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Abstract—The problem of optimizing social welfare objectives
on multi-sided ride-hailing platforms such as Uber, Lyft, etc., is
challenging, due to misalignment of objectives between drivers,
passengers, and the platform itself. An ideal solution aims to
minimize the response time for each hyperlocal passenger ride
request, while simultaneously maintaining high demand satis-
faction and supply utilization across the entire city. Economists
tend to rely on dynamic pricing mechanisms that stifle price-
sensitive excess demand and resolve supply-demand imbalances
that emerge in specific neighborhoods. In contrast, computer
scientists primarily view it as a demand prediction problem
with the goal of preemptively repositioning supply to such
neighborhoods using black-box coordinated multi-agent deep
reinforcement learning-based approaches. Here, we introduce
explainability in the existing supply-repositioning approaches by
establishing the need for coordination between the drivers at spe-
cific locations and times. Explicit need-based coordination allows
our framework to use a simpler non-deep reinforcement learning-
based approach, thereby enabling it to explain its recommenda-
tions ex-post. Moreover, it provides envy-free recommendations
i.e., drivers at the same location and time do not envy one
another’s expected future earnings. Our experimental evaluation
demonstrates the effectiveness, robustness, and generalizability of
our framework. Finally, in contrast to previous works, we make
available a reinforcement learning environment for end-to-end
reproducibility of our work and to encourage future comparative
studies.

I. INTRODUCTION

Popular ride-hailing platforms, e.g., Uber, Lyft, Didi Chux-
ing, and Ola, have revolutionized the daily commute in cities
across the world. Globally valued at over $61 billion and
expected to grow to over $200 billion by 2025 these platforms
operate as multi-sided marketplaces, seamlessly connecting
drivers with riders through their smartphone applications [1].
The explosive growth of these ride-hailing platforms has
motivated a wide array of questions for academic research
at the intersection of computer science and economics, as we
discuss in the related work section.

A large segment of these works aims to improve the
performance of the platforms, ensuring high-reliability service
for the passengers alongside high utilization and earnings for
the drivers. The two main thrusts are dynamic pricing and ca-
pacity repositioning. Dynamic pricing [2]–[6] aims to balance

demand and supply by increasing prices in certain neighbor-
hoods. Intuitively, temporary increases in prices curtail price-
sensitive demand and assist the platform in ensuring a high-
reliability service. On the flip side, the potential for higher
earnings also encourages more drivers to join the platform
during such “price surges”. The dynamic pricing literature uses
game-theoretic analyses of the ride-hailing markets to show its
effectiveness as a platform control mechanism.

The capacity repositioning approach aims to improve the
platforms’ performance by assisting drivers with recommenda-
tions for relocations inside a city. Although the initial work in
this domain has focused on modeling the driver-repositioning
problems as combinatorial optimization problems [7]–[11],
the need for optimizing large driver fleets and the availabil-
ity of high-dimensional historical data has recently led to
the development of machine learning methods for the same
problem [12]–[16]. Such approaches predominantly use multi-
agent coordination reinforcement learning to solve a global ca-
pacity repositioning problem, using various forms of attention
mechanisms in neural networks to achieve coordination. By
design, they make a key assumption that there is always a need
for coordination in the market. This assumption necessitates
them to leverage recent breakthroughs in the scalability of deep
learning models to exploit the high-dimensional historical data.
Deep-learning based methods have a large number of hyperpa-
rameters required in their training, making their performance
susceptible to external perturbations. Moreover, the black-box
coordination issue, as yet unresolved, is a potential liability
when using deep-learning based systems in domains such as
this, where platform controllers would like to understand how
the choices of recommendations to human drivers were made.

We aim to revise the capacity-repositioning approach by
relaxing the assumption that coordination is always necessary.
Specifically, our approach leverages the observation that driver
actions are independent at most times of the day, with coor-
dination required only during periodic times of peak demand,
such as rush hours. Furthermore, the instances of supply-
demand imbalances in a city are usually restricted to distinct
neighborhoods. We exploit this loose spatio-temporal coupling
of supply and demand to learn when and where the drivers
need to coordinate, and otherwise act independently for the
rest of the time. This observation allows us to combine vanilla
reinforcement learning (i.e., not deep learning) algorithms with978-1-7281-6251-5/20/$31.00 ©2020 IEEE



simple combinatorial techniques for solving the repositioning
problem. Moreover, our framework is scalable because the
sizes of the combinatorial problems we need to solve in
order to achieve capacity repositioning are constrained by the
number of imbalanced neighborhoods. Broadly, our model
is a combination of the combinatorial and machine-learning
approaches to capacity repositioning.

As our framework does not rely on deep learning, we are
able to explain ex-post all the recommendations given to the
drivers, taking a step in direction of transparent AI proposed
in the recent General Data Protection Regulations (GDPR)
guidelines [17]. Moreover, our approach is envy-free in the
sense that drivers at the same location and time do not envy
one another’s future earnings. The resulting model is relatively
parameter-free and hence generalizes well in presence of daily
variations in supply and demand. Finally, our framework is
amenable to integration with any dynamic-pricing models by
easily augmenting our data with the effects of such a model.
Contributions: To summarize, the contributions of our paper
are the following:
• We consider the problem of capacity relocation on a

ride-hailing platform in order to maximize welfare and
propose a robust, explainable, and scalable framework that
combines simple combinatorial techniques with vanilla
reinforcement learning algorithms.

• We perform a thorough experimental evaluation of the
dynamics of the fleet-management system, its effective-
ness, robustness to imperfect hyperparameter tunings, and
generalizability in the presence of external perturbations.

• We also make available an OpenAI gym environment1

named nyc-yellow-taxi-v0 at [19] so that any future
multiagent reinforcement learning algorithm can be easily
applied to this problem. To the best of our knowledge, this
is the first environment based on real-world datasets.

II. RELATED WORK

In this section, we discuss existing work in comparison to
ours.
Driver recommender systems: The problem of spatio-
temporal demand prediction to inform an idle taxi driver of
favorable locations for passenger pickups had been studied
extensively even before the advent of ride-hailing services.
These works focus on the case of a self-interested individual
acting in isolation. For instance, Li et al. [20] use a large-scale
taxi GPS trace dataset to identify salient features associated
with successful passenger pickup locations, while in two
separate studies, Yuan et al. [21, 22] develop a recommender
system to guide both idle taxi drivers and waiting passengers to
convenient locations in order to optimize social welfare. More
recently, Chaudhari et al. [23] devise driver-oriented strategies
to recommend favorable driving schedules and pickup loca-
tions to optimize the earnings of an individual on-demand ride-
sharing driver. In contrast to our approach, the recommender

1OpenAI Gym is a toolkit for developing and comparing reinforcement
learning algorithms [18].

systems in these works are agnostic to driver interactions and
may result in unfavorable supply excesses in certain locations
when adopted by many drivers simultaneously.

Capacity repositioning systems: Traditional works in driver
dispatch systems [7]–[9] typically rely on queuing-theoretical
models to asymptotically optimize supply-demand matching
while reducing congestion-related issues. Aided by the pre-
cise estimates of supply and demand in real-time, recent
approaches [10, 11] leverage demand volume and ride desti-
nation forecasting models to use in combinatorial optimization
techniques. These approaches do not scale well to use cases
on contemporary platforms, where fleets of as many as 10,000
drivers serve a single city.

More recent work [12]–[16] addresses the scalability issue
by using deep reinforcement learning to learn control policies
in high-dimensional input space. While effective in this high-
volume data domain, these methods rely on external propri-
etary models to generate inputs for the driver dispatch systems.
For example, the approach of [14] heavily relies on a pro-
prietary simulator built by Didi Chuxing in order to generate
inputs required during model training, making it impossible
to reproduce their results for comparison purposes. To the
best of our knowledge, building such a simulator is itself
an active research problem. Moreover, deep-learning based
techniques suffer from a lack of explainability. Cognizant of
these issues, our approach does not rely on any proprietary
models but rather learns high-quality solutions from scratch
based solely upon historically observed data. Moreover, we
achieve that without sacrificing the explainability of the model.
In the absence of the need for coordination, our model assumes
homogeneity of drivers in the same location and provides
envy-free recommendations while also making it scalable.
Furthermore, we have publicly made available our entire
codebase and the reinforcement learning environment required
to reproduce every result presented in this work, thus enabling
future comparative studies [19].

From the learning point of view, our approach not only
learns how to coordinate but also when it is required to do
so. This is achieved by augmenting vanilla reinforcement
learning (in the form of tabular Q-learning) with combinatorial
techniques to aid the rebalancing of driver distribution.

Platform economics: Studies of ride-hailing services as multi-
sided economic marketplaces have investigated the impacts
of the platform’s pricing policies on the platform profits, the
consumer surplus, and the driver wages [3, 5, 24, 25]. Sühr
et al. [26] investigate fairness in driver earnings distribution
using driver-passenger matchings optimized to attain income
equality goals. Recently, Chen et al. [27] combines platform
economics with the capacity repositioning problem using a
contextual bandit framework. There is a growing body of
literature studying the interplay between platform pricing and
strategic driver behaviors, for which we refer the readers to
[2]. Our work contributes to this domain by developing a
scalable framework that can be used to verify the results of
asymptotic dynamic pricing models via realistic simulations.



III. PROBLEM SETUP

In this section, we describe the basics of our problem setup
and provide the necessary notation.

A. City attributes

Throughout the paper, we assume that the city is divided
into a set of m non-overlapping hexagonal zones denoted
by H. We also assume that time t advances in discrete time
steps i.e., T = {1, · · · , T}, a standard industry practice [28].
Finally, we assume a total of n homogeneous drivers traveling
between hexagon zones picking up and dropping off the
passengers.

Our model uses the following city matrices and vectors that
are time-varying; i.e., their entries change at every time step.
However, for notational convenience, we do not introduce the
time step t subscript unless required for context.

Demand matrix (D): A matrix D ∈ Rm×m such that each
entry d(h, h′) denotes the number of passengers requesting a
ride from zone h to zone h′ at time t. With appropriately sized
hexagonal city zones, we find that ∀h ∈ H, d(h, h) = 0.

Travel time matrix (T): A matrix T ∈ Rm×m such that
each entry τ(h, h′) denotes the number of discrete time steps
required for transiting from zone h to zone h′.

Reward matrix (R): A matrix R ∈ Rm×m such that each
entry r(h, h′) denotes the net reward for a taxi driver carrying
a passenger from zone h to zone h′. The net rewards include
driver’s earnings for delivering the passenger at the destination
minus the sundries such as gas cost, vehicle depreciation,
etc. Hence, each entry of the matrix is of form r(h, h′) =
earnings(h, h′)− cost(h, h′).

Driver actions (A): At each time step t, a driver in zone
h who is not currently on a trip can choose one of the two
actions.

• Wait: A wait action a(h, h) involves waiting for a pas-
senger in the current zone i for the current time step. If
successful, it can lead to a trip to some other zone h′ with
the driver earning a reward of r(h, h′). When the number
of drivers choosing to wait in a zone exceeds the demand
of the zone at the particular time, an unsuccessful wait
may occur, and the driver earns a net reward of zero while
staying in the same zone h for the next time step.

• Relocate: A relocate action a(h, h′) involves relocation
without a passenger from zone h to zone h′. Undertak-
ing a relocate action costs a driver a value denoted by
cost(h, h′).

Thus, we consider a total of |A| = m2 actions. In case of a
relocate action or a successful passenger pickup to zone h′,
the driver is busy traveling for next τ(h, h′) time steps and
is presented with the next action choice at time t + τ(h, h′),
while in case of an unsuccessful wait, the driver chooses the
next action at time t+ 1.

B. Model attributes

Using the city attributes from the previous section, we now
define the attributes of our model:

Policy (π): A policy function π : H × T → A recommends
the best action to drivers in every zone of the city at each time
step, to maximize the model’s objective function. We impose
a constraint that all drivers in the same zone at the same time
be recommended the same action unless driver coordination is
required to resolve a supply-demand imbalance in the zone.

A driver i following a policy π performs location and time-
dependent actions represented by a 3-tuple φπt (i) = (t, h, a),
where h and a are the location of the driver and the action
chosen at time t respectively. We assume that if a driver is
busy at time t, the corresponding 3-tuple is (t,∅,∅).

Driver earnings (E): Let function E(t, h, a) denote the net
earnings of a driver on taking action a at time t while located
in zone h. If the action leads a driver to zone h′, E(t, h, a) =
r(h, h′). In the case of the relocate action, net earnings simply
constitute the cost of relocation i.e., r(h, h′) = −cost(h, h′).
We can denote the gross earnings of n drivers following a
policy π by: Eπ(n,D,T,R) =

∑T
t=1

∑n
i=1E

(
φπt (i)

)
, where

E(t,∅,∅) = 0.

Supply (S): A policy π induces the movement of drivers
between different city zones through action choices. The
supply, i.e., the number of drivers at zone h at time t induced
by a policy π, is denoted using the supply function Sπ(t, h).

Demand fulfillment (F): A driver in zone h choosing the
wait action a(h, h) at time t is randomly matched with any
of the

∑
h′ dt(h, h

′) passengers requesting a ride in zone h
at the same time. Hence, a policy π, via its supply function,
induces a demand fulfillment function. Demand fulfilled in
zone h at time t when drivers follow a policy π is denoted
using the demand satisfaction function Fπ(t, h). Obviously,
∀π∈ΠF

π(t, h) ≤
∑
h′ dt(h, h

′). Hence, total demand ful-
filled over the course of time steps t ∈ T by n drivers
following the policy π can be given by: Fπ(n,D,T,R) =∑T
t=1

∑m
h=1 F

π(t, h).

C. Problem statement

Based on the above definitions, we now formulate the
problem that we solve.

PROBLEM 1(MAXEARNINGS): Given time-varying matrices
D,T,R and the number of homogeneous drivers n, devise a
policy π∗ such that

π∗ = arg max
π∈Π

Eπ(n,D,T,R). (1)

Replacing the driver earnings (E) by demand fulfillment (F)
in the Equation (1) above results in a variant of MAXEARN-
INGS problem, in which the goal is to maximize fulfilled rides,
referred to henceforth as the MAXFULFILLMENT problem.



IV. LEARNING FRAMEWORK

In this section, we describe our approach for solving the
MAXEARNINGS problem. Our method is a model-based rein-
forcement learning approach, and its description is provided
in Algorithm 1.

As with any reinforcement learning approach, we train our
model by allowing the drivers to repeatedly interact with an
environment in form of the city’s ride demand data from
a representative day. Each interaction, which is T timesteps
long, constitutes an episode of the training process. Each
episode constitutes of 3 phases described below.

ALGORITHM 1: General learning approach

1 Initialization
QI(t, h, a)← 0, QC(t, h, a)← 0, ξ(t, h)← 0;

2 for each episode e = 1, · · · , E
3 for each time step t = 1, · · · , T
4 for each driver i = 1, · · · , n
5 Generate two random numbers

η0, η1 ∈ [0, 1];
6 if η0 ≤ ε
7 Choose exploratory action;
8 else
9 if η1 ≤ ξ(t, hi)

10 a = Independent action a∗ from QI ;
11 else
12 a = Coordinated action ac from QC ;
13 Receive reward E(t, hi, a);
14 Compute rebalance matrix Z;
15 for each zone h ∈ H
16 ∀t, a update QI(t, h, a) ;
17 ∀t update degree of coordination ξ(t, h) ;
18 ∀t, a update QC(t, h, a) ;

Exploratory phase (lines 5-7): During this phase of the
algorithm, drivers exhibit an exploratory behavior by choosing
a pseudo-random action with a probability ε. These randomly
chosen actions allow the model to explore a larger portion of
the policy space, preventing its policy from converging to a
local minimum. This is similar to the ε-greedy behavior of
Q-learning [29].

Exploitative phase (lines 9-12): During this phase of the
algorithm, the rest of the drivers exhibit an exploitative be-
havior using the policy learned up until the previous episode
of training. The policy recommends exploitative actions to
individual drivers based upon the time of the day and their
locations, independently of each other, henceforth referred
to as independent actions. However, certain recommended
actions may result in supply-demand imbalances when a large
number of drivers relocate to the same city zone with an
insufficient demand, or too few of them relocate to a zone
with excess demand. We postulate that explicit coordination
is essential to prevent such supply-demand imbalances from
occurring. Hence, we introduce the degree of coordination (ξ)

- a probabilistic value that signifies the extent to which drivers
located in the same city zone need to coordinate their actions.
Whenever a zone has a positive degree of coordination, the
exploitative actions recommended to a ξ fraction of drivers in
the zone are derived from solving a reward-maximizing linear
program, henceforth referred to as coordinated actions.

It should be noted that it is the explicit criterion for
recommending a coordinated action that sets our approach
apart from recent works in the field of deep reinforcement
learning across different applications and domains.

Learning phase (lines 15-18): Actions recommended in
the exploratory and exploitative phases of the episode result
in drivers picking up passengers or relocating themselves to
different city zones, thereby observing rewards of their actions
(line 13). The learning phase of the algorithm computes a
rebalancing matrix (line 14) to use in conjunction with the
observed rewards to further improve upon the policy.

Having developed an intuition for the major building blocks
of Algorithm 1, we now explain these phases in greater detail.

A. Exploratory phase

Over the course of training, when a driver located in zone
h chooses to explore, we model the probability of driver’s
exploratory ride distance using a Gaussian function with a
random variable K≥0. Specifically, the probability that a driver
relocates to a zone at distance k ≥ 0 is given by: Pr[K =

k] = be−
k2

2c2 .
After sampling an exploration distance k, the driver chooses

the actual destination by sampling uniformly at random from
all zones at distance k. When k = 0, the driver chooses
to wait in the current zone, while for k > 0, the driver
chooses a relocate action. The experiments in this paper
were all conducted using b = 0.7 and c = 1 (chosen via
grid-search), allowing explorations up to 3 hexagonal zones
away. In contrast, [14] restricts drivers to single zone distance
relocations, reducing their ability to learn policies that mitigate
supply-demand imbalances by relocating supply from zones
further away in a single timestep. Over the course of training,
ε is annealed exponentially from 1 to 0, thereby outputting an
entirely exploitative model at the end of the training.

B. Exploitative phase

Exploitative behavior is manifested in the form of indepen-
dent actions (line 10) and coordinated actions (line 12) when
the degree of coordination is positive. We detail these next.

1) Choice of independent action: For each independent
action chosen by a driver, we record the reward earned. This
reward is then used to update the value of the action for the
next episode, based on the learning rate (α) and the discount
factor (γ). These values are stored in a Q-table denoted by
QI ∈ RT×m×|A|. For each zone h, at time t, the best
independent action (a∗) is chosen by (line 10, Algorithm 1)

a∗(t, h) = arg max
a∈Ah

QI(t, h, a),

where Ah refers to the h-th row of A.



2) Independent learning: Based upon the observations of
drivers undertaking independent actions (both exploratory and
exploitative), we update the independent learning matrix (QI )
as described below.

Updating QI for wait actions: Let W(h,h′) denote the
number of drivers choosing to wait in zone h at time t,
and ending up in zone h′. A successful wait generates net
earnings E

(
t, h, a(h, h)

)
= r(h, h′) and consumes a travel

time τ(h, h′), while an unsuccessful wait i.e., h′ = h,
generates zero net earnings and consumes one timestep. The
utility of the wait action is therefore

U(t,h,h) =
∑
h′

W(h,h′)

[
E
(
t, h, a(h, h)

)
+γQI(t

′, h′, a∗(t′, h′))

]
where t′ = t + τ(h, h′) and we discount the future rewards
with a factor γ. We use the utility of the wait action to update
the entry QI(t, h, h) as follows:

QI(t, h, h)← (1−α)QI(t, h, h)+
α∑

h′W(h,h′)
U(t,h,h). (2)

Normalizing the update term by the number of drivers choos-
ing the wait action captures the average utility of the wait
action. The term QI(t, h, h) on the right hand side of the
equation denotes the values learned upto the previous episode
of the training, and α is the learning rate.

Updating QI for relocate actions: Let R(h,h′) denote the
number of drivers relocating from zone h to zone h′. The
utility of such relocation is given by

U(t,h,h′) = R(h,h′)

[
E(t, h, a(h, h′))+γQI(t

′, h′, a∗(t′, h′))

]
,

where t′ = t + τ(h, h′). We use the utility of the relocate
actions to update the entry QI(t, h, h

′) of the independent
table as follows:

QI(t, h, h
′)← (1− α)QI(t, h, h

′) +
α

R(h,h′)
U(t,h,h′). (3)

Using Equations (2) and (3), the QI matrix is updated in line
16 of Algorithm 1 using the evidence obtained via simulations
in form of utilities U(t,h,h′) of both the wait and relocate
actions.

3) Choice of coordinated action: The choice of coordinated
action is more intricate and non-standard, and we next explain
it in detail. To guide the coordinated behavior of drivers
in line 12 of Algorithm 1, we solve a reward-maximizing
rebalancing operation between city zones experiencing supply-
demand imbalances. There are two principal components driv-
ing the coordinated behavior: degree of coordination (ξ) which
controls the need of coordination in a particular zone at a time,
and coordinated learning matrix (QC) which determines the
choice of action as a response to the need of coordination.
Thus, each coordinated action is associated with a probability
for it to participate in the rebalancing operation that is stored
in the matrix QC . Note that QC contains learned probabilities,
as against the usual action-value nature of QI .

Let the policy learned at the end of k-th episode during
training be denoted by πk. Following this policy induces a
driver supply Sπk during the (k + 1)-th episode of training.
For each zone h, at time t, the coordinated action (ac) in line
12 of Algorithm 1 is obtained by uniformly sampling from
the probability vector QC(t, h).
Imbalance matrix (∆): A matrix ∆ ∈ R|T |×m such that
each entry δ(t, h) denotes the supply-demand imbalance ex-
perienced at zone h at time t during the (k + 1)-th episode.
Specifically, each entry of the imbalance matrix can be given
by, δ(t, h) = Sπk(t, h) −

∑
h′ dt(h, h

′). We mask the imbal-
ance matrix using an imbalance threshold parameter Λ such
that,

δ(t, h) =

{
δ(t, h) if

∣∣δ(t, h)
∣∣ ≥ Λ

0 otherwise.

Using this parameter allows us to control the level of imbal-
ances that the framework should attempt to mitigate.
Rebalancing graph (G): Based upon the supply-demand
imbalance matrix induced at the end of an episode, we create
the rebalancing graph G = (V,E) consisting of imbalanced
zones as nodes and edges as corresponding relocation actions
between them. This is a bipartitle graph with nodes V =

{
V+∪

V−
}

where V+ is the set of nodes with excess supply, i.e.,
δ(t, h) > 0 and V− is the set of nodes with supply deficit, i.e.,
δ(t, h) < 0. Thus each node vi ∈ V in the rebalancing graph
is associated with three attribues: imbalanced zone (vhi ), time
of imbalance (vti) and magnitude of imbalance

(
δ(vti , v

h
i )
)
.

The edge set E consists of directed edges from the nodes in
V+ to nodes in V− and they model feasible relocations. Thus:
E =

{
eij : vi ∈ V+, vj ∈ V−, vti+τ(vhi , v

h
j ) ≤ vtj

}
. The travel

time constraint filters out edges where a relocating driver from
an excess supply node cannot reach the deficit node in time.
Each edge eij is associated with utility:

U(i,j) = QI(v
t
j , v

h
j , v

h
j )︸ ︷︷ ︸

wait action at vhj

− cost(vhi , v
h
j )︸ ︷︷ ︸

relocation cost

−QI(vti , vhi , vhi ).︸ ︷︷ ︸
wait action at vhi

Thus, the utility of an edge measures the net value for a driver
relocating along it during coordinated behavior.
Rebalancing operation: Given a rebalancing graph G, we
wish to relocate drivers from supply excess zones to supply
deficit zones. We aim to find a matching that maximizes the
net reward of all relocations, in order to maximize the driver
earnings. Such a rebalancing operation can be achieved by
solving a Minimum Cost Flow problem expressed in the form
of the linear program below.

maximize
∑
eij∈E fij × U(i,j)

s.t.,
∀eij ∈ E, fij ≥ 0

∀vi ∈ V+,
∑
vj∈V− fij ≤ δ(v

t
i , v

h
i )

∀vj ∈ V−,
∑
vi∈V+

fij ≤ |δ(vtj , vhj )|

Here, we calculate the number of excess drivers who should
relocate from an excess node to a deficit node and store it in



the form of a flow vector f ∈ R|E| indexed along the edges
set such that fij denote the flow from vi to vj .

If the platform aims to maximize demand fulfillment, we
can formulate it as a Maximum Flow problem by setting the
utility associated with each edge U(i,j) = 1.

As the constraint matrices – in both problems – are
unimodal, the solutions of the linear programs are integral
flow vectors and are thus optimal. Note that the size of the
constraint matrix increases with a decrease in the Λ parameter.
However, we can greatly reduce the sizes of corresponding
linear programs and hence the computation time by solving
a set of smaller linear programs; one for each connected
component of the rebalancing graph.

4) Coordinated learning: Based upon the computed imbal-
ance matrix (∆) and the solution to the rebalancing operation
above, we are now in a position to update the coordinated
learning matrix (QC) and the degrees of coordination (ξ) as
described below. It should be noted that while the choice of
coordinated action from the matrix QC is influenced by the
reward-maximizing rebalancing described above, the degree
of coordination ξ is merely influenced by the supply-demand
imbalances induced as a result of the policy learnt so far.

Updating QC for rebalancing operation: We capture the
rebalancing operation in form of a rebalance matrix Z ∈
R|T |×m×m where each entry ζ(t, h, h′) denotes a probability
of a rebalancing relocation from zone h to zone h′ being
required at time t. For every edge eij ∈ E, we update Z
as follows,

ζ(vti , v
h
i , v

h
i ) =

δ(vti , v
h
i )−

∑
vj∈V− fij

δvti , v
h
i

ζ(vti , v
h
i , v

h
j ) =

fij
δ(vti , v

h
i )
.

Using the rebalance matrix, we update QC in line 18 of
Algorithm 1 as follows,

QC(t, h, h′)← (1− α)QC(t, h, h′) + αζ(t, h, h′). (4)

Updating degree of coordination (ξ): At the end of each
training episode (k + 1), we use the realized imbalance
matrix (∆) to determine the degree of coordination required
within each zone at every time step. We update the degree of
coordination as follows:

ξk+1(t, h) = (1− α)ξk(t, h) + αµ(t, h), (5)

where the rebalancing raio µ is computed as:

µ(t, h) =


δ(t,h)
Sπk (t,h) if δ(t, h) > 0.∣∣δ(t,h)

∣∣∑
h′ dt(h,h

′) if δ(t, h) < 0 and ξk(t, h) > 0.

While the former condition encourages driver relocations in
zones with supply excess, the latter condition discourages it
in zones with supply deficit. Thus, we use Equation (5) to
update the degree of coordination for each zone in line 17 of
Algorithm 1.

V. DATA AND EXPERIMENTS

In this section, we begin by describing the pre-processing
we did in order to use the New York City Yellow taxi rides
public dataset and then we evaluate our framework.

A. Data pre-processing

To train our model, we need to construct the time-evolving
city matrices - D, R, and T described in Section III.
Hexagonal binning of New York City: We employ the pop-
ular methodology of hexagonal binning to discretize the city
into a set H of 250 non-overlapping uniform-sized hexagonal
zones. The distance from the center of a zone to its vertices
is about 1 mile.
Forming time-evolving matrices: We begin with the NYC
Taxi dataset (2015), which contains street-hail records of over
200,000 taxi rides per day with information regarding pickup
and dropoff locations and times, fare, trip distances, etc.,
from before the significant confounding effects of ride-sharing
platforms like Uber, Lyft, etc. For each ride in the dataset,
we evaluate its pickup and dropoff zones based on location
coordinates. Assuming that passengers do not hail a taxi for
short distances, we ignore a small percentage of rides which
begin and end within the same zone.

We discretize a 24-hour day into 288 time-slices of duration
5 minutes each, indexed by their start time. Thus, to populate
the entries of the matrices D, R and T at time t, we use the
rides from the dataset in the 5 minutes time-slice beginning
at time t. Due to variations in the popularity of particular
pickup and dropoff zones at specific times of the day, the
R and T matrices obtained using this method are sparse.
However, to compute the best policies, our framework requires
the availability of complete information regarding rewards and
travel times. Hence, we estimate the missing values in these
matrices using linear regression models including fixed-effects
for the time of the day, the source and destination zones 2. The
performance of our model is not sensitive to the choice of a
specific linear regression modeling technique.

B. Experimental results

1) Settings: For all experiments, we use a multiprocessor
implementation of our algorithm on a 24-core 2.9 GHz Intel
Xeon E5 processor with 512 GB memory. The model training
time for 100 episodes of training takes less than an hour.
The model testing time is less than 5 minutes. Our code has
been made publicly available for reproducibility purposes [19].
All our experiments use learning rate α = 0.01 and discount
factor γ = 0.99. During independent learning, the exploration
factor (ε) used in ε-greedy Q-learning decreases exponentially
as the training progresses. Unless mentioned otherwise, we
train 5,000 drivers over 200 episodes and set the imbalance
threshold (Λ) to 2. Experimental results presented in this paper

2To compute the travel time entry τ(i, j) at time t, we fit a linear regression
model τ(i, j, t) = β0Xi,j,t + β1αi + β2αj + β3αt + εi,j,t where Xi,j,t

are the time-variant predictors, the αi, αj , and αt are time-invariant fixed-
effects for source, destination and time of the day respectively, while εi,j,t is
standard normal error.



are obtained by training models over a representative day
viz., first Monday of September 2015 with a demand of over
232,000 rides. However, our results generalize to any day.

2) Model performance: First, we address the question:
how well does our reinforcement learning-based algorithm
learn the driver dispatch policy? In Figure 1, we observe the
improvement in mean driver earnings and demand fulfillment
as the training progresses. We split the 200 training episodes
into independent learning episodes (EIL = 160) and coordi-
nated learning episodes (ECL = 60). This can be achieved
by setting the degree of coordination (ξ) to 1 until episode
number E − ECL on line 9 of Algorithm 1. Consequently,
episodes [140, 160] utilize both independent and coordinated
learning. In Figure 1, we observe a significant improvement
in the objective in the interval denoted by a shaded region.
As expected, coordinated learning appropriately relaxes some
of the constraints imposed by single-agent MDP and leads to
significantly better performance.

In Figure 2, we plot the total demand at various times in
the day, along with its fulfilled and unfulfilled portions by
drivers following our policy. About 95% of the total demand
during the day is satisfied with our framework. We consider
a ride request fulfilled if an idle driver is present in the
same zone at the time of the request. We find that 10% of
unfulfilled demand can be fulfilled by nearby drivers by adding
10 minutes of passenger wait, and 75% of unfulfilled demand
with 15 minutes of wait. At the beginning of a day, for lack
of better alternative, we initialize drivers uniformly across
the city zones. Hence, our model requires a “warm-up” time
for the drivers to reposition themselves in order to fulfill the
demand. This warm-up interval contributes significantly to the
unfulfilled demand at the beginning of the day from 12AM-
1AM. One may left-pad the training interval to alleviate this
issue.

The explicit coordination in our model allows us to visualize
the market conditions in which it is utilized. In Figure 3,
we plot snapshots of coordination in form of a heatmap
with probabilities of coordinated wait actions i.e. QC(t, h, h)
at 6 AM during the early morning commute and at 6 PM
during the evening commute3. Without coordination, we would
expect all the drivers in the city to relocate to Manhattan in
order to satisfy the extremely high volume of demand during
the morning commute. However, as observed in Figure 3,
our model recommends a certain proportion of drivers to
wait in the outer boroughs of New York City for the early
morning commute to Manhattan. Notably, the model is able
to learn demand trends in time-dependent hotspots such as the
J.F.K. airport to the south-east of the city. In contrast, during
the evening commute to outer boroughs, the model strongly
recommends that the drivers wait inside Manhattan.

3) Impact of independent and coordinated learning: The
overlap between the independent and the coordinated learning
during training is a crucial aspect of our framework. In this

3More detailed visualizations depicting evolution of coordinated actions
and degree of coordination across the city and through the time of the day
are available at [19].
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section, we address the question: how do we determine the
appropriate number of independent learning and coordinated
learning episodes during training? Given a fixed number of
training episodes E, we assume that our model trains the initial
EIL episodes with independent learning and the final ECL
episodes with coordinated learning. When EIL + ECL ≥ E,
we have EIL + ECL − E episodes of overlap between
independent and coordinated learning. In Figure 4, we use
200 episodes of training, and we vary the values of EIL and
ECL in the range [20, 200] to achieve various overlaps4. We
then plot the mean driver earnings for each learned policy.
We show that for a large interval of values of EIL and ECL,
our framework provides stable and high performance with
up to $535 mean earnings per day when EIL = 60 and
ECL = 160, denoted by a green marker in the figure. This
observation supports our claim that our framework is robust
to imperfections in hyperparameter tuning. Note that we have
used different values of EIL and ECL in Figure 1 in order to
clearly portray the incremental impact of coordinated learning
on mean driver earnings per day.

4) Impact of Driver Supply: We next answer the question:
what is an appropriate number of drivers to fulfill the ride
demand? To study this question, we vary the driver supply in

4Note that there is no overlap between the independent and the coordinated
learning phases in the lower triangle of Figure 4 when EIL + ECL < E.
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the range [1000, 6000], where the units are individual drivers.
Given a fixed supply size, we plot the ratio of the number
of successful driver waits resulting into passenger rides to
the number of unsuccessful driver waits while taking into
account the overall demand fulfillment. When the number of
drivers is small compared to the demand, the drivers should
have an easier time finding a passenger. On the other hand, a
city saturated with drivers should result in a higher number
of unsuccessful driver waits. In Figure 5, we observe that
the framework validates our expectations. The “warm-up”
period described in Figure 2 causes underestimation of demand
fulfillment while it simultaneously causes overestimation of
the number of unsuccessful driver waits. Excluding the warm-
up interval, this experiment provides evidence that over 96%
demand of New York City can be fulfilled by about 5,000
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drivers. Note that in September 2015, New York City had over
13,500 operational taxicab medallions [30]. It also justifies our
decision to use 5,000 drivers in most of our experiments.

5) Impact of platform objectives: So far, our experiments
focused on the MAXEARNINGS problem. A natural question
is: should a platform optimize driver dispatches to maximize
their earnings or to maximize demand fulfillment? Note that
while maximizing the demand fulfillment might help retain
customers over a longer-term, it can be detrimental to drivers’
earnings. To solve MAXFULFILLMENT (see Section III), the
framework rewards (resp. penalizes) a successful passenger
pickup (resp. unsuccessful wait) by +1 (resp. -1) net reward.
Figure 6 depicts that mean driver earnings per passenger ride
can be over a $1 lower in a policy optimized for maximizing
demand fulfillment relative to one optimized for earnings. The
additional rides covered by the solution to MAXFULFILLMENT
may direct drivers to sub-optimal locations and compromise
their future earnings for the day. As the supply increases over
the minimum number of required drivers, the two objectives
converge while a statistically significant difference in the driver
earnings per ride persists. Note that higher rewards/penalties
while solving MAXFULFILLMENT result in larger divergence
between the two objectives.

6) Advantage of strategic behavior: Next, we address the
question: does our model provide consistently higher earnings
for all the drivers? To explore this, we model the taxi driver
population of the city as comprised of strategic drivers who
follow the model recommendations and naive drivers who act
upon heuristics learned via experience. We expect the mean
earnings of drivers to decrease as the number of strategic
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drivers on the platform increases. While modeling a naive
driver, we assume that taxi drivers, over time, learn the popular
spots in the city. If they are unable to locate passengers
reasonably quickly in other parts of the city, they head back
to the popular spots. We designate 15 zones as popular zones
based on the historical demand data. Furthermore, we assume
that an idle naive driver looking for a passenger decides to
head back to one of the popular zones with a fixed probability
of 0.25. Upon choosing to relocate, the naive driver picks the
target popular zone with a probability inversely proportional
to its distance from the current location.

In Figure 7, we plot the earnings of the two categories of
drivers while varying the percentage of strategic drivers. As
expected, an increase in the number of strategic drivers causes
their individual earnings to decline. Overall, the strategic
drivers not only earn more than the naive drivers, but also
the variance in their earnings is significantly lower. Thus, our
framework is envy-free, i.e., drivers at the same location and
time do not envy each other’s future earnings.

7) Model generalizability: In this section, we explore the
question of model generalizability: does our model perform
well when deployed on days with considerably different
supply-demand conditions compared to the day it was trained
on? We cross-validate our model by evaluating the policy of
a trained model on different days.

For illustrative purposes, we choose as baseline – m0 – a
model trained to satisfy the demand of 288,000 rides observed
on the fourth Tuesday of September using 7,000 drivers. We
test the policy π(m0) recommended by our baseline model
by deploying it on other Tuesdays of the month. Note that
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Fig. 9. Performance of cDQN and cA2C deep-learning approaches from [14].

the observed demand, as well as the number of active drivers
might vary on other Tuesdays compared to our baseline
model. To capture this potential for change in supply, we
vary the number of simulated drivers during testing in the
range [4000, 10000]. In Figure 8, enclosed within a red square
box is an illustration of the generalization error associated
with deploying our baseline model’s recommended policy on
the second Tuesday of the month with just 6,000 drivers.
Importantly, the policy π(m0) now attempts to fulfill an
increased demand of about 7,000 extra rides (∆demand) using
1,000 fewer drivers (∆supply) than it was trained for. To
evaluate its performance in this task, we compare it with a
model m∗ which was explicitly trained to fulfill the demand
of the second Tuesday with exactly 6000 drivers. Thus, we
compute the baseline policy’s generalization error as

%generalization error =
Fπ(m∗)−Fπ(m0)

Fπ(m∗)
,

where Fπ(m) denotes the demand fulfillment of model m.
Figure 8 shows that our framework generalizes well to

perturbations in both supply and demand. We also observe that
decreasing the number of drivers excessively impacts harms
its generalization performance. As a result, we recommend
deploying models trained with a reasonably higher number of
drivers than minimally required so that they generalize better
in cases of varying demand. For brevity, we have presented
a single illustrative example here; the generalizability result
holds true across all the models.

8) Comparison with baselines: A major challenge in com-
parative studies in this domain is the lack of reproducibility
due to proprietory datasets and simulators. To the best of our
knowledge, although [14] uses coordinated deep reinforcement
learning approach, it is most similar to ours with respect to
modeling assumptions. In the absence of the Didi Chuxing’s
proprietary driver simulator and datasets, direct comparison
of our works is impossible. We make an effort to compare
our approaches by re-implementing their deep reinforcement
learning based algorithms (cDQN and cA2C) with mini-
mal modifications to fit our setting which computes future
driver distributions based on simulating passenger pickups and
dropoffs, instead of predicting them using proprietary models.

In [14], the authors do not train the neural network from its
randomly initialized state. Instead, they bootstrap the network
based on a pre-trained value networks based on historical



means from the aforementioned simulator. As a direct and fair
comparison with our model which does not rely on external
pre-trained inputs, our implementations of their algorithms
also attempt to learn from scratch.

Figure 9 shows mean driver earnings per day over the
course of model training. Even after extensive hyperparameter
tuning, the baselines failed to learn meaningful strategies, with
driver earning net negative rewards of -$20 over a day. In
the absence of a pre-trained value network, the algorithms
proposed in [14] are unable to explore the policy space effec-
tively. Moreover, the reward sharing assumption used in [14]
results in a superficial coordination behavior which fails to
learn in a more realistic scenario such as ours, which simulates
actual passenger pickups and dropoffs. Our implementations
of contextual DQN (cDQN) and contextual actor-critic (cA2C)
algorithms are publicly available at [19].

VI. CONCLUSIONS

In this paper, we studied the problem of maximizing earn-
ings of drivers employed by ride-sharing platforms like Uber,
Lyft, etc. Our work confirms the idea that even in a high-
dimensional and big data domain such as ride-sharing, the
inherent structure of the data can be leveraged to develop
a simple, interpretable, fair and highly efficient framework
that aims to achieve this goal. Extensive simulations based
on New York City taxi datasets showed that our framework
is easy to calibrate due to its robustness to imperfections in
hyperparameter tuning. Our experiments provided evidence for
the differential impact of the platform’s objectives on driver
earnings. Finally, we demonstrated that our model generalizes
well to fluctuations in supply and demand. We make available
an OpenAI gym environment for comparative studies.
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