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ABSTRACT
Recently, some mainstream e-commerce web sites have be-
gun using “pay-per-bid” auctions to sell items, from video
games to bars of gold. In these auctions, bidders incur a
cost for placing each bid in addition to (or sometimes in lieu
of) the winner’s final purchase cost. Thus even when a win-
ner’s purchase cost is a small fraction of the item’s intrinsic
value, the auctioneer can still profit handsomely from the bid
fees. Our work provides novel analyses for these auctions,
based on both modeling and datasets derived from auctions
at Swoopo.com, the leading pay-per-bid auction site. While
previous modeling work predicts profit-free equilibria, we an-
alyze the impact of information asymmetry broadly, as well
as Swoopo features such as bidpacks and the Swoop It Now
option specifically. We find that even small asymmetries
across players (cheaper bids, better estimates of other play-
ers’ intent, different valuations of items, committed players
willing to play “chicken”) can increase the auction duration
significantly and thus skew the auctioneer’s profit dispropor-
tionately. We discuss our findings in the context of a dataset
of thousands of live auctions we observed on Swoopo, which
enables us also to examine behavioral factors, such as the
power of aggressive bidding. Ultimately, our findings show
that even with fully rational players, if players overlook or
are unaware any of these factors, the result is outsized profits
for pay-per-bid auctioneers.

Categories and Subject Descriptors
K.4.4 [COMPUTERS AND SOCIETY]: Electronic Com-
merce

General Terms
Economics, Theory

1. INTRODUCTION
One of the more interesting commercial web sites to ap-

pear recently from the standpoint of computational eco-
nomics is Swoopo. Swoopo runs an auction website, using
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a nontraditional “pay-per-bid” auction format. Although we
provide a more formal description later, the basic framework
is easy to describe. As with standard eBay auctions, pay-
per-bid auctions for items begin at a reserve price (generally
0), and have an associated countdown clock. When a player
places a bid, the current auction price is incremented by
a fixed amount, and some additional time is added to the
clock. When the clock expires, the last bidder must pur-
chase the item at the final auction price. The pay-per-bid
twist is that each time a player increments the price and
becomes the current leader of the auction, they must pay a
bid fee. On Swoopo, the typical bid fee is 60 cents and the
price increment ranges from 1 cent to 24 cents.

While there are other web sites using similar auctions,
Swoopo has become the leader in this area, and recently
has inspired multiple papers that attempt to analyze the
characteristics of the Swoopo auction [2,5,8]. These models
share the same basic framework, based on assuming players
decide whether or not to bid in a risk-neutral fashion, which
we explain in detail in Section 2. Some of these papers then
go further, and attempt to justify their model by analyzing
data from monitoring Swoopo auctions.

One of the most interesting things about the nearly iden-
tical analyses undertaken thus far is that the simple ver-
sions of the model predict negligible profits for Swoopo, in
that the expected revenue matches the value of the item
sold. This fails to match the results from datasets studied
in these papers, other anecdotal evidence [12,13], as well as
hard evidence we compiled from a dataset comprising over
one hundred thousand auction outcomes that we collected,
which show Swoopo making dramatic profits (see Figure 1).1

Some suggestions in previous work have been made to ac-
count for this, including the relaxation of the assumption
that players are risk-neutral [8], or the addition of a regret
cost to model the impact of sunk costs [2].

In this paper, we take the previous analysis as a start-
ing point, but we focus on whether there are intrinsic as-
pects of the pay-per-bid auction framework that can derive
profit from even rational, risk-neutral players who correctly
model sunk costs. Specifically, previous work has modeled
the game as inherently symmetric, with all players adopting
identical randomized strategies. However, there are natural
asymmetries that can arise in the Swoopo auction, particu-
larly asymmetries in information. A rational player’s strat-
egy revolves around his assessment of the probability of win-
ning the auction outright by bidding, based on the current
bid, the number of bidders, the bid fee, and the value of the
item. Let us focus on one of these parameters, the number
of players n. Although previous models assume that n is
known to all players in advance, in practice, there is no way

1We estimate Swoopo’s net profits for an auction by sum-
ming up estimated bid fees plus the final purchase price and
subtracting the stated retail value for the item.
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Figure 1: Empirical estimate of profit margins for
114,628 Swoopo ascending-price auctions.

to know exactly how many players are actively participat-
ing or monitoring the auction at any time. In Section 3, we
show that even small asymmetries in beliefs about the num-
ber of active players can lead to dramatic changes in overall
auction revenue, and these changes can grow sharply as the
estimates vary from the true number of players. We also
quantify a similar effect due to uncertain beliefs, as opposed
to asymmetry across beliefs.

As a related example, previous analyses assume that all
players both pay the same fee to place a bid in an auction
and ascribe an identical value to an item. The latter is
generally not the case. Less obviously, not all bidders on
Swoopo are paying the same price per bid, for reasons we
discuss in Section 5. In this case, players using less expen-
sive bids have both a decided information advantage and a
tactical advantage. Pushing this to the extreme, we have
the case of shill bidders, who bid on behalf of the auction-
eer, and can be modeled as bidders who incur no cost to bid
(but also never claim an item). While we do not suggest
shill bidders are present in online pay-per-bid auctions, our
analysis in Section 6.2 nevertheless shows that they would
have a striking impact on profitability.

Finally, our framework allows us to examine other inter-
esting aspects of these auctions that are difficult to model
analytically, but which can be studied via empirical observa-
tions. One question that we are particularly interested in is
whether certain bidder behavior, such as aggressive bidding,
is effective, as earlier work speculates [2]. In Section 7.2, we
formulate a new definition of bidder aggression, and demon-
strate that bidders range widely across the aggression spec-
trum. While aggressive bidders win more often, analysis
of our dataset shows that the most aggressive bidders con-
tribute the lion’s share of profits to Swoopo, and successful
strategies are most frequently associated with below-average
aggression.

We believe that modeling and analyzing these information
asymmetries are interesting in their own right, although we
also argue that they provide a more realistic framework and
possible explanation for Swoopo profits than previous work.
Indeed, our work reveals the previously hidden complexity
of this auction process in the real-world setting.

We emphasize that while we provide data in an attempt to
justify these additions to the model, in contrast to previous
work, we eschew efforts to fit existing data to our model
to parameterize and validate it. We suggest that models at
this stage can provide a high-level understanding, but it may
be difficult to disentangle various effects through auction
data alone without more detailed insight into user behavior.

Moreover, current models appear as yet far from complete.
We therefore suggest future alternatives and directions in
the conclusion.

Finally, we note that, due to space limitations, we can-
not fully describe all of our results in this paper. A much
longer and more detailed version is available for download
on the arXiv [3]. In particular, in many of our mathematical
derivations here, we focus on the simpler case of fixed-price
auctions, described in Section 2, for space reasons.

1.1 Related Work
Several recent working papers have studied pay-per-bid

auctions [2, 5, 8]. While there are some differences among
the papers, they all utilize the same basic framework, which
is based on finding an equilibrium behavior for the players of
the auction. We describe this framework in Section 2, and
use it as a starting point. The key feature of this framework
from our standpoint is that it treats the players as behaving
symmetrically, with full information. Unsurprisingly, in such
a setting the expected profit for Swoopo is theoretically zero.

Our key deviation from past work is to consider asym-
metries inherent in such auctions, with a particular focus
on information asymmetry. Information asymmetry broadly
refers to situations where one party has better information
than the others, and has become a key concept in economics,
with thousands of papers on the topic. The pioneering work
of Akerlof [1], Spence [11], and Stiglitz [10], for which the
authors received a Nobel Prize in 2001, established the area.
Typical examples of information asymmetry include insider
trading, used-car sales, and insurance. Interestingly, the
study of information asymmetry in auctions appears signifi-
cantly less studied. We believe that our analysis of Swoopo
auctions provides a simple, natural example of the potential
effects of information asymmetry (as well as other asymme-
tries) in an auction setting, and as such may be valuable
beyond the analysis itself.

1.2 Datasets
Where appropriate, we motivate our work or provide ev-

idence for our results via data from Swoopo auctions. We
have collected two datasets. One dataset is based on infor-
mation published directly by Swoopo, which contains lim-
ited information about an auction. Information provided
includes basic features such as the product description, the
retail price, the final auction price, the bid fee, the price
increment, and so on. This dataset covers over 121,419 auc-
tions. We refer to this as the Outcomes dataset.

Our second dataset is based on traces of live auctions that
we have ourselves recorded using our own recording infras-
tructure. Our traces include the same information from the
Swoopo auctions as well as detailed bidding information for
each auction, specifically the time and the player associ-
ated with each bid. This dataset spans 7,353 auctions and
2,541,332 bids. We refer to this as the Trace dataset. Our
methodology to collect bidding information entailed contin-
uous monitoring of Swoopo auctions; however, in some cases
we could not obtain all of the bids. In particular this hap-
pened when more than ten players were using BidButlers,
automatic bidding agents provided by the Swoopo interface,
to bid at a given level, as we collect at most ten bids with
each probe of Swoopo. Overall, we captured every bid from
4,328 of the 7,353 auctions; only results from these complete
auctions are included in our study. Further details regard-
ing our dataset and collection methods, including how to



download the data, can be found in the full version of our
paper [3].

2. A SYMMETRIC PAY-PER-BID MODEL
We start with a basic model and analysis of Swoopo auc-

tions from previous work, following the notation and frame-
work of [8], although we note that essentially equivalent
analyses have also appeared in other work [2,5]. This serves
to provide background and context for our work.

We consider an auction for an item with an objective value
of v to all players. There are n players throughout the auc-
tion. The initial price of the item is 0. In the ascending-price
version of the auction, when a player places a bid, he pays
an up-front cost of b dollars, and the price is incremented by
s dollars. The auction has an associated countdown clock;
time is added to the clock when a player bids to allow other
players the opportunity to bid again. When an auction ter-
minates, the last bidder pays the current price of the item
and receives the item. In a variant called a fixed-price auc-
tion, the winner buys the item for a fixed price p; bids still
cost b dollars but there is no price increment. When p = 0,
this is called a 100%-off auction. In our analysis, we simplify
players’ strategies by removing the impact of timing (but we
do study this empirically in Section 7.2). Instead of bidding
at a given time, players choose to bid based on the current
price, with ties broken at random. A player that chooses
not to bid at some price may bid later on.

The basic formulation for analyzing this game is that a
player who makes the qth bid is betting b than no future
player will bid. Let µj be the probability that somebody
makes the jth bid (given that j− 1 previous bids have been
made). Then the expected payoff for the player that makes
the qth bid is (v−sq)(1−µq+1); a player will only bid if this
payoff is non-negative. Note that when q > Q ≡ b v−b

s
c it is

clear that no rational player will bid, as the item price plus
bid fee exceeds the value. For convenience in the analysis
we will assume that v−b

s
is an integer, to avoid technical

issues when this does not hold (see [2] for a discussion); this
assumption ensures that a player that makes the Qth bid is
indifferent to the outcome (the expected payoff is 0). In the
fixed-price variant, the payoff is (v − p)(1 − µq+1); as long
as v > p, bidding may occur.

The equilibrium behavior is found by determining the
probability that a player should bid so that the expected
payoff is zero whenever q ≤ Q, leaving the players indiffer-
ent as to the choice of whether to bid or not to bid. Hence
the indifference condition is given by

b = (v − sq)(1− µq+1),

or

µq+1 = 1− b/(v − sq)

in the ascending-price auction, and

µq = 1− b/(v − p)

at all steps in the fixed-price auction.
In what follows it is helpful to let βq be the probability

that each player chooses to make the qth bid given that the
(q − 1)st bid has been made and that the player is not the
current leader. Note that by symmetry each player bids with
the same probability. Hence, for q > 1, for ascending-price

auctions we must have

1− µq = (1− βq)n−1

βq = 1−
„

b

v − s(q − 1)

«1/(n−1)

.

Similarly, we have

βq = 1−
„

b

v − p

«1/(n−1)

for the fixed-price auction.
We point out that the first bid is a special case, since at

that point there is no leader. To maintain consistency, we
want the indifference condition to hold for the first bid; that
is, players still bid such that their expected profit is zero.
This requires a simple change, since at the first bid there
are n players who might bid instead of n− 1, giving for the
ascending-price auction

β1 = 1−
„
b

v

« 1
n

,

and similarly β1 = 1− (b/(v − p))
1
n for fixed-price auctions.

The expected revenue for the auction can easily be calcu-
lated directly using the above quantities. However, we sug-
gest a simple argument (that can be formalized in various
ways, such as by defining an appropriate martingale) that
demonstrates that Swoopo’s expected revenue is v if there
is at least one bid, and zero if no player bids. (A similar
argument appears in [2].) First note that in auctions where
there is at least one bid, an item of value v is transferred to
some player at the end of the auction. Also, by the indiffer-
ence condition, the expected gain to the player that places
any bid is zero. (Think of a bid b as counterbalanced by the
auctioneer putting an expected value b at risk.) Therefore,
by linearity of expectations, the auctioneer recoups a sum
of payments equal to v in expectation over the course of the
auction, conditioned on there being at least one bid. The
probability that no player bids is (1 − β1)n by definition of
β1, and thus the expected revenue is v(1−(1−β1)n) = v−b.

To be clear, in what follows, we will always consider rev-
enue conditioned on the auction having had at least one bid,
since otherwise, the auction is essentially a non-operation for
the auctioneer. We call such auctions successful.

3. ASYMMETRIC PLAYER ESTIMATES
The analysis of Section 2 assumes that the number of play-

ers is fixed and known throughout. This assumption has
been questioned in previous work; for example, in [8], they
propose a variation where the expected number of players
at each time step is known and the distribution is assumed
to be Poisson, to model participants entering and leaving
the auction over time. The end result is a small variation
on the previous analysis. Here we take a different approach
and remove the assumption that every player has the same
estimate of n, the number of players in the game.

Before diving into the analysis, we provide some moti-
vating data from our datasets. During an auction, Swoopo
provides a list of the bidders that have been active over the
last 15 minute period. Analysis of our Trace dataset indi-
cate that this significantly underestimates the total number
of participants in the auction, so players who rely on this
information to estimate the number of players may be mis-



led. Our analysis shows that players underestimating n can
dramatically inflate Swoopo’s expected revenue.

Following Swoopo, we define an active bidder as someone
who has bid in the last fifteen minutes. Using our Trace
dataset, we observed each auction at one minute intervals,
and at each time instant we computed the number of ac-
tive bidders as a percentage of the total number of players
who ultimately participated in the auction. We found that
auction participation typically builds to a crescendo at the
end of the auction; on average, ten minutes from the end of
the auction only 20% of all bidders have participated, and
five minutes from the end only 40% of all bidders have par-
ticipated. Further, due to the nature of the auction, there
is no fixed time at which the auction ends, so even bidders
making predictions based on past observations are using a
certain degree of guesswork.

We now consider the analysis of fixed-price auctions. To
initially frame the analysis, we further assume that the true
number of players is n, but all players perceive the number
of players as n− k for some k in the range [1, n− 2]. In this
case, there is still symmetry among the players, but they
choose to bid based on incorrect information. Following the
previous analysis, to maintain the indifference condition that
the expected revenue for a player that bids at each point
should be equal to their bid fee, we have (v−p)(1−νq) = b,
where now νq is the perceived probability that someone else
will place the qth bid. As before, νq = 1 − b

v−p
. Again we

let βq be the probability that a player chooses to make the
qth bid. For q > 1 we have (1 − νq) = (1 − βq)n−k−1, or

βq = 1− (1− νq)
1

n−k−1 .
Crucially, νq is not equal to µq, the true probability that

someone will make the qth bid. Since (1 − µq) equals the
probability that nobody makes the qth bid, we have

1− µq = (1− βq)n−1

µq = 1−
“

(1− νq)
1

n−k−1

”n−1

µq = 1−
„

b

v − p

« n−1
n−k−1

. (1)

Remember that the above holds for q > 1, as for the first bid
the bidding probabilities are slightly different, as explained
in Section 2. In a successful auction, µq is the same for all
bids, so we simply call the value µ. The probability that
the auction lasts another r bids, after the first, is given by
µr(1 − µ). If we let R be the revenue from a successful
auction, we calculate Swoopo’s expected revenue as:

E[R] = b+ p+ b

∞X
r=0

rµr(1− µ). (2)

In the simple case where p = 0 the expected revenue is:

E[R] = b
“v
b

” n−1
n−k−1

. (3)

When k = 0, the expected revenue is v. But as k appears
in the exponent of the v/b term, even small values of k can
have a significant effect on the revenue. This impact as
k varies is depicted for a representative auction for $100
in cash with a bid fee of $1 and 50 players in Figure 2(a).
These will be our default parameters for fixed-price auctions
throughout this work.

Conversely, one could consider what happens when play-
ers overestimate the population, that is to say k < 0. As
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Figure 2: Expected revenue for Swoopo in a success-
ful 100% off auction; n = 50, v = 100 and b = 1.

expected, the revenue for Swoopo then shrinks, incurring
an overall loss as demonstrated in the left half of Figure
2(a). Note the considerable asymmetry in the plot, however.
Indeed, even if the average estimated number of players is
correct, when there is variation across estimates, Swoopo
gains. For example, we can consider a simple case where half
the players underestimate the population by k and half over-
estimate it by the same amount. Computing the revenue for
this mixed case involves more complicated machinery which
we describe in detail in Section 4. For now, we observe that
even though Swoopo has far more to gain by pure underes-
timation of the player population, a mix of overestimation
and underestimation in equal measures still yields markedly
increased revenues, as depicted in Figure 2(b). (This can
also be seen as a consequence of convexity of the revenue
curve as the estimate of the number of players varies.)

Similar analyses can be made for different settings, such
as ascending-price auctions and other mixtures of estimates.

3.1 Incorporating Uncertainty Into Population
Estimates

Throughout the paper, we focus on the case where players
have fixed beliefs about relevant quantities, such as the num-
ber of players participating in the game. However, it is also
straightforward to extend our techniques to settings where
there is underlying uncertainty within beliefs, either instead
of or in addition to asymmetry across beliefs. As a concrete
example, we consider the case where players are symmetric
and all perceive the population size as being drawn from a
distribution such that there are i players with probability pi.
We do not focus on beliefs governed by distributions in the
rest of the paper, because our main thematic points can be



made using simpler point beliefs. Moreover, beliefs governed
by distributions also raise challenging questions, such as how
players determine an initial belief distribution and whether
they can update their beliefs as the auction proceeds, that
we do not consider in this work. However, it should intuti-
tively be clear that uncertainty, as well as asymmmetry, can
lead to situations that benefit the auctioneer. We formalize
one such situation now.

Consider a fixed-price auction auction with n players, where
the players are symmetric and believe that the auction pop-
ulation size is governed by a distribution where the number
of players is i with probability zi such that

P
i izi = n. In

other words, the expectation of players’ estimates is cor-
rect, but they do not know the exact number of players. We
demonstrate that players bid more frequently because of this
uncertainty, leading to extra revenue for the auctioneer.

If all players think that there are n players, we have the
indifference condition

b = (v − p)(1− νq),

where here νq is the the perceived probability that any other
player bids. Let β1 be the probability that a specific player
who is not the leader bids. As 1−νq = (1−β1)n−1, we have
β1 is the solution to

(1− β1)n−1 =
b

v − p .

In the setting where players believe the number of players
is governed by a distribution, we have the same indifference
condition. However, because of the uncertainty, if we let β2

be the probability that a specific player who is not the leader
bids, we find

1− νq =
X

i

zi(1− β2)i−1,

since the probability that no other player bids is now given
by a mixture based on the probability distribution. Hence
in this setting X

i

zi(1− β2)i−1 =
b

v − p .

We now give a convexity argument to show that β2 ≥ β1;
that is, there is more bidding with uncertainty. Consider

f(β) =
X

i

zi(1− β)i−1.

and

g(β) = (1− β)n−1.

Note that both f and g are decreasing in β. Furthermore,
(1− β)x is a convex function in x for β ∈ [0, 1]. Hence

f(β) =
X

i

zi(1−β)i−1 ≥ (1−β)
P

i zi(i−1) = (1−β)n−1 = g(β).

Now by definition of β2 and β1, f(β2) = b/(v−p) = g(β1) ≤
f(β1). As f is decreasing in β, from f(β2) ≤ f(β1), we have
β2 ≥ β1, as desired.

4. MODELING GENERAL ASYMMETRIES
We now consider variations of the auction where there are

asymmetries in information. For this we need to extend the
symmetric model and make a crucial distinction between the
true values of the game’s parameters – v, b and n – and the

way players perceive them. (We motivate the mispercep-
tion of each these parameters in the appropriate sections.)
For simplicity, we will assume henceforth that there are two
groups of players: A, of size k, and B, of size n− k. We can
extend our approach to a larger number of groups naturally,
but with increased complexity.

Players in group A perceive the value of the item as vA,
the bid fee as bA, and the number of participants in the game
as nA. Define vB , bB and nB similarly. Initially, we assume
that each player is asymmetry-unaware, i.e. each player as-
sumes all players have identical parameters and thus the
groups are not aware of each other. We will be also in-
terested in cases where one group is aware of the split and
therefore has an advantage over the other group. That set-
ting will utilize the same basic structure; we develop it in
later sections. In both settings, except in the special case
of collusion (studied in Section 6.1), members of the groups
are not aware of the identities of individuals in either group.

The parameters determine both the perceived and the true
probability of the qth bid being placed. So, for group A, let
νA

q be the perceived probability that anyone – in either group

– will place the qth bid. In other words, νA
q is an estimate of

µq from the perspective of players in group A. Also, define
µA

q as the true probability that one or more players in group

A places the qth bid and similarly define νB
q and µB

q for
group B. If µq is the true probability of the qth bid being
placed then we have 1− µq = (1− µA

q )(1− µB
q ).

Players in group A will bid according to their perceived
indifference condition, which for ascending-price auctions is
now (vA − s(q − 1))(1 − νA

q ) = bA, and similarly for group
B. (Similar derivations hold for fixed-price auctions.) Using
the fact that 1− νA

q = (1− βA
q )n−1 we can easily derive the

individual bidding probability for group A players:

βA
q = 1−

„
bA

vA − s(q − 1)

« 1
nA−1

. (4)

The derivation for group B players is identical. Using the
individual bidding probabilities we can compute the proba-
bility of a bid being placed by anyone in group A as

1− µA
q = (1− βA

q )k (5)

µA
q = 1−

„
bA

vA − s(q − 1)

« k
nA−1

. (6)

Note that generally µq 6= νA
q 6= νB

q .

4.1 A Markov Chain Approach
To compute various quantities of interest when we have

asymmetric behaviors requires a bit of work, primarily be-
cause the probability of a bid at any given time depends
in part on what group the current auction leader belongs
to. In the models we have described, however, the auction
itself is memoryless, in that, given the leader and the cur-
rent number of bids, the history to reach the current state is
unimportant to the future of the auction. Essentially all of
our models have this form. Hence, we can place these auc-
tions in the setting of Markov chains in order to efficiently
calculate the distribution of auction outcomes.

Specifically, the general case for two groups of players can
be captured by an absorbing, time-inhomogeneous Markov
chain as shown in Figure 3. (Recall that in a time-inhomogeneous
Markov chain, the transition probabilities can depend on the
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pAB(q)

pBA(q)

pAA(q) pBB(q)

1−pAA(q)−pAB(q) 1−pBA(q)−pBB(q)

Figure 3: A state-machine for an asymmetric game
with two groups of players.

current time as well as the state, but not on the history of
the chain.) The chain contains four states: in state A a
member of the first group is leading the auction, while in
absorbing state WA the auction has been won by a member
of the first group. We define states B and WB similarly.
Note that we overload the notation A and B to refer both
to the sets of players and a state of the Markov chain. Fi-
nally, note that there is no state corresponding to the initial
setting prior to the first bid. Instead we choose the starting
state probabilistically from A or B according to the appro-
priate probabilities for the first bid, recalling that we assume
our auction is successful.

We use pAB(q) to denote the transition probability of go-
ing from stateA to stateB after the qth bid, and similarly we
can define pBA(q), pAA(q), and so on. For example, pAB(1)
is the transition probability from state A to state B when
one bid has already been placed. When considering fixed-
price auctions, the bidding probabilities, and hence the state
transition probabilities, are invariant from bid to bid. In this
special case the Markov chain becomes time-homogeneous,
and given the distribution on the initial state we can derive
analytical expressions for the probability of terminating in
state A or B. A good description of this approach can be
found in many standard texts; we provide a summary based
on [4] in the full version of the paper [3].

For ascending-price auctions, which are time-inhomogeneous,
we resort to numerical methods employing simple recurrence
relations. This can also be useful to obtain more specific
information in the case of fixed-price auctions (or as an al-
ternative approach for calculating various quantities). For
example, let PA(q) be the probability of being in state A
after q bids; here PWA(q) represents the probability that a
player from A has won the auction at some point up to bid q,
so that PWA(q) + PWB (q) becomes 1 for an ascending-price
auction when q is sufficiently large and converges to 1 for a
fixed-price auction as q goes to infinity. Then we have

PA(q + 1) = PA(q)pAA(q) + PB(q)pBA(q), (7)

and other similar recurrences, including

PWA(q + 1) = PA(q)pAWA(q) + PWA(q). (8)

Given these various equations, it is easy to compute quan-
tities such as the expected revenue. For example, in an
ascending-price auction, assuming all players have a bid fee
of b, every time A is in the lead, he has paid a bid of b
for this, and the price has gone up by s. Letting R be the
revenue, we easily find

E[R] = (b+ s)

 
1 +

QX
i=1

PA(i) +

QX
i=1

PB(i)

!
. (9)
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Figure 4: Winners’ total cost of bidpacks as a per-
centage of retail price (Trace dataset).

Notice that the simple nature of the Markov chain frame-
work allows us to derive all the important quantities, such
as the expected revenue for Swoopo, directly from the ap-
propriate transition probabilities. Hence, in the rest of the
paper, we focus on finding these probabilities, and leave fur-
ther details to the reader.

5. ASYMMETRIES IN BID FEES
We now consider asymmetries that arise when players

have different bid fees. As one motivation, among other
items offered on auction at Swoopo are bidpacks, or sets of
prepaid bids. Players who win bidpack auctions at a dis-
count to face value and participate in later auctions can ef-
fectively enjoy lower bidding fees compared to other partic-
ipants, generally without the other participants’ knowledge.

To provide evidence that bidpacks can lead to varying bid
fees, we estimate the total cost of bidpacks for winners of
bidpack auctions in our Trace dataset. Costs include the
winners’ bid costs and the prices they paid in winning auc-
tions, as well as the bid costs those winners incurred when
losing other bidpack auctions in our dataset. We then plot
the average cost of bidpacks as a percentage of the nominal
retail cost in Figure 4. This leads to an overall discount of
over 1/2 of the retail cost. While this may still be an under-
estimate of bidpack costs (as we cannot take into account
auctions we have not captured, and our results are biased
towards winners) it suggests that winners of bidpack auc-
tions enjoy a substantial discount in bid fees when applying
those bids to other auctions.

Discounted bids are also available through seasonal pro-
motions that Swoopo conducts. Moreover, further variation
in bid fees is due to the remarkable fact that Swoopo auc-
tions take place with bidders bidding in different currencies.
Further details are given in the full version [3]. Overall, our
evidence suggests varying bid fees are realistic in practice,
and we turn to quantifying their impact.

We consider the simpler case of fixed-price auctions with
price p. We assume that the n bidders are divided in two
groups A and B, of size k and n − k respectively. We will
assume that k ≥ 2; the case where k = 1 can be handled
similarly but the case structure of the analysis is slightly
different. Group A incurs a bid fee of bA while group B
incurs a bid fee of bB with bA < bB . In context, we may
presume that group A is the set of bidders who are bidding
at a discount whereas group B is the set of players who are
charged regular bid fees. In what follows we also assume A
players are aware of the two groups while B players perceive
everyone as belonging to the same group as themselves. This



creates an information asymmetry. We believe this choice
of model is natural; we suspect many (less sophisticated)
players may not recognize that others are obtaining cheaper
bids. It also provides an example of how our Markov chain
approach of Section 4.1 applies to such a setting.

Let µA
q be the collective probability that some player in

group A makes the qth bid, and similarly define µB
q . Then

the probability that no player makes the qth bid is:

(1− µq) = (1− µA
q )(1− µB

q ) (10)

where µq is defined to be the true collective probability that
anyone, in either group, bids.

Next, consider the game from the point of view of B play-
ers. Remember that, according to them, everyone belongs to
a single group incurring the same bid fee. Define νB

q as the
perceived probability that anyone, in either group, makes the
qth bid according to the information available to B players.
From the indifference condition for B players we have:

(v − p)(1− νB
q ) = bB

νB
q = 1− bB

v − p . (11)

We derive the true probability βB
q that a B player bids as:

(1− νB
q ) = (1− βB

q )n−1

βB
q = 1−

„
bB

v − p

« 1
n−1

. (12)

We can then write the probability of group B bidding as:

1− µB
q =

(
(1− βB

q )n−k if group A is leading,

(1− βB
q )n−k−1 if group B is leading,

which after manipulation becomes:

µB
q =

8><>:1−
“

bB

v−p

”n−k
n−1

if group A is leading,

1−
“

bB

v−p

”n−k−1
n−1

if group B is leading.

(13)

Remember that µB
q is the true collective probability with

which group B players bid. Furthermore, notice that players
in group A are aware of this probability.

Assuming the leader before the qth bid was from group
B and using the indifference condition for group A we can
derive an expression for µA

q :

(v − p)(1− µA
q )(1− µB

q ) = bA (14)

µA
q = 1− bA

bB

„
bB

v − p

« k
n−1

. (15)

The derivation for group A leading is similar, leading to:

µA
q =

8><>:1− bA

bB

“
bB

v−p

” k−1
n−1

if group A is leading,

1− bA

bB

“
bB

v−p

” k
n−1

if group B is leading.

(16)

Next, using Equation 10 we can derive an expression for µq,
the true probability that a qth bid is placed:

µq = 1− bA

v − p , (17)

which holds irrespectively of who is the current leader. It
seems counterintuitive that neither the number of B players
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Figure 5: A fixed-priced auction with k players pro-
visioned with cheap bids; n = 50, v = 100 and bB = 1.

nor their bid fee play any role in determining the probability
µq. However, this is similar to the original setting where all
players pay the same bid fee, and µq was independent of n.

We can also write an expression for βA
q :

βA
q =

8><>:1−
“

bA

bB

” 1
k−1

“
bB

v−p

” 1
n−1

if group A is leading,

1−
“

bA

bB

” 1
k
“

bB

v−p

” 1
n−1

if group B is leading.

With these bid probabilities in hand, we can apply the
framework developed in Section 4.1. Consider our usual
fixed-price auction with n = 50, b = 1 and p = 0. Some
bidders have access to a discounted bid fee bA, while the
rest pay the regular rate of $1 per bid. Figure 5(a) displays
Swoopo’s excepted revenue as the fee bA charged to group
A bidders for bidding varies.

The expected revenue per successful Swoopo auction ac-
tually increases, superlinearly, in the gap between bid fees.
This is somewhat surprising, given that the amount of rev-
enue from each bid from group A is decreasing. However,
Group B bidders not only pay full price for their bids, but
are also participating in an auction that tends to last sub-
stantially longer than they expect. Consequently Swoopo’s
revenues increase as well. Our analysis hinges on the as-
sumption that group B bidders never realize that they have
been dealt a losing hand; recall for fixed-price auctions the
underlying bidding behavior is memoryless. During actual
auctions, Swoopo does not reveal bid costs, making our
model plausible. (Extending our model to a setting where
players’ beliefs about other players evolve as the auction
proceeds, and then adapt their strategies, is future work.)

Also of interest is the advantage gained by a specific player



having access to cheap bids. Using the same example as
above, Figure 5(b) displays the relative likelihood of a spe-
cific A player winning the auction compared to a specific B
player as a function of the discounted bid fee. There is a
clear synergy here: provisioning of cheaper bids helps the
players who receive them and the auctioneer alike.

We point out before continuing that, using the same ap-
proach, we can also analyze the setting where players have
differing intrinsic valuations for the item being auctioned [3].

6. COLLUSION AND SHILL BIDDERS
Our previous analysis allows us to consider other stan-

dard situations with information asymmetry due to hidden
information. Here we examine the setting where a subset
of players collude to form a bidding coalition, and a setting
with shill bidders, or bidders in the employ of the auctioneer.

6.1 Collusion
A natural approach for collusion is for members of a coali-

tion to agree to not bid against each other, so that if one of
them is currently leading the auction, the others bid with
zero probability. We wish to quantify the advantage gained
by this form of collusion in terms of the size of the coalition.

For our analysis, we assume that there is a group A of k
players in a coalition, and a group B of n− k other players
not in the coalition. To these n− k players, there appear to
be n identical players in the auction. Again, the coalition
players bid as usual, provided a coalition member is not the
leader. Proceeds and expenses are shared equally between
coalition members.

Non-coalition members bid according to their perceived
indifference condition:

νB
q = 1− b

v − p . (18)

This yields

βB
q = 1−

„
b

v − p

« 1
n−1

. (19)

From this we can derive the true probability of a bid by
group B:

µB
q =

8><>:1−
“

b
v−p

”n−k
n−1

if group A is leading,

1−
“

b
v−p

”n−k−1
n−1

if group B is leading.

(20)

We observe that players in group B, just as a consequence of
overestimating the total population, bid less frequently than
they should. This fact alone is enough for the coalition of
players in group A to gain an edge in winning the auction.

Next, we look at the indifference condition for a player in
group A when someone from group B is leading the auction:

b = (v − p)(1− µA
q )(1− µB

q ) (21)

µA
q = 1−

„
b

v − p

« k
n−1

. (22)

Recall as we stated earlier when group B is leading the auc-
tion group A players act independently. Hence

βA
q =

8<:0 if group A is leading,

1−
“

b
v−p

” 1
n−1

if group B is leading.
(23)
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Figure 6: Fixed-price auctions with a coalition of
size k; n = 50, v = 100 and b = 1.

Finally, using the fact that 1−µq = (1−µA
q )(1−µB

q ), we
can derive the following expression for the probability of a
bid being placed by either group:

µq =

8<:1−
“

b
v−p

”n−k
n−1

if group A is leading,

1− b
v−p

if group B is leading.
(24)

The increased chances of group A winning the auction are
apparent, as the auction is more likely to end when A leads.

Equations 19 and 23 are nearly sufficient to determine the
probabilities for our Markov chain analysis. The only re-
maining issue regards our choice of tie-breaking rule. Notice
that a highly optimized coalition could act as a single player
controlling many identities, only selecting a single one to
use at each opportunity to bid (albeit with higher proba-
bility µA

q instead of βA
q ). In this case, the coalition would

be less likely to win in case of ties. We refer to this as a
single bidder coalition, and the original, independent case as
a many bidder coalition.

One would expect two consequences of collusion. First,
a coalition of k bidders should have more than k times the
probability of a non-colluding bidder to win. Second, the
overestimation of the actual player population should nega-
tively impact Swoopo’s revenues. We confirm both of these
consequences empirically.

Figure 6(a) displays the revenue Swoopo can expect in the
presence of a coalition of size k for both tie-breaking rules.
As can be seen, revenue declines significantly when large
coalitions are present. Figure 6(b) displays the relative like-
lihood of the coalition winning the auction compared to any
particular outsider. Even small groups of colluding players
can gain a very large advantage in winning the auction, su-



perlinear in the size of the coalition, offering a significant
incentive to collude.

6.2 Shill Bidding
A further consideration is the effect of shill bidders, or

bidders under the employ of the auction site who attempt
to drive up revenue by bidding in order to prevent auctions
from terminating early. This is not a theoretical problem;
pay-per-bid auction sites other than Swoopo have been ac-
cused of using shill bidding [7]. In the working paper [8],
shill bidders were considered, but it was assumed that they
would behave equivalently to other players in the auction.
This assumption was necessary to maintain the symmetry
of the analysis, and was justified by the argument that if
shill bidders behave exactly as other players, they would be
more difficult to detect. We argue that sites employing shill
bidding may be willing to shoulder the increased detection
risk associated with increased shill bidding as long as it is
accompanied by increased profit.

There are several possible ways of introducing shill bid-
ders. Here we focus on the following natural one: we define
a (ρ, L)-shill as one that enters the auction with probability
ρ and bids with probability one at each opportunity when
they are not the leader until L bids have been made (in total,
by all players), at which stage he drops out of the auction.
Such an approach provides useful tradeoffs; increasing ρ or
L increases the probability of detection, but offers the po-
tential for increased profit.

To analyze shill bidding we employ our usual framework.
We have a standard auction with n players with probability
1 − ρ. With probability ρ the shill enters and the auction
has n+ 1 players. In this case, we separate the bidders into
two groups: group A consists of the lone shill, and group B
consists of the n legitimate players who are not informed of
the shill’s presence. As before we can determine the transi-
tion probabilities and use our Markov chain analysis. Recall
that shill bidders produce no revenue for the auctioneer, so
the expected revenue is determined by the expected number
of times a legitimate player is the leader. For convenience
we adopt our usual tie-breaking rule, so the leader is picked
uniformly at random from the players who bid at each step.

Rather than plot the per-auction revenue with shill bid-
ders, we instead plot the per-auction profit. We do this for
two reasons. First, since a symmetric, full-information auc-
tion results in zero expected profit for the auctioneer in our
model, all profit in our plots can be attributed to the pres-
ence of the shill. Second, in this setting, there is some chance
that the shill will win the auction, in which case the auction-
eer’s revenue is all profit, a fact not well captured by a rev-
enue plot. Figure 7 displays the expected profit for Swoopo
in the presence of a (ρ, L)-shill for an ascending-price auc-
tion. Shill participation in ascending-price auctions has di-
minishing returns with L, which is to be expected; even
though the shill is forcibly extending the expected length
of the auction, as the price of the item goes up, legitimate
players become less willing to participate.

7. CHICKEN AND AGGRESSION
In this section we address a recently added feature to

Swoopo’s interface, Swoop It Now, that appears to have
not been analyzed previously. This feature has the poten-
tial to significantly change the dynamics of Swoopo auctions.
Our suggestion is that this feature may lead to a subclass
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Figure 7: Expected profit for Swoopo with a (ρ, L)-
shill; n = 50, v = 100, b = 1 and s = 0.25.

of players whose strategy makes some Swoopo auctions re-
semble the game of chicken [9], in contrast to the Markovian
games we have modeled in previous sections.2 In games of
chicken, it is generally understood that it can be useful for
players to signal their intentions, explicitly or implicitly, to
other players, in order to cause them to give up and allow
the signaling player to win. A natural signaling approach
in the timed auction context is to bid both frequently and
quickly after another player bids. This bidding strategy has
been noted previously, in the work of [2], where the author
dubs this “bidding aggressively” and finds that aggressive
bids have higher expected profit. Here we undertake an in-
dependent study, making several new contributions. Besides
presenting how this behavior can be viewed as a signaling
mechanism for a game of chicken embedded in Swoopo, we
provide a novel and natural definition of aggression for pay-
per-bid auctions. Then, using our trace data, we analyze
auctions for signs of aggressiveness, and estimate how ag-
gressiveness correlates with winning auctions and profitabil-
ity for players. A surprising finding is that both too little
and too much aggression appear to be losing strategies.

7.1 Swoop It Now and Chicken
Swoopo recently added the Swoop It Now option to auc-

tions on its site, which gives each player the ability to pur-
chase the item at a given price even if one loses the auction.
(Deployment on the US site appears to have occurred around
July 2009, before we began taking traces of auctions.) That
is, in many auctions, Swoopo provides a nominal retail value
for the auction item, call it r. At the end of the auction, a
player who has incurred a total bid cost of δ can purchase
the item at a price of r−δ, effectively transferring otherwise
unrecoverable sunk costs to a partial payment for the auc-
tion item. The retail value r given by Swoopo is generally
significantly higher than the lowest online retail price [2, 8].

Unfortunately we do not currently know how often Swoop
It Now is used; to our knowledge such information is neither
given by Swoopo, nor derivable from any data Swoopo makes
available. While the high nominal retail value is unattrac-
tive, after a large losing investment in an auction, this option
may become attractive to certain players.

Let us consider the behavior this additional feature intro-
duces and its consequences in two settings: the case where
only one committed player is willing to exercise this option,

2One might argue that the resemblance is more to a war
of attrition auction [6] than to chicken; we find the chicken
nomenclature easier to use, but the underlying idea is the
same.
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and the case where multiple players potentially are. Our
assumption here is that r = αv, where v is a common value
of the item for all players and α > 1. Our key finding is that
when multiple players consider taking advantage of this op-
tion as a backstop, the game becomes a variant of chicken.

Let us first suppose that a single player has the opportu-
nity to buy at the price r, including the amount they spend
on bids. This player may attempt to win the auction early by
bidding at every possible step, believing that the expected
gain dominates the maximum possible loss of (α−1)v. This
player will therefore bid until either winning the auction or
spending enough so that it is cheaper to buy the item using
Swoop It Now than to win it at the current auction price;
the other n − 1 players will play as usual. The player is
essentially equivalent to a shill bidder, except they bid until
spending a certain amount, rather than until a certain num-
ber of bids have been made, and they actually purchase the
item if they win. The approach of Section 6.2 can be ap-
plied with minor variations. The main outcome, naturally,
is that such a player increases Swoopo’s profit by prolonging
the auction, assuming their presence does not change other
players’ strategies. Figure 8 displays the profit earned by
the single committed participant as well as Swoopo for an
ascending-price auction. When a player uses the Swoop It
Now feature, if they have bid δ so far, they will have to pay
an additional side payment of r − δ to complete the pur-
chase. Also, we decrement Swoopo’s profit by an additional
v to account for the transfer of a second item to the auc-
tion winner. Profit for the committed player decreases in α
while the reverse holds for Swoopo. This model ignores the
possibility that a player might signal their intention through
aggressive bidding so that other players drop out of the auc-
tion, resulting in less profit for Swoopo.

In the case of two (or more) players who are interested in
using the Swoop It Now feature, the resulting game instead
resembles the game-theoretic version of chicken. For conve-
nience we consider a fixed-price auction with a price of 0.
Suppose that two players plan to continue to bid until either
obtaining the item or spending r in bids and then using the
Swoop It Now feature. If both exhaust their bids, they will
both lose (α − 1)v in value. But if, instead, one of them
backs off, allowing the other player to win, that player will
lose only what they have bid so far – call this β – and the
other player will purchase the item at a discount – call their
gain γv, on average. Table 7.1 displays the chicken game in
the standard payoff matrix notation.

Obviously, we have simplified things considerably in this
description; for example, there may be more than two play-

Quit Play Till End

Quit −β,−β −β, γv
Play Till End γv,−β −αv,−αv

Table 1: Payouts for chicken strategies

ers willing to play chicken in this setting. This is clearly a
subject in need of further study. However, the Swoop It Now
feature, by keeping individual losses bounded, does appear
to embed the potential for games of chicken to erupt within
Swoopo auctions. As aggressive bidding is a natural way to
signal intent in this setting, (and may be a sound tactic in
its own right), we turn to a study of aggression, making use
of our Trace dataset.

7.2 Aggression
In earlier work [2], Augenblick has suggested that aggres-

sive bidding, including bidding immediately after another
player has bid and bidding frequently in the same auction,
leads to higher expected value for a player. His analysis is
based on individual bids rather than bidders; that is, he con-
siders for each bid how the time since the previous bid and
the number of bids by the bidder for that item correlate to
the expected profit, using regression techniques.

We adopt a different approach, by looking instead at how
aggressive bidding affects the profitability of a player within
an auction, and by providing a single aggression metric to
measure the aggressiveness of a strategy. As a bidder may
vary his strategy across auctions, we define aggressiveness in
the context of a given auction. We believe that considering
the effects of aggressiveness at the level of player profitabil-
ity offers important insights as it views the merits of an
aggressive strategy holistically.

We define an aggressive strategy as one which consists
of placing many bids in rapid succession to preceding bids.
Specifically, let the response time for a bid be the number
of seconds since the preceding bid. Aggression should be
inversely proportional to response time and proportional to
the number of bids a bidder places within an auction. Hence
we define the aggression of a bidder in a given auction as:

Aggression =
Number of bids

Average response time (seconds/bid)
. (25)

To investigate whether aggressive bidding is a successful
strategy we look at the traces of 3,026 complete (no missing
bids) “NailBiter” auctions (Swoopo auctions which do not
permit the use of automated bids by a “BidButler”) in our
Trace dataset. Figure 9(a) displays the empirical CCDF
of aggression for bidders who ended up 1) “in the black”, by
winning the auction profitably; 2) winning, but perhaps not
profitably; and 3)“in the red”, by incurring bid fees in excess
of the value of any item won. Note that the classes are not
exclusive. (For Figure 9(a), when calculating the profit of a
bidder, we assume a fixed bid cost of 60 cents, as we cannot
determine the true cost. This could affect our interpretation
of the results.)

Our first observation is that aggression follows a highly
skewed distribution: the majority of players display little
aggression, while a small number of players are highly ag-
gressive. Also, not surprisingly, those players winning the
auction were bidding much more aggressively than others.
More interestingly, we see that successful players, i.e., those
who not only won the auction, but did so profitably, are
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Figure 9: Aggression and profitability.

more aggressive than average, but less aggressive than those
who win auctions. Arguably, aggression is successful in mod-
eration.

Figure 9(b) provides more insight into this latter point.
For all bidder-auction pairs in our dataset, we compute the
aggression and profitability of each outcome, and rank these
outcomes by aggression (least aggressive first). We then
plot the cumulative profit for all outcomes through a given
rank with dark shading. For reference, we also plot the
aggression of bidders at a given rank using light shading
and the scale depicted on the right-hand side of the plot.
We see that successful strategies are mostly concentrated at
aggression ranks lower than average. More interestingly, a
fact not evident in Figure 9(a), the highly aggressive players
are responsible for most of Swoopo’s profits.

We now revisit the question of whether games of chicken
are also taking place within Swoopo. To do that we turn to
the Trace dataset and look at the 3,026 “NailBiter” auc-
tions for evidence of duels: auctions culminating in long se-
quences of back-and-forth bidding between two opponents.
We find that 9% of all auctions culminated in a duel lasting
at least 10 bids, 5% lasted at least 20 bids, and 1% lasted
at least 50 bids. The longest duel we observed was 201 bids
long and somewhat humorously took place between users
Cikcik and Thedduell. We believe this provides further ev-
idence that at least some auctions are becoming essentially
games of chicken, and reiterate our supposition that aggres-
sive bidding is used as a signaling method in such settings.

8. CONCLUSIONS AND FUTURE WORK
Swoopo provides a fascinating case study in how new, non-

trivial auction mechanisms perform in real-world situations.
Here we have focused on the key issue of asymmetry, and in
particular, how various manifestations of information asym-
metry may be responsible in large part for the significant

profits Swoopo appears to enjoy today. At the same time,
we have also shown that the profitability of these auctions
is potentially fragile, especially in cases where signaling by
committed players willing to play a game of chicken or col-
lusion between players can end the auction early.

There are clearly many interesting directions to follow
from here. One area we have started to examine is asym-
metric models of pay-per-bid auctions with full information.
Players could have differing bid fees or valuations of the
item, but with these fees and valuations known in advance
to all players. Interestingly, such models have not yet been
considered in any depth in previous work.

Other broad topics for future work include more exten-
sive study of user behavior on Swoopo, the impact of timing
(that we and others have abstracted away), models where
users can dynamically change their beliefs and strategies,
and the impact of automatic bidding agents such as Bid-
Butlers. Finally, there remains the thorny problem of at-
tempting to quantify directly the impact of specific auction
characteristics on real-world profitability.
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