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Abstract— We consider challengesassociatedwith application domains
in which a largenumber of distrib uted, network ed sensorsmust perform a
sensingtask repeatedlyover time. We addressissuessuchasresource con-
straints, utility associatedwith a sensingtask, and achieving global objec-
tiveswith only local information. We presenta modelfor suchapplications,
in which we define appropriate global objectivesbasedon utility functions
and specify a cost model for energy consumption. In the full version of
this paper, we presentalgorithms and experimental resultsfor this problem
domain [2].

I. INTRODUCTION

In this paper we argue that for mary interestingapplica-
tions of wirelesssensometworks, a best-efort servicemodel,
in which nodesareexpectedto performsensingoperationsand
route dataasbestthey can,may betoo stringent. We adoptan
economiaecisionmodelin whichanactvity is performedf its
associatedbenefitoutweighsits opportunity cost. A significant
challengéhereis thedistributednatureof nodesn our networks,
whichimpliesthatthey do not have globalinformation,making
it unrealisticto expectnodesto accuratelyassesgitherthe op-
portunity costs,or the relative benefitsof a particulardecision.
Thereforenodesn ourmodelmale heuristicassessmentsmsed
on availablelocal informationin an attemptto optimizeglobal
objectves[1].

For the objectves we seek to address,computationin
large-scalesensometworks will require scalablecoordination
amongstsensorgo accomplishthe desiredtasks[3]. We con-
sider global objective functions motivated by specific sensor
network applicationswhich aredriven by utility functions, first
studiedin anetworking context by Shenler [5]. Developingso-
lutions which achieve theseobjectives are constrainedn two
primaryways: by thelocality imposedby the distributednature
of themodel,andby aresourceconstraintnamelythefinite en-
ergy supplyatsensonodes.Ourwork developsageneramodel
in whichto studysuchproblemsandpresentslgorithmicresults
andexperimentalwork in progresgor aclassof theseproblems.

While the objective functionsandalgorithmswe proposeare
novel, they connecto asubstantiabodyof work onad-hocrout-
ing protocols faulttoleranceandenepy conserationin sensor
networks,which we suney in thefull versionof the paper One
work which considerssereralof theissueswve considerhere,in-
cluding sensorfusion, or aggreating sensoryinformationfrom
multiple sources|oad-balancingandpower conserationis the
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Low-Enegy Adaptive ClusteringHierarcty (LEACH) protocol
[4]. The LEACH protocol [4] usessensorfusion to compress
datasetsvithin the network, reducingthe enegy dissipatediur-
ing theresultingtransmissionOneapplication-specifiexample
they describeis beamforming algorithms,which combinea set
of acousticsignalsinto a single signalwithout loss of relevant
information. Our work appliesthe samegenerabrinciplein ad-
vocatingapplication-specifidataaggreationasatechniqueor
conservingeneny.

Il. MODEL

In this section,we presenthe network modelwe assumeas
well the objective functionswe consider

A. Network Model

We begin by assuminghatevery nodes in our network, ex-
cept for basestations, has a finite and non-replenishablee-
sene of enegy p;, a fixed transmissionrange R, a unique
identifier, and that communicationamongnodesis commuta-
tive. The neighborhoodof a node u is denotedby the set
N(u) = {v | (u,v) € E}. All transmissiongrom ary node
reachall the nodesin its neighborhood For simplicity, we also
assumehattransmissionareperfectly scheduled, sothattrans-
missionsdo notinterferewith eachother

While wewill generallyassumehatthenodesormingourad
hoc network are stationaryfor the algorithmswe develop, this
assumptions notaninherentimitation of our model.

Werepresenburnetwork asanundirectedyraphG = (V, E),
whereV is thesetof all nodesjncludingthe basestations.E is
thesetof edgesn thenetwork definedasfollows, whered(u, v)
is the distancebetweemodesu andwv.

E = {(u,v) | u,v € V andd(u,v) < R}
B. Sensing Model

We describethe sensingmodelwe usein our network. We
presentthe different costsassociatedvith eachoperation,and
explain our notion of node specialization, which is a network-
adaptve role-basednechanism.

We proposeto complementhe role of adaptve algorithms
with nodesthat adapttheir role, or specialize, asa responsdo
changesotonly in thevirtual topologyof the network but also
to nodepower levels. In general,a nodes typical role will be
oneof: idle, routing,sensingpr routing/sensing.



We assigrthefixedcostsces, ¢4, ¢, cq, to thefour operationsa
nodemay perform: sensingfransmittingandreceving a fixed-
sizemessageandaggreatingsensorydata,respectrely. In our
model,theratio ¢+, or the sense-to-transmittio, captureshe
relative |mp0rtance0f thetwo mostimportantrolesof nodesin
thenetwork in termsof enegy consumption.

For mary applicationsit is notarequirementhatthe sensory
dataaccumulatedby the nodesof the network mustbetransmit-
tedin full fidelity to thebasestation.Thus,we assumehatdata
can be aggregatedat eachnodewith a fixed aggreation cost
beforeit is transmittedupstreanin the network.

C. Utility and Objective Functions

We associateachsensordomainwith a monotonicallynon-
decreasingitility functionwhichmapsthenumberof nodegar
ticipating in a sensorycomputationto a real valuewhich mea-
suresthe utility derived from outputfrom a subsetof sensors
of that size. Shenler [5] motivatedthe useof utility functions
in modelinga users relative preferenceor a real-timestream
encodedat varying levels of fidelity. Our motivationis similar
— the useris the consumeiof the outputof the sensometwork
andthevaryinglevels of fidelity correspondo increasinglyde-
tailed sensoryoutputlevels. Thereforewe modelthe utility de-
rived from a consumerof our sensornetwork resourcesy a
monotone&unctionU : S — [0, 1], which, for a network graph
G = (V, E), mapsthe sensing subset S C V, the setof all
nodesin the graphthataresensingto areal-valuedintenval. It
is worth notingthatfor mostapplicationsnotall subset®f sen-

sorsof a givensizearecreatedequal— in mary circumstances,

having ageographicallyistributedsetof reportingsensorss es-
sential. Addressingsuchconsiderationss beyond the scopeof
this paper but theseconsiderationsouldbemodeledby amore
general(and non-monotoneltility function,U : S* — [0, 1],
mappingall possiblesubsetof nodesto values,whereS* de-
notesthe power setof S.

First considerthe utility curve to be representedby the step
functionon theleft handsideof Figurel. In this all-or-nothing
case,useful datafusionis only possiblewhenand only when
the numberof nodesparticipatingin the sensingoperationis at
leastaslarge asthethresholdsetby thefunction. In amorefor-
giving scenariopur utility functionmightresemblgheinelastic
cune on the right handside of Figure 1, wherewe have some
freedomin tuningthe numberof participatingnodesto vary en-
ergy consumptiorin the network. This secondcurve hasthree
regimes: when a very small numberof nodesparticipate,the
userderiveslittle utility; atacertainthresholdtheutility quickly
increaseslramatically;andthenbeyonda final inflection point,
therearediminishingmaiginal returnsandutility increasesnly
veryslowly. In bothof thesescenariosideally onewould liketo
operateatthebeginningof thethird regime,justbeyondtheknee
of thecurve, to maximizeutility relative to power consumption.

The objective functionwhich we proposés onein whichwe
maximizethe sum, over the lifetime of the sensometwork, of
the utility of computationsat intermediatetimesteps.This ob-
jective reflectsa naturalgoal — that of maximizingthe total ag-
gregatedutility of the network over time. Let us definethose
verticeswhich electto performa sensingoperationat ary time

utility utility

nodes participating nodes participating

Fig. 1. Utility functions:Stepfunctionandinelasticutility function

t asthe sensingsubsetS; C V, andthosetransmittingdataat

ary time t asthe transmittingsubsetk, C V. It follows that

S: C R;, moreover, R, mustconnectS; andthe basestation.
Our objective functionis the optimizationproblem:

maximize » " U(S;) subjectto:

ZZCS+EZCt+(di_1)CT+caSpi

t €S, t i€ER:
Vi:R, CV

The first constraintof this formulationusesthe costmodelde-
fined earlierto ensurethat nodescannotconsumemore power
thanthey have available,whered; denoteshe degreeof nodei
in the subgraphnducedby R;. The secondconstraintensures
that the datacollectedfrom all nodeswho get credit for par
ticipatingin the sensingsubsefat time ¢ actuallygetsroutedto
the basestation. This long-termstratgy canbe realizedonly
througha combinationof carefulpower managementombined
with distributedcoordinationon thepartof thenodesn thesen-
sornetwork in choosingtheir rolesovertime.

We provide algorithmsandexperimentaresultsfor this prob-
lem domainin thefull version[2].

Il. CONCLUSION

In a best-efort servicemodel,nodesattemptto optimizethe
utilization of resourcesn the presentwithout regard to future
cost. In sensometworks, economicconsiderationsespecially
resourceconstraints,motivate objective functionswhich give
substantiafreedomin letting nodeschoosetheirrole overtime.
With thegoalof optimizingthetotal utility derivedoverthelife-
time of thenetwork, themodelwe motivateenablesiodedo dis-
countcurrentgainsin lieu of futurerewards;therebyoptimizing
their consumptiorof enegy overtime.
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