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Abstract. Emerging network monitoring infrastructures capture packet-
level traces or keep per-flow statistics at a set of distributed vantage
points. Today, distributed monitors in such an infrastructure do not co-
ordinate monitoring effort, which both can lead to duplication of effort
and can complicate subsequent data analysis. We argue that nodes in
such a monitoring infrastructure, whether across the wide-area Inter-
net, or across a sensor network, should coordinate effort to minimize
resource consumption. We propose space-efficient data structures for use
in gossip-based protocols to approximately summarize sets of monitored
flows. With some fine-tuning of our methods, we can ensure that all flows
observed by at least one monitor are monitored, and only a tiny fraction
are monitored redundantly. Our preliminary results over a realistic ISP
topology demonstrate the effectiveness of our techniques on monitoring
tens of thousands of point-of-presence (PoP) level network flows. Our
methods are competitive with optimal off-line coordination, but require
significantly less space and network overhead than naive approaches.

1 Introduction

In monitoring applications ranging from wide-area traffic monitoring to event
detection in sensor networks to surveillance by a set of pan/tilt/zoom cameras
located at distributed vantage points, a growing challenge involves appropriate
coordination of the activities of the individual monitors. In the applications
above, monitors are resource-constrained, and thus it is essential to minimize
the effort monitors expend on monitoring tasks. For example, when any of a
set of monitors may perform a monitoring task equivalently well, a cost-saving
strategy is to elect a single leader to perform the job. Of course, such a leader
election process must be efficient, must be robust to losses and failures, and
must err on the side of conservatism to ensure that all observable activities
are monitored by at least one monitor. Avoiding duplication of effort has a
secondary advantage for applications in which observed data is subsequently
aggregated and processed, since complications associated with the presence of
duplicate observations are avoided. In this work-in-progress paper, we consider
the problem of minimizing duplication of effort in distributed event monitoring
in which monitors are connected by a high-speed network. While we believe that
both the statement of our problem and our methods are much more broadly
applicable, we focus here exclusively on wide-area network traffic monitoring.



Wide-area Network Monitoring: Current technology to monitor network
traffic by passively collecting flows or samples or logging packet headers either
compromises router performance or incurs high costs due to costly measurement
infrastructure. We argue that a brute force, non-adaptive approach to monitoring
network traffic misses an opportunity to better manage resource consumption.
Instead, we advocate a lower-cost alternative, i.e. developing scalable techniques
to coordinate and distribute the monitoring effort. For example, if the monitoring
effort can be distributed in such a way that each monitor monitors only a small
subset of network flows, substantial savings can be achieved in terms of storage
and processing overhead. Our work attempts to achieve the above goal without
introducing too much control traffic overhead.

We assume a passive network monitoring infrastructure comprised of mul-
tiple monitoring systems, that coordinate to monitor network traffic traversing
through them. Such systems are not expected to be ubiquitous or directly inte-
grated into routers but are specially equipped with traffic capture and storage
capabilities. We assume that: all monitors can communicate with all other moni-
tors periodically, the monitors have sufficient memory to perform the monitoring
functionality, and the monitors can compute the set of monitors on the route of
a flow. We model the incoming traffic at monitors as a datastream consisting of
items in the form of key-value pairs. Here, the key is taken to be a network flow
at the Point of Presence (PoP) level, i.e. an ingress/egress pair, and the value is
the size of each packet in bytes.

Problem Statement and Contribution: Let S denote a set of events, let
M = {mi,ma,...mg} be a set of monitors, and let V; C S be the set of events
(flows) observable by m;. Now let L; denote the set of events monitored by m;.
Our objective is: Minimize ), |L;| subject to |J, L; = S and Vi, L; C V;.

In other words, monitors must monitor only flows they can observe, all ob-
servable flows must be monitored at least once, and the goal is to minimize du-
plication of effort. In the next sections, we describe our approach to this problem
using Bloom filter-based summarization techniques to coordinate between a set
of network monitors, quantify the cost, and present simulation results.

2 Coordination Algorithms

We now provide a brief overview of our data structures, algorithms and key
results; full details and the analysis are in [5]. Each monitor locally maintains
two data structures. The first is a lookup table of active flows marked either
as actively monitored or monitored by someone else. The second is a counting
Bloom filter, that approximately represents the set of active flows at a network
monitor. Our approach starts by having each monitor represent the set of flows it
is currently monitoring with a counting Bloom filter [1], a compact randomized
data structure that supports lookup operations on keys. With a Bloom filter,
lookups for inserted keys are always correct, but lookups for keys not present in
the filter may yield a false positive, with a tunable false positive probability p.
Full details are in [2]. Monitors use a simple gossiping protocol to periodically
disseminate their Bloom filters to all other monitors in the system. Use of Bloom
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Fig. 1. Performance analysis of monitoring approaches

filters not only reduces the size of the summaries by orders of magnitude as
compared to a full-fidelity representation but also keeps the network overhead
of gossiping the summaries to other monitors manageable.

On the arrival of a new flow (whether new to the system or due to a route
change), a monitor checks if it is the first monitor on the flow’s route. If so, it
inspects the Bloom filters of other monitors along the route. If the flow appears to
be monitored elsewhere, it leaves the flow for the appropriate monitor. Otherwise,
the monitor creates new state for the flow and maintains the state from that
time onward. If the monitor is not first on the route, then it is not initially
responsible for monitoring that flow. However, the approximate nature of the
summaries makes them vulnerable to errors in the form of false positives, i.e., a
flow is not actually monitored by a monitor but its summary reflects that it is.

The simple, but elegant solution to this potential problem is a central con-
tribution of our work: we eliminate false positives by applying an idea of self-
inspection: if a given monitor finds that an observable flow produces a false
positive in its own Bloom filter, then it immediately starts to monitor that flow.
The cost of this method is a small amount of redundant monitoring: in the event
that two or more Bloom filters have a match on a given flow, they must all mon-
itor that flow (redundantly). Our analysis in [5] shows that for a flow traversing
j monitors using Bloom filters with false positive probability p, the expected
number of monitors that will monitor the flow using our method is (1 — p)7 + pj.

3 Experimental Results

We simulated deployment of our monitoring infrastructure over one of the PoP
level topologies generated by Rocketfuel [4]. The topology consisted of 36 PoPs,
producing 1296 origin-destination (OD) pairs. Next, we made use of inferred
backbone link weights [3] to run Dijkstra’s single-source shortest path algorithm



at all PoPs to determine the route from one PoP to any other PoP. To create a
plausible distribution of network flows between PoPs in our topology, for all PoP
pairs, we compute a value l;; that is the fraction of flows which originate at PoP ¢
and terminate at PoP j. Using a gravity model, we take l;; o< P; x P, where P; is

the population of node ¢, and normalize l;; = ff_;_ to ensure , ; l;; = 1. We
il ?

simulated our proposed network monitoring technique with 50,000 network flows
distributed amongst different PoP pairs using the gravity model, and compared
the following three different monitoring approaches.

— Brute force: Each monitor monitors every flow that is visible to it.

— Optimal: Each monitor is given full information about the workload, and
the flow is assigned to the least loaded monitor on its route.

— Bloom filter: Monitors have no prior information, flows arrive one by one,
and our proposed methods do the online assignment of flows to monitors.

Figure 1 plots the number of flows monitored for each approach and at each
of the 36 monitors. Our online Bloom filter approach is nearly as good as the
offline optimal in terms of overall load reduction and load balance, and signif-
icantly improves worst-case load over the brute force approach. Using a simple
back-of-the-envelope calculation (omitted for lack of space), we estimate that an
unoptimized version of our approach affords more than a factor of two memory
savings on average, and more than a factor of five at the worst case monitor
in this scenario. Unlike brute force, our methods have an extra cost associated
with data exchange to ensure continuous monitoring of all visible flows under
route changes and to maintain load balance. In a naive all-pairs exchange of
Bloom filters, the total aggregate traffic load is 3.24 MB (200 KB per pair) in
our simulation setup.

Future work: Our ongoing work involves experimental evaluation, validation
and refinement of our methods over large, realistic datasets. Along with addi-
tional evaluation, key considerations that we intend to further investigate in
the full version of the paper are: further reducing network overhead when peri-
odically exchanging summaries, refining load balancing mechanisms to improve
their robustness, and specifying how data structure parameters can be set auto-
matically.
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