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Abstract—In a typical overlay network for routing or content
sharing, each node must select a fixed number of immediate
overlay neighbors for routing traffic or content queries. A selfish
node entering such a network would select neighbors so as to
minimize the weighted sum of expected access costs to all its
destinations. Previous work on selfish neighbor selection has
built intuition with simple models where edges are undirected,
access costs are modeled by hop-counts, and nodes have po-
tentially unbounded degrees. However, in practice, important
constraints not captured by these models lead to richer games
with substantively and fundamentally different outcomes. Our
work models neighbor selection as a game involving directed
links, constraints on the number of allowed neighbors, and costs
reflecting both network latency and node preference. We express
a node’s “best response” wiring strategy as a k-median problem
on asymmetric distance, and use this formulation to obtain pure
Nash equilibria. We experimentally examine the properties of
such stable wirings on synthetic topologies, as well as on real
topologies and maps constructed from PlanetLab and AS-level
Internet measurements. Our results indicate that selfish nodes can
reap substantial performance benefits when connecting to overlay
networks constructed by naive nodes. On the other hand, in
overlays that are dominated by selfish nodes, the resulting stable
wirings are optimized to such great extent that even uninformed
newcomers can extract near-optimal performance through naive
wiring strategies.

I. INTRODUCTION
Motivation: Neighbor selection is a key problem for a broad
class of distributed services and applications that run atop
large, amorphous overlay networks of autonomous nodes. For
example, in an overlay routing or a peer-to-peer file sharing
network, a new node must first select a relatively small number
of direct neighbors before it can connect to the service. In these
systems, and in many others, it is clear that the impact of
the neighbor selection strategy is significant, as evidenced by
the emerging body of work exploring network creation games
and characterizing the equilibria of these games. To date,
however, the bulk of the work (and main results) in this area
have centered on games where edges are undirected, access
costs are based on hop-counts, and nodes have potentially
unbounded degrees [1], [2], [3]. While this existing body of
work is extremely helpful for laying a theoretical foundation
and for building intuition, it is not clear how or whether the
guidance provided by this prior work generalizes to situations
of practical interest, in which underlying assumptions in these
prior studies are not satisfied. Another aspect not considered in
previous work is the consideration of settings in which some
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or even most players do not play optimally – a setting which
we believe to be typical. Interesting questions along these
lines include an assessment of the advantage to a player from
employing an optimizing strategy, when most other players
do not, or more broadly, whether employing an optimizing
strategy by a relatively small number of players could be
enough to achieve global efficiencies.
Scope and Contributions: In this paper, we formulate and
answer such questions using a combination of modeling,
analysis, and extensive simulations using synthetic and real
datasets. Our starting point is the definition of a network
creation game that is better suited for settings of P2P and
overlay routing applications – settings that necessitate the
relaxation and/or modification of some of the central modeling
assumptions of prior work. In that regard, the central aspects
of our model are:
(1) Bounded Degree: Most protocols used for implementing
overlay routing or content sharing impose hard constraints on
the maximum number of overlay neighbors. For example, in
popular versions of BitTorrent a client may select up to 35
nodes from a neighbors’ list provided by the Tracker of a
particular torrent file [4].1 In overlay routing systems [8],
the number of immediate nodes has to be kept small so as
to reduce the monitoring and reporting overhead imposed by
the link-state routing protocol implemented at the overlay
layer. Motivated by these systems, we explicitly model such
hard constraints on node degrees. Notice that in the prior
studies cited above, node degrees were implicitly bounded
(as opposed to explicitly constrained) by virtue of the trade-
off between the additional cost of setting up more links and
the decreased communication distance achieved through the
addition of new links. We also note that some of these earlier
network creation games were proposed in the context of
physical communication networks. In such networks, the cost
of acquiring a link is instrumental to the design and operation
of a critical infrastructure. Such concerns do not apply in the
case of overlay networks such as those we consider in this
paper. Thus, we argue that models in which node degrees
are outcomes of an underlying optimization process do not
faithfully reflect the realities of systems and applications we
consider.
(2) Directed Edges: Another important consideration in the

1 KaZaA and FastTrack include neighbor constraints at multiple levels:
ordinary nodes (ON) may select up to 5 super nodes (SN) from a larger
list for establishing initial negotiation and then maintain connection with only
one of these; SNs may connect to at most 50 other SNs (from a typical
population of SNs ranging between 25K and 40K [5]) and accept between 55
to 70 (or 100 to 160) children ONs (depending on their provisioning). New
versions of Gnutella and Limewire involve a similar two-level architecture [6]
with associated constraints. Similarly, DHT routing protocols like Chord [7]
impose hard constraints on the number of first hop neighbors.



settings we envision for our work relates to link directionality.
Prior models have generally assumed bi-directional (undi-
rected) links. This is an acceptable assumption that fits nat-
urally with the unbounded node degree assumption for mod-
els that target physical telecommunication networks because
actual wire-line communication links are almost exclusively
bidirectional. In overlay settings we consider, this assumption
needs to be relaxed since the fact that node v forwards traffic
or requests to node u does not mean that node u may also
forward traffic or requests to v.
(3) Non-uniform preference vectors: In our model, we supply
each node with a vector that captures its local preference for
all other destinations. In overlay routing such preference may
capture the percentage of locally generated traffic that a node
routes to each destination, and then the aggregation of all
preference vectors would amount to a origin/destination traffic
matrix. In P2P overlays such preference may amount to spec-
ulations from the local node about the quality of, or interest
in, the content held by other nodes. Other considerations may
also include subjective criteria such as the perceived capacity
of the node, its geographic location, or its availability profile.
(4) Representative distance functions: Although the initial
models presented in this paper use assumptions made in
several previous studies regarding equal unitary pair-wise
distances for all one-hop overlay links, later in this paper,
we relax this assumption by considering more representative
distance models. As was done in [2], we consider synthetic
distances obtained using topology generators. In addition,
we consider more realistic settings in which topologies are
obtained from real Internet settings – namely the PlanetLab
overlay and actual AS-level maps – and in which associated
distances are obtained through real measurements in these
settings.
Our first technical contribution within this model is to

express a node’s “best response” wiring strategy as a k-median
problem on asymmetric distance [9], and use this observation
to obtain pure Nash equilibria through iterative best response
walks via local search. We then experimentally investigate the
properties of stable wirings on synthetic topologies as we vary
two key properties of interest: (i) the edge density of the graph
and (ii) the non-uniformity of popularity of nodes within the
topology.
Our experimental results then consider neighbor selection
problems motivated and driven by measurements of PlanetLab
and the AS-level topology with a realistic access cost model.
Here, we find that selfish nodes can reap substantial perfor-
mance benefits when connecting to overlay networks com-
posed of non-selfish nodes. On the other hand, in overlays that
are dominated by selfish nodes, the resulting stable wirings are
already so highly optimized that even non-selfish newcomers
can extract near-optimal performance through naive wiring
strategies.

II. DEFINITIONS
Let V = {v1, v2, . . . , vn} denote a set of nodes.

Associated with node vi is a preference vector pi =
{pi1, pi2, . . . , pii−1, pii+1, . . . , pin}, where pij ∈ [0, 1] de-

notes the preference of vi for vj , i "= j:
∑n

j=1,j "=i pij = 1.
Node vi establishes a wiring si = {vi1 , vi2 , . . . , viki

} by cre-
ating links to ki other nodes (we will use the terms link, wire,
and edge interchangeably). Edges are directed and weighted,
thus e = (vi, vj) can only be crossed in the direction from vi

to vj , and has cost dij . Going the opposite direction requires
crossing edge (vj , vi) and incurring cost dji (dji "= dij in
the general case). Let S = {s1, s2, . . . , sn} denote a global
wiring between the nodes of V and let dS(vi, vj) denote the
cost of a shortest directed path between vi and vj over this
global wiring; dS(vi, vj) = M # n if there’s no directed path
connecting the two nodes. For the overlay networks discussed
here, the above definition of cost amounts to the incurred
end-to-end delay when performing shortest-path routing along
the overlay topology S, whose direct links have weights that
capture the delay of crossing the underlying IP layer path that
goes from the one end of the overlay link to the other. Let
Ci(S) denote the cost of vi under the global wiring S, defined
as the weighted (by preference) summation of its distances to
all other nodes, i.e., Ci(S) =

∑n
j=1,j "=i pij · dS(vi, vj).

Definition 1: (The SNS Game) The selfish neighbor selec-
tion game is defined by the tuple 〈V, {Si}, {Ci}〉, where:

• V is the set of n players, which in this case are the nodes.
• {Si} is the set of strategies available to the individual
players. Si is the set of strategies available to vi. Strate-
gies correspond to wirings and, thus, player vi has

(

n−1
ki

)

possible strategies si ∈ Si.
• {Ci} is the set of cost functions for the individual players.
The cost of player vi under an outcome S, which in this
case is a global wiring, is Ci(S).

The above definition amounts to a non-cooperative, non-zero
sum, n-player game [10]. Let S−i = S − {si} denote the
residual wiring obtained from S by taking away vi’s outgoing
links.
Definition 2: (Best Response) Given a residual wiring S−i,

a best response for node vi is a wiring si ∈ Si such that
Ci(S−i + {si}) ≤ Ci(S−i + {s′i}), ∀s′i "= si.
Definition 3: (Stable Wiring) A global wiring S is stable iff

it is composed of individual wirings that are best responses.
Therefore stable wirings are just pure Nash equilibria of the

SNS game, i.e., they have the property that no node can re-wire
unilaterally and reduce its cost. In [11] we have established
that stable wirings always exist under uniform node popularity
and overlay link weights.

III. DERIVING STABLE WIRINGS
In this section we start with a description of a general

method for obtaining the best response of a node under general
overlay link weights, which we then refine for the case that
link weights are uniform. Next, we describe the iterative best
response algorithm that we use for obtaining stable wirings.
We conclude this section by presenting a simple lower bound
for the social cost of a socially optimal solution — we later
use this bound to evaluate the social cost of stable wirings.
A. The Best Response of a Node
A wiring for a node vi can be defined using n − 1 binary

unknowns Yl, 1 ≤ l ≤ n, l "= i: Yl = 1 iff vi wires to vl, and



0 otherwise. Define also the binary unknowns Xlj : Xlj = 1
iff vi has vl as a first-hop neighbor on a shortest path to vj . A
best response for vi under residual wiring S−i can be obtained
by solving the following Integer Linear Program (ILP):
Minimize:

Ci(S−i, X) =
n
X

j=1,j "=i

pij

n
X

l=1,l"=i

Xlj · (dil + dS−i(vl, vj)) (1)

Subject to:
n
X

l=1,l"=i

Xlj = 1, ∀j "= i and
n
X

l=1,l"=i

Yl = ki and Xlj ≤ Yl, ∀l, j "= i,

(2)
where dil is the cost of a wire from vi to vl, and dS−i

(vl, vj)
is the cost of a shortest path from vl to vj over the wiring
S−i.

B. Connection between the SNS Game and Facility Location
When all the wires have the same unitary weight, then

the distances dS are essentially “hop counts”, in which case
there is an interesting relationship between finding a node’s
best response wiring and solving a k-median problem on
asymmetric distance [9], [12]. The latter is defined as follows:
Definition 4: (Asymmetric k-median) Given a set of nodes

V ′, weight’s wj ∀vj ∈ V ′, and an asymmetric distance
function dS′ (meaning that in general dS′(v, u) "= dS′(u, v)),
select up to k nodes to act as medians so as to minimize
C(V ′, k, w), defined as follows:

C(V ′, k, w) =
X

∀vj∈V ′

wj · dS′(vj , m(vj)),

where m(vj) is the median that is closest to vj .
Proposition 1: The best response of node vi to S−i under

uniform link weights (dij = 1,∀i, j ∈ V ) can be obtained by
solving an asymmetric k-median problem, in which:
1) V ′ = V − {vi}
2) k = ki

3) wj = pij , vj ∈ V ′

4) dS′(u,w) = dS−i
(w, u), u,w ∈ V ′,

Proof: Let si denote vi’s response to S−i. The resulting
cost will be:
Ci(S−i + {si}) =

X

vj∈V ′

pijdS−i+{si}(vi, vj)

=
X

vj∈V ′

pij(dS−i+{si}(vi, m(vj)) + dS−i+{si}(m(vj), vj))

=
X

vj∈V ′

pijdS−i+{si}(vi, m(vj)) +
X

vj∈V ′

pijdS−i+{si}(m(vj), vj)

=
X

vj∈V ′

pij +
X

vj∈V ′

pijdS−i+{si}(m(vj), vj)

=
X

vj∈V ′

wj +
X

vj∈V ′

wjdS−i(m(vj), vj)

= c +
X

vj∈V ′

wjdS′(vj , m(vj))

(3)
where c is a constant and m(vj) is vi’s next-hop neighbor on
a shortest path to vj under the global wiring S−i + {si}. The
transition from the third to the fourth line of Eq. (3) relies
on the fact that all distances to first hop neighbors are equal
to 1 under hop-count distance. Obtaining the best response
requires minimizing Ci(S−i + {si}). Equation (3) shows that

this is equivalent to minimizing
∑

vj∈V ′ wjdS′(vj ,m(vj)),
which is exactly the objective function of the above mentioned
asymmetric k-median problem.
Proposition 1 suggests that vi’s best response is to wire to

the ki medians of a distance function obtained by reversing
the end-to-end distances of the residual wiring S−i. Since even
the metric version of k-median is NP-hard [12], so is its asym-
metric version, and through Proposition 1, the best response
of the SNS game as well. For the metric version of the k-
median there exist several algorithms that provide constant-
factor approximations of an exact solution [13], [14], [15],
[16]. These guarantees do not hold for the asymmetric case.
For the asymmetric k-median, Lin and Vitter [17] have given
a bicriterion approximation that blows up the number of used
medians by an O(log n) multiplicative factor to provide a cost
that exceeds the optimal one by an additive factor. Archer [9]
has shown that this is the best attainable approximation for
this problem unless NP ⊆ DTIME(nO(log log n)). Despite
this negative result, simple heuristics like the p-swapping local
search of Arya et al. [15] perform typically very well on the
directed k-median (as also confirmed by our numerical results
later in this paper).

C. Equilibrium Wirings through Iterative Best Responses
Definition 5: (Iterative best response) Given an initial

global wiring S(0), start an iterative procedure where at the
m-th iteration the nodes line up according to their ids (i.e.,
v1, v2, . . .), and perform the following steps:
1) vi computes its best response s(m)

i to S(m,i−1)
−i , after

vi−1 and before vi+1

2) S(m,i) = S(m,i−1)
−i + {s(m)

i }
S(m,i−1) is the global wiring at iteration m (after vi−1’s

best response and prior to vi’s best response); S(m,i−1)
−i is the

corresponding residual wiring with respect to vi (S(m,0)
−1 =

S(m−1,n)−{s(m−1)
1 } and S(1,0)

−1 = S(0)−{s(0)
1 }). The iterative

best response search stops and returns S = S(M) when at
iteration M: s(M)

i = s(M−1)
i , ∀vi ∈ V , i.e., when no node

can profit by re-wiring.
We use the iterative best response method to find stable

wirings. In Sect. IV where we present synthetic results based
on hop-count distance we take advantage of the connection
established through Proposition 3, and employ exact (ILP)
and approximate (p-swapping local search) solutions for the
directed k-median in order to obtain best responses. In Sect. V
we employ several real topologies in which distances are
not hop-count and, therefore, employ the ILP formulation of
Sect. III-A in order to obtain best responses.

D. A Lower Bound on the Cost of a Socially-Optimal Wiring
Let S∗ denote a socially optimal (SO) wiring, i.e., a global
wiring that minimizes the social cost C(S) =

∑

∀vi∈V Ci(S).
Let SU,i denote the utopian wiring for vi, i.e., the global
wiring that minimizes Ci(S) over all possible global wirings
S (this should not be confused with a best response si

that minimizes Ci(S−i + {si}) granted a particular residual
wiring S−i). We can obtain a lower bound L on C(S∗) by



summing the costs of the individual utopian solutions, i.e.,
L =

∑

∀vi∈V Ci(SU,i). We describe SU,i for some interesting
cases below. Before that, let oj

−i denote the node with the jth
largest out-degree, excluding vi — let this degree be denoted
k(oj

−i).
Uniform node preference: When pi = p = {1/n, . . . , 1/n},
∀vi ∈ V , it is easy to see that SU,i is a directed tree with
downward pointing edges, where: (1) vi is the root; (2) vi

connects to nodes o1
−i, o

2
−i, . . . , o

ki

−i at level 1; (3) these nodes
connect to the next l1 =

∑ki

j=1 k(oj
−i) nodes with highest

degrees (oki+1
−i , oki+2

−i , . . . , oki+l1
−i ) at level 2, and so on.

Uniform out-degree: When ki = k, ∀vi ∈ V , then SU,i is
a directed regular k-ary tree with downward pointing edges,
where (1) vi is the root; (2) level l includes kl nodes whose
preference according to pi ranks from

(

∑l−1
l′=1 kl′

)

+ 1 to
∑l

l′=1 kl′ .
Uniform preference and out-degree: Combining the previous
two cases results in a regular k-ary tree with l levels such that:

l
X

l′=1

kl′ ≥ n − 1 ⇒ k
kl − 1
k − 1

≥ n − 1 ⇒ l ≥ logk

»

(n − 1)(k − 1)
k

+ 1

–

The resulting (common) cost for all vi ∈ V is:

Ci(S
U,i) =

 

l
X

l′=1

lkl′

!

− l

 

l
X

l′=1

kl′ − (n − 1)

!

=
l(k − 1)(n(k − 1) + 1) − k(kl − 1)

(k − 1)2

(4)

Later in this paper, we use the aforementioned bound to show
numerically that the social cost of stable wirings is close to
the social cost of socially optimal wirings.

IV. CHARACTERIZATION OF STABLE WIRINGS
In this section we assume that establishing a direct (overlay)

link between any two nodes incurs unit cost and, therefore,
the cost between any pair of nodes equals the number of hops
along any shortest, directed path that connects these nodes at
the overlay layer. Our goal will be to characterize the structure
of stable wirings with respect to two key scaling parameters
of interest. The first parameter, α ∈ [0, 1], reflects the non-
uniformity (skew) in the popularity of different destinations.
We create such non-uniformity by adopting a generalized
power-law profile for node popularity with skewness α, mean-
ing that the popularity of the ith most popular node is qi =
Λ/iα, where Λ = (

∑n
k=1

1
kα )−1. We construct the preference

vector pi of node vi by setting pij = qj/(1 − qi),∀vj ∈ V :
vj "= vi. High values of α mean that there are few highly-
popular destinations among all the nodes, whereas low values
mean that most destinations are equally popular.
The second parameter, β ∈ [0, 1], determines the link density

of a regular graph, which relates to the fanout (out-degree) of
each node as follows: k =

⌈

nβ
⌉

.
For a given pair (α, β) we obtain the corresponding stable

wiring by using the iterative best response method of Section
III-C, where the best response amounts to a solution of a
directed k-median problem. Here, it is worthwhile to notice

that different node orderings in the iterative best response
search may lead to different stable wirings.2 We have found
that different stable wirings perform approximately the same
and therefore it is of marginal value to look at the structure
of different individual ones. To support this we note that it
has been established analytically in [11] that provably existent
stable wirings are guaranteed to perform approximately as well
as socially optimal solutions under uniform node popularity.
A similar conclusion is reached in the next section (albeit
experimentally) for the case of non-uniform popularity.

A. Social Cost of Stable Wirings
We first consider the quality of stable wirings compared to
the utopian wirings described in the previous section. As can
be seen for the examples depicted in Figure 1 (a) and (b),
which are representative of a much larger set of simulations
we conducted, the gap between the stable solution and the
Utopian solution is small, and this result holds across a wide
range of settings for α and β, and for various values of n for
which simulation was tractable. In terms of absolute values,
the social cost decreases with both the skew in popularity and
link density. In particular, a highly-skewed popularity profile
ensures that shorter paths to the most popular destinations
are realized, whereas higher link densities reduces the average
length of shortest paths, and thus the social cost as well.
Since computing exact best response wirings is NP-hard,

even under hop-count distance, it makes sense to study the
performance of approximate best responses and corresponding
approximately stable wirings. For this purpose, we used the
Local Search (LS) heuristics described in [15] to solve the
k-median problem, which yields the best response wiring by
virtue of Proposition 1. We also considered ε-stable versions
of the problem in which nodes do not re-wire unless they can
reduce their current cost by at least a multiplicative factor ε
(we combined ε-stability with both exact (ILP) and approxi-
mate (LS) best responses). As evident from Figure 1 (c), we
found that ε-stable wirings have similar social costs.3
To summarize, stable wirings have performance close to the

socially optimal wirings. Moreover, approximate best response
wirings can be computed fast with LS and ε approximations.

B. Characterization of Stable Wirings
Next, we take a more in-depth look at the stable wirings that
result for given values of α and β, as depicted in the set of
graphs in Figure 2, where α varies from left to right and β
varies from top to bottom.
The first interesting finding is evident from an examination

of the structures that emerge when α = 0 (i.e., under uniform
popularity – the leftmost column in the figure). Despite the
equal popularity of nodes, the resulting stable wirings do
not exhibit uniform in-degree node distributions. In particular,
some nodes tend to be more desirable for other nodes. Had
the links been bidirectional, the emergence of such “hubs”

2 See [18] for a related discussion based on a different object replication
game.
3 The results in Figure 1 (c) were obtained for ε = 0.05, similar results
(not shown) were obtained for ε ∈ [0.01, 0.1].
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Fig. 1. (a) Comparison of the social cost C(S) of stable wirings to a lower bound of the cost of a socially optimal solution (the Utopian
solution of Section III-D) for n = 15. Stable wirings obtained using exact best responses based on an ILP formulation of the directed
k-median problem of Section III-B. (b) same as (a) with n = 50. (c) Comparison of the social cost C(S) of stable wirings obtained by
using exact (ILP) and approximate (LS) best response and corresponding ε = 5% versions. (d) Average path length for the stable graph
obtained by using exact (ILP) best response for n = 15. α
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Fig. 2. Stable wiring motifs for n = 15 and different values of α and β.

could have been easily explained, by noting that they would
be serving the purpose of providing short outgoing routes to
many destinations. In our case, however, this cannot be the
cause since these hubs have many incoming links, whereas
their outgoing links are just as many as for the other nodes
since all nodes have exactly k links, where k is controlled by
the link density (β). Having made sure that these hubs did

not emerge due to bias in tie-breaking during the computation
of best responses, we attribute this preferential attachment
phenomenon to the quality rather than the quantity of outgoing
links of hub nodes. In particular, the hubs are nodes that (by
coincidence) managed to position their k outgoing links in
such a way that is beneficial to others as well (despite the
fact that the wiring has been decided solely based on selfish
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criteria).
Moving on to other larger values of α, where popularity

is skewed, the hub creation process becomes a mix of the
aforementioned phenomenon and the inherent preference for
popular nodes. Nodes that are globally popular are natural
candidates for becoming hubs. Even with relatively low skew
(α = 0.4), the most popular nodes are becoming hubs (node
with id=1 is the most popular and that with id=n is the
least popular). We see this trend consistently for all values
of β, as is to be expected. But interestingly, as β increases
further, it is not simply a contiguous sequence of the most
popular nodes that end up becoming hubs! For example, in
the α = 0.6, β = 0.6 case, several nodes in the “tail” end
of the popularity distribution end up becoming hubs as well,
facilitating relay shortcuts as in the uniform popularity case.
We also find that the average path length slowly increases
with α for a given β (see Figure 1 (d)). This is to be expected
since nodes prefer to be closer to the most popular nodes,
and thus place less importance on the distance to much less
popular nodes. Although this reduces the newcomers’ access
costs, it increases some shortest paths, and the diameter.

C. Constraining the In-degree: A Doubly Constrained Overlay

We next examine the effects of constraining the maximum in-
degree of nodes so that they never have more than ν incoming
links, while maintaining also the constraint on the out-degree.
We can enforce this constraint by including in the definition of
Ci(S) a large penalty for connecting to nodes that have more
than ν − 1 incoming links. We can define a scaling factor γ
for the in-degree as done previously with β for the out-degree.
In Figure 3, we fix the out-degree scaling parameter to β =

0.2, and present the social cost for different values of the in-
degree scaling parameter γ. Low values of γ increase the social
cost under skewed popularity profiles, as in these cases, the
highly-popular nodes quickly reach their maximum in-degree
and thus, many nodes have to reach them indirectly through
multi-hop paths. Note that without in-degree constraints most
nodes would access them in a single hop by establishing a
direct overlay link to them. When γ is low, e.g., γ = 0.2,
the resulting graph (not shown here due to space constraints)
looks much like a ν-regular graph. With large values of γ, i.e.,
γ approaching 1, the in-degree constraints become too loose
and, thus, the corresponding stable graphs become similar to
their unconstrained counterparts.

V. OVERLAY NEIGHBOR SELECTION: BEST-RESPONSE VS.
k-RANDOM AND k-CLOSEST

In this section we take a closer look at the performance benefits
from employing best response wiring instead of simpler wiring
strategies. We also depart from the simplistic unit-distance
model for the cost of direct links and instead use more
realistic cost models on synthetic and measured topologies.
Corresponding stable wirings are obtained by using the ILP
model for a node’s best response under general distances as
detailed in Section III-A.
A. Description and Design Methodology
In Section II, we defined the best response strategy for a
node entering a given network. Now, we consider two other
natural alternatives. Let dX

ij denote the cost associated with
creating a direct overlay link between nodes vi and vj under
a model X for end-to-end IP layer distances. We say that
a “newcomer” node vi employs a k-Closest wiring strategy
under the model X when it establishes a wiring si such that
dX

ij ≤ dX
ij′ for all vj ∈ si, vj′ "∈ si. We say that a newcomer

node vi employs a k-Random wiring strategy when it chooses
a wiring si uniformly at random from the space of all valid
wirings of cardinality ki.
To substantiate the benefits of best response, we consider

the initial graph awaiting a “newcomer” upon its arrival. We
assume that this initial graph has resulted from having its
constituent nodes apply a specific wiring strategy.4 We refer
to an instance of an n node graph for which each of the n
nodes employed a k-Closest strategy as a k-Closest graph,
and attribute similar meanings to a k-Random graph and a
Best Response (BR) graph.
B. Description of the Datasets
In this section we describe the IP-layer end-to-end distance
models X from which we obtain the dX

ij ’s that are used as
weights for direct overlay links between nodes vi and vj .5
The following three datasets are used:
BRITE: The first dataset is synthetically generated from
the BRITE topology generator [19] following a Barabási-
Albert [20] model with N = 1000 nodes and incremental
growth parameter µ = 2. The nodes were placed on the
plane according to a heavy tail model that creates high density
clusters. Based on the observation that the delay between two
nodes in high speed networks is highly correlated to their
physical distance [21], we assigned weights on the links at the
physical layer by calculating the Euclidean distance between
their two end nodes.
PlanetLab: PlanetLab is an overlay testbed network of ap-
proximately 700 nodes in more than 300 academic, industrial,
and government sites around the world. We used a publicly
available dataset [22] containing delays obtained using pings
between all pairs of PlanetLab sites (inter-site delays are more
representative than inter-node delays for overlay applications).
4 To guarantee connectivity, nodes that participate in a k-Random or a k-
Closest graph, donate one link in order to create a ring. We note that a ring
is a feature common to many other overlays, such as the Chord DHT [7].
5 Overlay nodes that do not have a direct link communicate through a
shortest-path on the overlay topology.



AS-level map: As a third dataset, we use the relation-based
AS topology map of the Internet from December 2001 (data
available from [23]). This map was constructed by using the
measurement methodology described in [24]. The dataset in-
cludes two kinds of relationships between ASes: (1) customer-
provider: The customer is typically a smaller AS that pays a
larger AS for access to the rest of the Internet. The provider
may, in turn, be a customer of an even larger AS. A customer-
provider relationship is modeled using a directed link from
the provider to the customer. (2) Peer-Peer: Peer ASes are
typically of comparable size and have mutual agreements
for carrying each other’s traffic. Peer-peer relationships are
modeled using undirected links. Overall the AS-level map
includes 12779 unique ASes, of which 1076 are peers (joined
by at least one peer-peer link), and the remaining 11703 are
customers. These ASes are connected through 26387 directed
and 1336 undirected links. We choose to present results based
on the largest connected component of the dataset, which we
found to include a substantial part of the total AS topology at
the peer level: 497 peer ASes connected with 1012 links (we
verified that this component contains all the top-20 larger peer
ASes reported in [24]). The ASes that participate in this graph
are responsible for routing the majority of the Internet traffic.
We measured the hop-count distance between pairs of overlay
nodes and used it as weight for a direct link between these
two nodes at the overlay layer. To model the characteristics
of IP routing (unique path), we broke ties by assigning each
edge i a weight 1+εi where εi is a zero-mean random noise
as suggested in [25].

C. Comparison of Different Graphs
Using as input the weighted graphs from our three datasets,

we obtained the social costs resulting from applying the
various wiring strategies under consideration, for different
values of β. The Best Response (BR) graph (resulting from
having all nodes apply the best response wiring strategy) was
by far the most optimized wiring, thus providing a lower-
bound for the simpler k-Random and k-Closest strategies.
Table I summarizes our results by providing the ratios of
the social costs of the simple wiring strategies (k-Random,k-
Closest) to that of the BR wiring. These results suggest that
the premium provided by BR is highest for lower link densities
(i.e., when β is small). This is an intuitive result since in denser
graphs, there is less of an opportunity for optimization.
The results in this section give us a baseline for the

efficiency of the wirings that result from the adoption by all
nodes in the graph of the same strategy (be it k-Random, k-
Closest, or BR). This sets up the stage for our next set of
questions: Given such an initial wiring, what is the marginal
utility to a newcomer from executing each one of the three
wiring strategies under consideration?

D. The Value of Best-Response
Given an initial wiring created (as described above) by

having n overlay nodes follow one of our three wiring
strategies, we quantify the benefit to a “newcomer” (i.e., the
n + 1’st node) from choosing its neighbors using one of the

three neighbor selection strategies. Nine possibilities exist for
applying strategy S1 over a wiring obtained using S2, where
S1 and S2 could be k-Random, k-Closest, or BR. We use
c(w|G(n)) to denote the cost of a newcomer using wiring
strategy w on a pre-existing graph G of n nodes, or simply
c(w) when the graph G is understood. For example, c(k-
Random — k-Closest) denotes the cost of a newcomer using
the k-Random wiring strategy to connect to a graph of n
nodes, each of which employed the k-Closest wiring strategy
to construct the initial graph (to which the newcomer will
connect).
In the results presented below, we set n = 50 and evaluate
the performance for 200 newcomers on the BRITE and AS
dataset and 100 newcomers for the PlanetLab dataset (which
is smaller). Our main results are shown in Figure 4, where each
column corresponds to an underlying graph model, and each
row corresponds to a strategy employed by the n newcomers.
Within each plot, we vary the link density β along the x-axis,
and plot the cost ratio of the n+1’st arrival for a given strategy
versus the cost of the n + 1’st arrival if it were to use BR.

a) Connecting to a k-Random Graph: The plots in the
top row of Figure 4 show the case in which the first n
arrivals use k-Random, and thus the underlying graph is poorly
optimized.
With such an initial graph, the k-Random wiring is a poor

choice for the (n + 1)st node, as it could lead to significantly
higher costs (anywhere from 30% for the BRITE and AS
datasets to 60% for the PlanetLab dataset) when compared to
using BR. This performance gap closes, as one would expect,
when β (and therefore k) becomes large. In fact this trend
holds in all cases because finding a closer approximation to
BR is easier when each node has more links — and therefore
ample opportunity to make good connections, even when using
simple strategies.
Using the k-Closest wiring, on the other hand, turns out to

be a very reasonable choice, as it achieves a cost comparable
to that achieved by BR (typically within 10% with small
exceptions for the BRITE and PlanetLab datasets under low
link densities). This finding suggests that in poorly optimized
random graphs, simply connecting to your nearby neighbors
(at low cost), is a good rule of thumb, especially when edge
density is high.

b) Connecting to a k-Closest Graph: The plots in the
middle row of Figure 4 show the case in which the first n
arrivals use k-Closet, and thus the underlying graph consists
mostly of local edges with few shortcuts. Here we see that
it is considerably more important for newcomers to behave
strategically. For example, on the BRITE topology, naively
using k-Closest is a poor choice that perpetuates the lack
of shortcuts in the underlying graph to the point that even
using k-Random turns out to be a better choice! In the other
topologies, k-Closest and k-Random are comparable, and the
improvement in quality relative to BR as β increases is much
more modest.
One conclusion from the results we obtained above for

connection strategies to the k-Random and k-Closest graphs
is of particular importance for P2P applications. In a P2P



β = 0.1 β = 0.2 β = 0.4 β = 0.6 β = 0.8
k-Random/BR k-Closest/BR k-Random/BR k-Closest/BR k-Random/BR k-Closest/BR k-Random/BR k-Closest/BR k-Random/BR k-Closest/BR

BRITE 1.44 1.53 1.52 1.84 1.38 2.07 1.28 1.46 1.09 1.16
PlanetLab 2.23 1.48 1.75 1.23 1.37 1.13 1.09 1.16 1.04 1.06
AS-level 2.04 1.90 1.83 1.61 1.58 1.39 1.24 1.23 1.12 1.16

TABLE I
SOCIAL COST RATIOS BETWEEN SIMPLE WIRING STRATEGIES (k-RANDOM,k-CLOSEST) AND BEST RESPONSE.
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Fig. 4. The cost ratio between simple wiring (k-Random or k-Closest) and BR wiring for a newcomer node that connects to a pre-existing
network of n nodes that was wired using k-Random, or k-Closest, or BR. We present the 25-,50-,75-quartiles for the aforementioned ratios
using three different data sets (BRITE, PlanetLab, AS-level map) for obtaining the costs of establishing direct links.

network, nodes pick neighbors randomly from the list provided
to them by a bootstrap server (i.e., the initial graph to which
a newcomer would connect is a k-random graph). Under such
circumstances, it pays to “cheat”, by pinging the possible
neighbors and connecting to the k-Closest ones. However, if
the constituent nodes in the initial graph also cheat, (i.e., the
initial graph to which a newcomer would connect is a k-closest
graph), then it does not pay to cheat; it may even cost!.

c) Connecting to a Stable Graph: Finally, the plots in
the bottom row of Figure 4 show the case in which the first n
arrivals use BR, and thus the underlying graph ends up being
highly optimized, prior to the arrival of newcomers. In this
case, the graph is so much optimized for the newcomer that
any reasonable strategy might well have good performance.
Surprisingly, while the k-Closest strategy does indeed perform
well for the newcomer across the three topologies, the alterna-
tive strategy of k-Random does not. This seemingly odd result
could be explained by noting that given the very low overall

costs between nodes in the optimized initial graph, the cost to
the newcomer from selecting its own neighbors (as opposed
to the cost of reaching all nodes in the graph) could not be
ignored. A poor choice of neighbors could backfire.6

d) General Observation: In conclusion, we find common
trends across the three topologies with respect to strategic
neighbor selection behavior. At the two extremes where the
other players are playing completely at random or completely
selfishly (top and bottom rows, respectively), the underlying
graphs are either too poorly constructed, or too well con-
structed, for an uninformed newcomer to be at a significant
disadvantage. In either of these two situations, the naive
strategy of k-Closest is generally competitive to BR, especially
under stable graphs. Picking links at random in these situations
however, is unlikely to work well, unless the graph is already
6 Recall that the topologies we considered in this section feature non-unit
link costs, and as such, selecting neighbors at random could put the newcomer
at a disadvantage, especially if the initial graph was optimized, since the
relative penalty from a bad random selection of neighbors would be high.



dense (large β).
But in the middle regime, in which all the other players

adopt k-Closest, the newcomer must be much more careful.
Here, there is much to be gained by the optimal short-
cuts selected in BR, which neither k-Closest nor k-Random
typically selects. Strikingly, our experimental results suggest
that k-Closest is actually the worst of the possible strategies
considered for the newcomer to adopt in this situation.

VI. RELATED WORK

Selfish neighbor selection for overlay networks was first
mentioned by Feigenbaum and Shenker [26]. Fabrikant et
al. [1] studied an unconstrained undirected version of the
problem in which nodes can buy as many links as they want at
a fixed per link price α. Chun et al. [2] studied experimental
an extended version of the problem in which links prices need
not be the same. Rocha et al. [3] is in the same spirit. All
these works do not consider hard constraints on node degrees
and thus are fundamentally different from ours.
Bindal et al. [4] propose a locality-enhanced version of

BitTorrent in which only m out of the total k neighbors of
a BitTorrent node are allowed to belong to a different ISP.
Although the capacitated selection of neighbors is a central
aspect of this work, their treatment is fundamentally different
from ours in several regards: (i) there’s no contention between
selfish peers, (ii) the minimization objective is on inter-AS
traffic therefore only two levels of communication distance
are modeled, intra and inter-AS (we use finer topological
information that includes exact inter-peer distances), and (iii)
their “reachability” constraint amounts to asking for a similar
level of data availability as the original one under the standard
random neighbor selection mechanism of BitTorrent (we have
fundamentally different reachability constraints, expressed as
general preference functions over the potential overlay neigh-
bors). Another recent work on neighbor selection is from
Godfrey et al. [27]. It aims at selecting neighbors in a way that
minimizes the effects of node churn (appearance of new nodes,
graceful leaves and sudden malfunctions), but unlike our work,
it does not focus on the impact of competing selfish nodes.

VII. SUMMARY AND CONCLUSION

Our experimental results on selfish neighbor selection, in
a richer model that captures the nuances of overlay applica-
tions more faithfully than previous work, reveals numerous
subtleties that are not apparent in simpler models. Among our
most noteworthy findings is that it is typically in a newcomer’s
best interest (whether that newcomer is naive or sophisticated)
to have had the prior arrivals behave selfishly, as the underlying
“best response” graph is often highly optimized in favor of
the newcomer. A corollary is that suboptimal behavior by
a participant is often costly, not only to the individual, but
to the population at large, i.e. suboptimal behavior leads to
large negative externalities. Given that best-response neighbor
selection has a significant performance advantage over other
heuristics, our future work is to implement a practical and
feasible realization.
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