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Abstract— We consider challengesassociatedwith application domains
in which a largenumber of distrib uted, networkedsensorsmust perform a
sensingtask repeatedlyover time. We addressissuessuchasresourcecon-
straints, utility associatedwith a sensingtask, and achieving global objec-
tiveswith only local information. Wepresenta model for suchapplications,
in which we defineappropriate global objectivesbasedon utility functions
and specify a cost model for energy consumption. In the full version of
this paper, wepresentalgorithms and experimental resultsfor this problem
domain [2].

I . INTRODUCTION

In this paper, we argue that for many interestingapplica-
tions of wirelesssensornetworks, a best-effort servicemodel,
in which nodesareexpectedto performsensingoperationsand
routedataasbestthey can,maybe too stringent.We adoptan
economicdecisionmodelin whichanactivity is performedif its
associatedbenefitoutweighsits opportunity cost. A significant
challengehereis thedistributednatureof nodesin ournetworks,
which impliesthatthey donot haveglobalinformation,making
it unrealisticto expectnodesto accuratelyassesseithertheop-
portunitycosts,or the relative benefitsof a particulardecision.
Therefore,nodesin ourmodelmakeheuristicassessmentsbased
on availablelocal informationin anattemptto optimizeglobal
objectives[1].

For the objectives we seek to address, computation in
large-scalesensornetworks will requirescalablecoordination
amongstsensorsto accomplishthe desiredtasks[3]. We con-
sider global objective functions motivated by specific sensor
network applicationswhich aredrivenby utility functions, first
studiedin a networkingcontext by Shenker [5]. Developingso-
lutions which achieve theseobjectives are constrainedin two
primaryways:by thelocality imposedby thedistributednature
of themodel,andby aresourceconstraint,namelythefinite en-
ergy supplyatsensornodes.Ourwork developsageneralmodel
in whichto studysuchproblemsandpresentsalgorithmicresults
andexperimentalwork in progressfor aclassof theseproblems.

While theobjective functionsandalgorithmswe proposeare
novel, they connectto asubstantialbodyof work onad-hocrout-
ing protocols,fault tolerance,andenergy conservationin sensor
networks,which wesurvey in thefull versionof thepaper. One
work whichconsidersseveralof theissuesweconsiderhere,in-
cludingsensorfusion,or aggregatingsensoryinformationfrom
multiplesources;load-balancing;andpowerconservationis the
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Low-Energy Adaptive ClusteringHierarchy (LEACH) protocol
[4]. The LEACH protocol [4] usessensorfusion to compress
datasetswithin thenetwork, reducingtheenergy dissipateddur-
ing theresultingtransmission.Oneapplication-specificexample
they describeis beamforming algorithms,which combinea set
of acousticsignalsinto a singlesignalwithout lossof relevant
information.Ourwork appliesthesamegeneralprinciplein ad-
vocatingapplication-specificdataaggregationasatechniquefor
conservingenergy.

I I . MODEL

In this section,we presentthe network modelwe assumeas
well theobjective functionsweconsider.

A. Network Model

We begin by assumingthatevery node
�

in our network, ex-
cept for basestations,has a finite and non-replenishablere-
serve of energy ��� , a fixed transmissionrange � , a unique
identifier, and that communicationamongnodesis commuta-
tive. The neighborhoodof a node � is denotedby the set��� �
	������� � ������	�������� All transmissionsfrom any node
reachall thenodesin its neighborhood.For simplicity, we also
assumethattransmissionsareperfectly scheduled, sothattrans-
missionsdonot interferewith eachother.

While wewill generallyassumethatthenodesformingourad
hoc network arestationaryfor the algorithmswe develop, this
assumptionis not aninherentlimitation of ourmodel.

Werepresentournetwork asanundirectedgraph� � �"! �#�$	 ,
where

!
is thesetof all nodes,includingthebasestations.� is

thesetof edgesin thenetwork definedasfollows,where% � ������	
is thedistancebetweennodes� and � .

�&�  � ������	'�(���)�*� ! and % � ������	,+-�.�
B. Sensing Model

We describethe sensingmodelwe usein our network. We
presentthe differentcostsassociatedwith eachoperation,and
explain our notion of node specialization, which is a network-
adaptive role-basedmechanism.

We proposeto complementthe role of adaptive algorithms
with nodesthat adapttheir role, or specialize, asa responseto
changesnot only in thevirtual topologyof thenetwork but also
to nodepower levels. In general,a node’s typical role will be
oneof: idle, routing,sensing,or routing/sensing.



Weassignthefixedcosts/(0��#/#1)�2/#34�#/25 , to thefour operationsa
nodemayperform:sensing,transmittingandreceiving a fixed-
sizemessage,andaggregatingsensorydata,respectively. In our
model,the ratio 6876"9 , or the sense-to-transmitratio, capturesthe
relative importanceof thetwo mostimportantrolesof nodesin
thenetwork in termsof energy consumption.

For many applications,it is notarequirementthatthesensory
dataaccumulatedby thenodesof thenetwork mustbetransmit-
tedin full fidelity to thebasestation.Thus,weassumethatdata
can be aggregatedat eachnodewith a fixed aggregation cost
beforeit is transmittedupstreamin thenetwork.

C. Utility and Objective Functions

We associateeachsensordomainwith a monotonicallynon-
decreasingutility functionwhichmapsthenumberof nodespar-
ticipating in a sensorycomputationto a real valuewhich mea-
suresthe utility derived from output from a subsetof sensors
of that size. Shenker [5] motivatedthe useof utility functions
in modelinga user’s relative preferencefor a real-timestream
encodedat varying levelsof fidelity. Our motivation is similar
– the useris the consumerof the outputof the sensornetwork
andthevaryinglevelsof fidelity correspondto increasinglyde-
tailedsensoryoutputlevels. Thereforewe modeltheutility de-
rived from a consumerof our sensornetwork resourcesby a
monotonefunction :<;>=-?A@ BC�ED(FG� which, for a network graph
�H� �"! �)�$	 , mapsthe sensing subset =JI ! , the set of all
nodesin thegraphthataresensing,to a real-valuedinterval. It
is worthnotingthatfor mostapplications,notall subsetsof sen-
sorsof a givensizearecreatedequal– in many circumstances,
havingageographicallydistributedsetof reportingsensorsis es-
sential.Addressingsuchconsiderationsis beyondthescopeof
thispaper, but theseconsiderationscouldbemodeledby amore
general(andnon-monotone)utility function, :K;L=NMO?P@ BC��D2FQ�
mappingall possiblesubsetsof nodesto values,where ='M de-
notesthepowersetof = .

First considerthe utility curve to be representedby the step
functionon theleft handsideof Figure1. In this all-or-nothing
case,usefuldatafusion is only possiblewhenandonly when
thenumberof nodesparticipatingin thesensingoperationis at
leastaslargeasthethresholdsetby thefunction. In amorefor-
giving scenario,ourutility functionmight resembletheinelastic
curve on the right handsideof Figure1, wherewe have some
freedomin tuningthenumberof participatingnodesto varyen-
ergy consumptionin the network. This secondcurve hasthree
regimes: when a very small numberof nodesparticipate,the
userderiveslittle utility; atacertainthreshold,theutility quickly
increasesdramatically;andthenbeyonda final inflectionpoint,
therearediminishingmarginal returnsandutility increasesonly
veryslowly. In bothof thesescenarios,ideallyonewould liketo
operateatthebeginningof thethird regime,justbeyondtheknee
of thecurve,to maximizeutility relative to powerconsumption.

Theobjective functionwhich we proposeis onein which we
maximizethe sum,over the lifetime of the sensornetwork, of
the utility of computationsat intermediatetimesteps.This ob-
jective reflectsa naturalgoal– thatof maximizingthetotal ag-
gregatedutility of the network over time. Let us definethose
verticeswhich electto performa sensingoperationat any time

utility

 nodes participating

utility

 nodes participating

Fig. 1. Utility functions:Stepfunctionandinelasticutility function

R
asthe sensingsubset=S1TI ! , andthosetransmittingdataat

any time
R

asthe transmittingsubset�U1VI ! . It follows that
=S1'I-�U1 , moreover, �U1 mustconnect=S1 andthebasestation.

Our objective functionis theoptimizationproblem:

maximize W 1 :
� =S1X	 subjectto:

W 1 W�QY[Z 9
/\0^] W 1 W�GY�_ 9
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Thefirst constraintof this formulationusesthe costmodelde-
fined earlier to ensurethat nodescannotconsumemorepower
thanthey have available,where %[� denotesthedegreeof node

�
in the subgraphinducedby �h1 . The secondconstraintensures
that the datacollectedfrom all nodeswho get credit for par-
ticipating in thesensingsubsetat time

R
actuallygetsroutedto

the basestation. This long-termstrategy canbe realizedonly
througha combinationof carefulpower managementcombined
with distributedcoordinationonthepartof thenodesin thesen-
sornetwork in choosingtheir rolesover time.

Weprovidealgorithmsandexperimentalresultsfor thisprob-
lem domainin thefull version[2].

I I I . CONCLUSION

In a best-effort servicemodel,nodesattemptto optimizethe
utilization of resourcesin the presentwithout regard to future
cost. In sensornetworks, economicconsiderations,especially
resourceconstraints,motivate objective functionswhich give
substantialfreedomin lettingnodeschoosetheir roleover time.
With thegoalof optimizingthetotalutility derivedoverthelife-
timeof thenetwork, themodelwemotivateenablesnodesto dis-
countcurrentgainsin lieu of futurerewards;therebyoptimizing
their consumptionof energy over time.
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