in their expectations. Our view

is that a winning architecture arriving in a single-focus form as

TCP/IP did for host abstractions, or as NDN proposes to do for con-

tent, is implausible. As we amass experience with Linux XIA, we

have come across a number of interesting ideas for principals that

would benefit only a small subset of stakeholders. These narrow

principals have led us to the idea that Linux XIA could end up be-

coming home to a collection of minimal-form principals (e.g., the

LPM principal) that rely on each other to properly work, and, there-

fore, maximize value to stakeholders when considered in toto.

Not only do principals add value by themselves, they also in-

crease the value of other principals. For example, 4ID principals

bridge principals NDN and Serval to IPv4 networks; similarly, NDN

and Serval motivate the use of 4IDs in the first place. These net-

work effects could turn out to be the greatest source of value of

Linux XIA since they can even increase the value of already de-

ployed principals.

Finally, the major innovation of Linux XIA may not be XIA it-

self, but the broad set of new principals collectively and iteratively

designed by others that Linux XIA hopes to enable.
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