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ABSTRACT
Structural change and uncertainty are fundamental prop-
erties of an ad hoc network, making it difficult to develop
communication strategies, i.e., network-level approaches to
transport data from sender to receiver. At a basic level,
change and uncertainty affect how long any state maintained
by a communication strategy remains useful, and so influ-
ence the trade-offs made to collect that state. In this paper,
we introduce a framework for organizing the decision space
for deciding when a communication strategy should main-
tain state, and what type of state should be maintained, in
an ad hoc network. The framework is based on our obser-
vation that three network properties (connectivity, unpre-
dictability, and resource contention) determine when state
is useful. Using the framework, we make three contribu-
tions. First, we illustrate the framework by showing an in-
stantiation in terms of specific measures that can be used to
describe a network setting. Second, we validate the frame-
work by showing it correctly and consistently organizes the
decision space for different communication strategies. Fi-
nally, we demonstrate the analytic power of the framework
by using it to (1) uncover surprising aspects of well-known
traces, and (2) identify the need for, and value of, a new
strategy for network communication.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; C.2.1 [Network Architecture and Design]:
Wireless Networks; C.2.1 [Network Architecture and
Design]: Store and forward networks

General Terms
Design, Experimentation, Performance

Keywords
Ad hoc networks, Delay tolerant networks, Communication
strategies, State maintenance, Entropy
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1. INTRODUCTION
In an ad hoc network, mobile nodes communicate with

each other directly rather than via fixed infrastructure such
as cell phone towers or base stations. By not relying on fixed
infrastructure, ad hoc networks can be quickly deployed, are
more adaptable than typical wireless or wired networks, and
are better able to accommodate unforeseen events. However,
the full potential of such networks has not yet been realized.
To a much greater degree than in a wired network, struc-
tural change and uncertainty are fundamental properties of
an ad hoc network, making it difficult to develop network-
level approaches to transport data from sender to receiver;
we call such approaches communication strategies. Conse-
quently, a variety of communication strategies have been
proposed, with different strategies broadly targeting differ-
ent classes of ad hoc networks: from routing [1], to epidemic
forwarding [22, 11, 26], to delay tolerant network (DTN)
forwarding [7, 12, 27]. Unfortunately, there is no precise
understanding of how to determine the appropriate commu-
nication strategy for an arbitrary ad hoc network.

Fundamentally, change and uncertainty affect how long
state maintained by a node remains useful, and so influence
the trade-offs made to collect that state (such as whether to
expend bandwidth on control packets to find routes or only
transmit data packets). In traditional networks the issue is
whether to maintain hard state (i.e., state that is explicitly
removed) or soft state (i.e., state that is removed via time-
outs) [13]. In an ad hoc network the issue is whether to
maintain soft state or no state, as well as the needed level
of soft state accuracy [2, 3]. One way to organize commu-
nication strategies is in terms of the kind of soft state that
a strategy might maintain. For instance, information may
be stored about the state of the network, such as whether a
route exists to a particular destination: we call this control
state. Alternatively, information may be stored about the
state of the data to be transmitted, such as how long data
packets should be stored, as well as the data packets them-
selves: we call this data state. At one end of this spectrum,
in a routed network nodes primarily store control state. At
the other end of the spectrum, in a DTN nodes primarily
store data state. Unfortunately, for an arbitrary ad hoc net-
work, it can be difficult to identify when a communication
strategy should maintain control state or data state.

In this paper, we introduce a framework for organizing the
decision space for deciding when a communication strategy
should maintain state, and what type of state should be
maintained, in an ad hoc network. The framework is based
on our observation that three network properties (connec-



tivity, unpredictability, and resource contention) determine
when state is useful. We make three contributions:

• First, we illustrate the framework by showing a con-
crete instantiation in terms of three empirical mea-
sures. The measures we choose to use are: (1) the
average number of flows in the network, (2) the prob-
ability that an arbitrary route exists, and (3) a metric
we define, the average link-up entropy. Average link-
up entropy measures the value of routing information:
it is the average conditional entropy of the current net-
work state (i.e., the set of up/down link states) given
the network state at some time in the past.

• Second, we validate the framework by showing that it
correctly and consistently organizes the decision space
across vastly different networks. The first network is a
torus network with time-varying link availability. The
second is a network in which nodes move according to
random waypoint mobility. Each type of network, de-
pending on the parameter settings, can show a wide
range of properties, from mostly-connected to mostly-
disconnected. We show that the natural parameteri-
zations of these networks are not comparable, nor are
they particularly useful in choosing a communication
strategy. However, when placed in the framework, it
is easy to identify the situations in which each com-
munication strategy is typically appropriate.

• Finally, we demonstrate the analytic power of the frame-
work by using it to (1) uncover surprising aspects of
well-known traces, and (2) identify the need for and
value of a new strategy for network communication.
We specifically find that many well known contact traces
used for DTN studies do not fall into the DTN region
in the framework. In fact, the region in which they
fall has not been extensively studied in prior work.
We show that using the communication strategy sug-
gested by the framework for this region achieves higher
goodput than routing or DTN forwarding.

Current ad hoc network deployments typically assume a
priori knowledge of the most appropriate communication
strategy to use, whether stateful or stateless. Yet in gen-
eral the structure and traffic characteristics of an ad hoc
network are unknown until deployment. The results in this
paper suggest that structural change and uncertainty should
not be viewed as an afterthought to protocol behavior, but
should instead directly shape that behavior, and that un-
derstanding when protocols should maintain state is critical
for ensuring that protocols correctly adapt to changes.

The rest of this paper is structured as follows. In Section
2, we introduce the framework. In Section 3, we define the
empirical measures we use to instantiate the framework. In
Section 4, we validate the framework. In Section 5 we use
the framework to classify traces previously studied in the
literature. Finally, in Section 6, we summarize our results
and describe future work.

2. STATE MAINTENANCE
Our goal is to organize the decision space for deciding

when a communication strategy should maintain state, and
what type of state should be maintained, in an ad hoc net-
work. To achieve communication, nodes can store two kinds
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Figure 1: Overviewing the framework.

of state: control state and data state. Control state is
information about the state of the network, such as whether
a route exists to a particular destination. Data state is
information about the state of the data to be transmitted,
such as how long data packets should be stored, as well as
the data packets themselves. Of course, all communication
strategies maintain data state, however briefly, because a
data packet must be buffered before being transmitted. For
the purposes of our discussion here, we refer to stored data
packets as data state only when those packets are stored
for an extended period of time (i.e., are not re-transmitted
immediately upon receipt). Conceptually, the control plane
in a traditional network disseminates control state and the
data plane forwards data state. Increasing the amount and
quality of control state corresponds to increasing the rate at
which updates about the state of the network are received.
Increasing the amount of data state corresponds to increas-
ing the amount of time data packets are stored. Like any soft
state [13], both control state and data state will eventually
be modified as timers expire.

The starting point for our framework is the intuitive ob-
servation that control state is valuable when a network is
predictable, while data state is valuable when a network is
not well connected. This idea is shown diagrammatically in
Fig. 1(a). The figure immediately suggests four classes of
communication strategies.

1. Control-state strategies. These strategies maintain
primarily control state. Routing [1] is the typical ex-
ample of a control-state strategy. Routing first dissem-
inates control packets to identify routes (the control
state) and then transmits data over those routes.

2. Data-state strategies. These strategies maintain
primarily data state (i.e., they store data packets for
some non-trivial amount of time). DTN forwarding [7,
12, 27] is the typical example of a data-state strategy.
In DTN forwarding, nodes store and carry data packets
until they encounter other nodes (permitting packets
to be delivered even when end-to-end routes are un-
likely exist). Essentially, DTN forwarding stores data
packets until the network changes in such a way that
the data packets can be delivered.

3. No-state strategies. These strategies maintain little
or no state. Epidemic forwarding [22, 11, 26], specif-
ically flooding, is the typical example of a no-state
strategy. In flooding, when a node receives a data
packet it is immediately re-transmitted.



4. Control + data state strategies. These strategies
maintain both control and data state. We observe that
for the most part, such strategies have been under-
explored in the literature.

2.1 Proposed Framework
Our proposed framework is shown in Fig. 1(b). Illustrated

in Fig. 1(b), as network unpredictability decreases, we
expect that maintaining control state becomes useful since
routes remain accurate for long periods of time. As net-
work connectivity decreases, we expect that maintain-
ing data state becomes useful, since nodes will likely have
to store data packets until the network changes in such a
way that the packets can be delivered. Finally, as network
contention (i.e., the amount of contention for network re-
sources) increases, we expect that the threshold (shown as
a vertical line) below which control state should be main-
tained moves to the right. That is, even less predictable
control state becomes useful if network contention is high
since control state can be used to mitigate contention.

To evaluate the framework, we need to specify what makes
a particular communication strategy appropriate. We de-
fine the appropriate strategy to be the one that maximizes
goodput. Goodput is defined as the number of unique data
packets received at the destination and depends on the trade-
offs that the different classes of communication strategies
make. For instance, to maintain control state (specifically
routes over which data can be efficiently transmitted) control-
state strategies expend bandwidth on control packets. In
comparison, data-state strategies maintain no control state
(so do not expend bandwidth on control packets) but may
expend bandwidth on multiple transmissions of a packet.

2.2 Related Work
One way that our framework can be used is to classify

different network settings according to the most appropri-
ate class of communication strategies. Other work has also
attempted such a classification. The authors in [20] develop
a framework specifically for the space of DTNs based on
connectivity, while the authors in [4] propose and evaluate
a distributed algorithm to classify networks as connected,
intermittently connected, or disconnected based on the pres-
ence of different types of paths in the network. For each
network class, the approach in [4] associates a communica-
tion strategy: routing, DTN forwarding, or message ferry-
ing. Our work goes beyond that in [20, 4] by determining
the appropriate strategy based on the type of state that
should be maintained in the network (rather than the net-
work class) and importantly, takes control signaling costs
(i.e., to maintain control state) into consideration.

Other work has also investigated the effect of control sig-
naling on goodput. The authors in [10] determine how much
protocol information is needed per packet to allow the start
and end times of packets to be recovered at the destination
with a given average error, while the authors in [24] de-
termine the minimal rate at which to receive state updates
to ensure high probability of packet delivery for link state
routing. The authors in [23] develop and evaluate a model to
predict the control overhead for different routing protocols.
In comparison to the work in [10, 24, 23], our work looks not
just at how maintaining control state affects routing good-
put, but also at when to use a protocol that maintains less
control state than that of a protocol such as routing.

3. INSTANTIATING THE FRAMEWORK
To instantiate the framework we need empirical measures

of network connectivity, unpredictability, and contention.
By empirical measure, we mean any fundamental net-
work or traffic characteristic that a wireless or mobile node
could measure. Our goal here is to identify natural empirical
measures.

3.1 Measures of network connectivity
These measures indicate the potential benefits of storing

data packets for an extended period of time, and therefore
of maintaining data state. We use the probability that an
arbitrary route exists in the network, φ, as our measure
of network connectivity. The probability that an arbitrary
route exists indicates how often an end-to-end route is found
between two arbitrary nodes. There exists a critical thresh-
old probability, θ, for the probability that a link exists, pl,
such that when pl > θ, φ is close to one and when pl < θ, φ
is close to zero. Thus, θ is the percolation threshold. Know-
ing θ is not a sufficient empirical measure in itself, however,
since different networks will percolate at different values of
θ. Hence φ is more informative since we can associate the
value φ = 0.5 with the percolation threshold, regardless of
the value of θ. Intuitively, for φ ≥ 0.5 control-state or no-
state strategies should be preferred to data-state strategies
since an end-to-end route is likely to exist. For φ < 0.5 data-
state strategies should become useful since only temporal
routes will likely exist for many source-destination pairs.

3.2 Measures of network unpredictability
These measures capture the predictability of route infor-

mation, such as how long routes remain stable. Thus, these
measures indicate whether maintaining control state is use-
ful. Intuitively, the less predictable network changes are, the
less preferred control-state strategies will be. We use en-
tropy as our measure of network unpredictability. Entropy,
a measure of uncertainty, is one natural way to capture the
unpredictability of changes in the states (up or down) of
links in the network.

To define our entropy-based measure of network unpre-
dictability, let Eu

t be the set of edges up in the network at
time t and let Et+i ⊆ Eu

t be the subset of those edges up
at time t + i. Let gt+i be a random variable representing
whether an arbitrary link in Eu

t is up (u) or down (d) at
time t+ i. Then the probability that an arbitrary link in Eu

t

is up at time t + i given that all links in Eu
t are up at time

t, is computed as follows.

P (gt+i = u|gt = u) =
|Et+i|

|Eu
t |

We can then define link-up entropy, H(gt+i|gt).

H(gt+i|gt) = −
X

y=u,d

P (gt+i = y|gt = u)

log P (gt+i = y|gt = u) (1)

In practice, routing protocols typically update routes pe-
riodically. We assume routes are updated every T timesteps
and refer to T as the route update interval. The accu-
racy of control state decays over the entire interval, T . We
also define an entropy update interval, Th, to remove
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Figure 2: Instantiation of framework using the em-
pirical measures.

the dependence of link-up entropy on a specific time, t + i.
We can now finally define our proposed measure of network
unpredictability, average link-up entropy, h:

h =
1

M

M
X

j=1

Ht(j)+i(j)|t(j) (2)

where M is the total number of timesteps under consid-
eration, t(j) ≤ j is the most recent timestep at which an
entropy update occurred, i(j) is the number of timesteps
since timestep t(j), and

Ht+i|t =



H(gt+i|gt) if i 6= 0
1 otherwise.

(3)

As expressed by Ht+i|t, we assume entropy of one (max-
imum entropy) at entropy update timesteps to capture the
fact that during route updates no knowledge of network state
is assumed. This mirrors that at timesteps when routes are
updated, goodput is zero as no data is transmitted. If routes
are updated but no links are found in the network, we as-
sume entropy of one at all timesteps until routes are next
updated.

We condition on the links found when routes are updated
because it is only those links that will be used in routing.
The links that are not up consistently (and are thus unlikely
to be found when routes are updated) are not useful for
routing and so we do not include their entropy contribution
in the calculation of h. As h decreases, the network becomes
more predictable and we expect the utility of control-state
strategies such as routing to increase. h is similar to the
mutual information measure computed in [24] to determine
the minimum rate at which to receive link state updates to
ensure that the difference between the true and perceived
link states is within some error bound (and thereby ensure
high probability of packet delivery). We differ from the work
in [24] by specifically conditioning on only those links that
existed when routes were last updated.

3.3 Measures of network contention
These measures indicate the potential benefits of reducing

the network resources each data packet uses to travel from
source to destination, and therefore of maintaining control
state. We use the average number of flows in the net-

work, N , as our measure of network contention. A flow cor-
responds to a source-destination node pair, where the source
is the origin of some data to be sent to the destination. Ig-
noring energy concerns, if there is only one flow, no-state or
data-state strategies are always preferable to control-state
strategies. This is because maintaining control state requires
signaling, which diminishes the bandwidth available to carry
data traffic.

3.4 Instantiated Framework
In Fig. 2, we instantiate the framework using our pro-

posed empirical measures (1) the average number of
flows, N , (2) the probability that a route exists, φ,
and (3) average link-up entropy, h. The different col-
ored regions correspond to different strategies; the darker
the color, the larger the expected goodput gains over other
strategies. As shown in Fig. 2, we conjecture that when
h ≤ f(N), routing is appropriate and is most preferred when
h is minimized and φ is maximized. As N increases, we ex-
pect f(N) also increases. We conjecture that for h > f(N)
and φ < 0.5, DTN forwarding is appropriate and is most
preferred when h is maximized and φ is minimized. Finally,
we conjecture that for h > f(N) and φ ≥ 0.5, flooding is
appropriate and is most preferred when h and φ are both
maximized. We leave a discussion of the low h, low φ region
until Section 5.

4. FRAMEWORK VALIDATION
In this section, we validate the framework. Our goal here

is to check that the framework correctly and consistently
organizes the decision space for selecting a communication
strategy across different networks. To enable the full pa-
rameter space (given by φ, h, and N) to be validated, we
use network models rather than traces. We next give our
simulation setup in MATLAB.

4.1 Communication Strategies
We use routing, flooding, and DTN forwarding as repre-

sentative examples of control-state, no-state, and data-state
strategies. For generality, we develop idealized abstractions
of the strategies that contain only the essential features of
each class of strategies. Our abstractions are then as follows.

Routing. We base our routing abstraction on a proto-
col such as link state routing or AODV [19]. Consider how
AODV behaves. When senders have data to transmit but no
routes are known, control packets must be sent to identify
the shortest routes: during this time period, no data can
be sent. Once each sender knows the shortest route for its
data, the data packets are sent over that route. Thus, in our
routing abstraction we divide time into alternating periods
of route updates and data transmission. The relative dura-
tions of these periods will be important for identifying the
situations in which routing is appropriate. We use a route
update interval of T timesteps, with T as defined in Section
3.2. All nodes update routes for all flows at the first timestep
of the route update interval T . At each of the remaining
T − 1 timesteps, every source attempts to transmit a data
packet over the shortest route to the packet destination. A
route must exist end-to-end at a timestep for a packet to
be delivered using the route. The amount of control over-
head incurred then depends on how frequently routes are
updated, impacting both the amount and accuracy of the
control state maintained.



Notation Meaning
Ct

i Capacity of the route used by flow i at time t when routing
L Average link capacity
τ Number of timesteps over which DTN forwarding broadcasts each data packet
T Route update interval
T ∗ Optimal route update interval
Th Entropy update interval
T ∗

h Optimal entropy update interval
M Number of timesteps under consideration
IR(t, T ∗) Indicator function: 1 if routes are not updated at timestep t, 0 otherwise
IF (i, t) Indicator function: 1 if destination of flow i is reachable at timestep t, 0 otherwise
ID(i, t, τ ) Indicator function: 1 if destination of flow i is reachable over interval from t to t + τ , 0 otherwise

Table 1: Notation used in paper.

Strategy Goodput for One Flow, i Goodput for N Flows

Routing Gi
R(T ∗) = 1

M

PM

t=1 Ct
i IR(t, T ∗) GR(T ∗, N) =

PN

i=1 Gi
R(T ∗)

Flooding Gi
F (1) = 1

M

PM

t=1
L

N
IF (i, t) GF (1, N) =

PN

i=1 Gi
F (1)

DTN Forwarding Gi
F (τ ) = 1

Mτ

PM

t=1
L

N
ID(i, t, τ ) GF (τ, N) =

PN

i=1 Gi
F (τ )

Table 2: Per-timestep goodput computations used in Section 4. If multiple flows share a link, the available
link capacity is shared equally among all flows. Notation given in Table 1.

Flooding. In our flooding abstraction, sources transmit
data at every timestep, broadcasting each packet to all nodes
reachable at the timestep. With N flows, each source floods
data at each timestep at rate L/N , where L is the average
link capacity.

DTN forwarding. In our DTN forwarding abstraction,
sources broadcast each packet to all nodes reachable in at
most τ timesteps. Thus, nodes maintain data state for τ
timesteps. With N flows, each source transmits data at rate
L

τN
. For τ = 1, DTN forwarding corresponds to flooding.

While DTN forwarding for τ > 1 may be more likely than
flooding to deliver a particular data packet, it takes longer to
do so, and goodput is correspondingly less. We use τ = 2, 3
in the simulations in Section 4.3. We intentionally abstract
the spectrum of DTN forwarding strategies using one simple
strategy which is to hold the data (maintain data state).

To generate data packets, our simulations assume that
each flow generates one new data packet at each timestep.
We additionally assume that when a node transmits a data
or control packet, the packet is received by all nodes reach-
able at the timestep (including by nodes multiple hops away).
Using these assumptions and our abstractions for the differ-
ent strategies just described, we give per-timestep goodput
computations for the strategies in Table 2.

4.2 Network Models
We consider two network models: (1) a torus network

with time-varying link availability, and (2) a network in
which nodes move according to the random waypoint mo-
bility model [6]. Neither model is expected to be realistic in
practice. However, the torus model allows us to consider the
simplest possible network case where links are independent
and nodes are stationary. The random waypoint model then
allows us to build in the complexity of the network and con-
sider correlated links and mobile nodes. We next describe
our simulation setups for these models.

Torus. We use a 10×10 torus network with IID links. To
model link behavior, we use a 2-state Markov model: links
transition from up to up with probability p and down to
down with probability q at each timestep. All links have
unit capacity. We perform 1500 runs to obtain each point in
a plot; each run lasts for 100 timesteps. We use the steady-
state probability that a link is up (π = 1−q

2−p−q
) to initialize

each run of the simulation in steady-state. At each timestep,
we update the states of the links and check which routes exist
at the timestep, for routing strategies using route update
intervals, T , of 1, 2, 5, 10, 25, 50, and 100. We randomly
select without replacement N new source-destination pairs
(i.e., N flows), every 100 timesteps. At route re-computation
timesteps, all capacity is used for control.

Random waypoint (RWP). We use code from [18] to
generate traces of random waypoint mobility with constant
velocity. For the random waypoint model, instead of p and
q, our tunable parameters are now the node velocity, v,
and transmission radius, r. Each simulation is 4000 seconds
long. We let the length of one timestep be the transmis-
sion time of a packet times the logarithm of the network
size. To obtain a realistic timestep, we use a transmission
rate of 11 Mbps and a packet size of 1500 bytes. This gives
a timestep of 0.012 s × log10(n) where n is the number of
nodes in the network. Since we use 100 nodes, the timestep
is 0.024 s. Every timestep, we sample the network, checking
whether any route or a specific route exists for each flow.
If a route exists both at the start and end of a timestep,
we assume it exists for the duration of the timestep. When
the node velocity, v, is greater than 100 m/s we additionally
subsample each timestep every 0.024 100

v
seconds and check

that the route exists at each of the subsampled times. We
use T values of 1, 2, 3, 6, and 10, and randomly select with-
out replacement N new source-destination pairs every 300
timesteps.

For both the torus and random waypoint results, we show
average routing goodput results for the T values that maxi-
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Figure 3: Average per-timestep goodput, one flow.

mize goodput, (T ∗), and average link-up entropy results for
the T values that minimize h, (T ∗

h ).

4.3 Results
We first examine our results in the (p, q) and (r, v) spaces

that naturally parameterize the torus and random waypoint
models, and then examine our results in the (φ, h, N) space
of the instantiated framework.

4.3.1 Impact of (p, q) and (r, v) on Goodput 1

Fig. 3(a) to (d) examine how p and q affect goodput in
the torus when there is one flow. Fig. 3(a) plots routing
goodput: the transition from low to high(er) goodput oc-
curs where p > 0.5 and q is small. Next, Fig. 3(b) plots
flooding goodput: the transition from low to high goodput
now occurs uniformly along the p = q axis. Fig. 3(c) and (d)
then plot DTN goodput for τ = 2 and τ = 3 respectively:
again, the transition from low to high goodput occurs near
the p = q axis, but now the maximum relative goodput is
1/2 and 1/3 that of flooding. Thus, routing transitions from
low to high goodput differently than flooding or DTN for-
warding.

Fig. 3(e) to (h) examine how v and r affect goodput in
random waypoint when there is one flow. Fig. 3(e) plots
routing goodput: goodput is maximized for large r and low
v. Next, Fig. 3(f) plots flooding goodput: as long as r is
greater than ∼ 100 m (the percolation threshold), flooding
goodput is close to one. Finally, Fig. 3(g) and (h) plot DTN
forwarding goodput for τ = 2 and τ = 3 respectively: as
long as r is above the 100 m percolation threshold, goodput
is maximized (again about 1/2 and 1/3 that of flooding).

4.3.2 Validating the Framework
Fig. 4(a) to (d) investigate where each communication

strategy maximizes goodput for the torus and random way-
point models as a function of their natural (p, q) and (r, v)

1To understand how (p, q) and (r, v) impact average link-up
entropy, h, we refer the reader to Appendix A.

parameterizations. As the natural parameterizations are not
comparable we have no common decision space from which
to select communication strategies for the two models.

Fig. 4(e) to (h) then investigate where each strategy maxi-
mizes goodput for the torus and random waypoint models as
a function of the empirical measures. Fig. 4(e) to (h) show
that by transforming to the (φ, h, N) space, the regions
where the different strategies maximize goodput are
similar for both models. The empirical measures thus
consistently organize the decision space and validate
the framework in Fig. 2. Note that for the random way-
point model, as the probability of a route decreases (i.e.,
when φ < 0.5), the probability that the route used will be
longer than one hop also decreases, and so the average route
length also decreases. In comparison, the route length dis-
tribution for the torus is fixed since nodes are stationary.
DTN forwarding with τ = 2, 3, however, only has an advan-
tage over flooding (which is equivalent to DTN forwarding
with τ = 1) when routes exist temporally over exactly two
or three timesteps (but not one timestep). Consequently,
for random waypoint, DTN forwarding with τ = 2, 3 (as
was used in the simulations) is unlikely to be preferred to
flooding, and we observe in Fig. 4(h), that DTN forwarding
never maximizes goodput.

5. USING THE FRAMEWORK
Having validated the framework in the previous section,

in this section we use the framework to examine a number
of well-known traces. We specifically investigate what type
of state should be maintained by communication strategies
for those traces.

5.1 Traces
We use five traces from the CRAWDAD repository [14].

• Infocom06 [8, 9, 21]. This dataset consists of con-
tacts over time among 78 participants and 20 access
points at the Infocom 2006 conference.
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Figure 4: Validating the framework. None refers to no single strategy maximizing goodput.

• Infocom05 [8, 9, 21]. This dataset consists of con-
tacts over time among 41 participants at the Infocom
2005 conference.

• DieselNet [5]. This dataset consists of contacts over
time among buses. Bus routes are repeated daily, so
we focus only on a trace for one day, October 22, 2007.
To the end of the trace (which corresponds to the ter-
mination of the bus schedule for the day) we add two
hours where we assume buses are parked adjacent to
each other in the garage, and that adjacent buses can
communicate. This garage interval is used to specifi-
cally explore whether the framework correctly classifies
the interval as in the control-state regime.

• Intel [8, 21]. This dataset consists of contacts over
time among eight employees at the Intel Research Cam-
bridge Corporate Laboratory.

• Cambridge [8, 21]. This dataset consists of contacts
over time among 12 graduate students at the Univer-
sity of Cambridge.

We implement our simulations in MATLAB. For all traces
we use discrete-time simulation, with one timestep equal to
one second. In practice the appropriate timestep (such as to
compute T ∗

h ) is the expected time needed for a useful packet
transmission to occur, which may depend on the network.
By useful we mean the time needed for a data packet to be
received by its destination, or for routes to be found.

We compute the empirical measures at each timestep,
since we are interested in time-varying behavior. This is
different from the simulations in Section 4, where we were in-
terested in steady-state behaviour. We plot an exponentially
weighted moving average of the measures using a weight of

α = 0.001 to average in new values. For instance, instead of
computing h as in Equation (2), we now compute h at each
timestep j as follows.

hj = (1 − α)hj−1 + αHt(j)+i(j)|t(j) (4)

We assume Ht(j)+i(j)|t(j) = 1 if no links existed in the net-
work at timestep t(j) when routes were updated. We sim-
ilarly compute a time-averaged φ at each timestep j, (φj),
using only the mobile nodes (i.e., we do not include connec-
tivity to access points and external contacts). The T ∗ and
T ∗

h values used in the plots are given in Table 3.

5.2 Trace Classification
We compute time-averaged hj and φj values for the traces

and plot the values computed at each timestep j in Fig. 5,
coloring each point according to the corresponding trace.
Fig. 5 shows that only DieselNet has behavior distinctly
different from the other traces, first, spending time in the
(high h, low φ) region (the data state regime) and then tran-
sitioning to the (low h, high φ) region when in the garage
(the control state regime). Because we are plotting time-

Info06 Info05 DieselNet Intel Cambridge

T ∗ 10 10 6 / 300 30 30
T ∗

h 10 30 30 30 30

Table 3: Update intervals used in Fig. 5 to 9. The
DieselNet results use T ∗ = 6 until the buses enter
the garage, and then T ∗ = 300. For the DieselNet
trace we use T and Th values of 1, 2, 3, 6, 10, 30, 60,
300; the other traces use 1, 2, 3, 6, 10, 30, 60, 3000.
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Figure 6: Infocom06 trace results. We annotate each interval with the regime identified by the framework
below the goodput plot, and show the number of packets delivered by routing (R), DTN forwarding (D), and
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Figure 5: Classifying the traces. Each point repre-
sents a time period in a dataset.

averaged values, Fig. 5 shows DieselNet transitioning grad-
ually, rather than jumping directly, between the two regions;
however the raw data transitions directly. In comparison,
the other traces spend most or all of their time in the (low
h, low φ) region (the control+data state regime). We next
examine this region further.

5.3 The Hybrid Region
Our analysis of the traces reveals that most of the traces

spend most or all of their time in the low connectivity and
low unpredictability region in Fig. 1(b); we will refer to
this region as the hybrid region. Intuitively, in the hybrid
region there are few routes but those routes that do exist are
relatively stable. Such a situation could arise, for example,

when a subset of nodes are stationary and connected, while
the remaining nodes are highly mobile.

The fact that so many traces fall into the hybrid region
is surprising. These traces have all been used to evaluate
DTN forwarding strategies, which are data state strategies.
But our analysis suggests that a control+data state strat-
egy is appropriate for the majority of these traces. Con-
ceptually, a simple control+data state strategy for networks
in the hybrid region should perform routing over any pre-
dictable routes and DTN forwarding over the remaining un-
predictable links. In fact, strategies for networks that fall in
the hybrid region have not been extensively explored in the
literature, although a few studies have looked at this sort of
communication strategy [17, 25, 15]. We next compare the
performance of a simple hybrid strategy on the traces with
that of routing and DTN forwarding.

5.4 Evaluating Strategies on the Traces

5.4.1 Communication Strategies
We use routing, DTN forwarding, and a hybrid forward-

ing strategy (defined below) as representative examples of
control-state, data-state, and control+data state strategies.
In comparison to the simplified strategies used in Section 4
to validate the framework, we use more realistic strategies
to evaluate the traces.

To model data traffic, we assume flows exist between all
node pairs (and that queues are maintained at nodes for all
flows). At each timestep, the source of a randomly selected
flow generates one packet to be delivered. Our goal with this
traffic model is to isolate the effects of the network traffic
from those of the network topology and to ensure that no
strategy maximizes goodput simply because of the traffic
characteristics. Like with the empirical measures, we plot
an exponentially weighted moving average of goodput using
a weight of α = 0.001 to average in new values. We next
describe the strategies.
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Figure 7: DieselNet trace results.

Routing. We again assume that all nodes update routes
during a single timestep. To determine the routing goodput
at the other timesteps, we first find all reachable destinations
using the routes available from the last route recomputation.
We then randomly choose a reachable destination for which
there are packets to deliver, and deliver a packet to that
destination. We then again check whether any more desti-
nations are reachable, but now only consider those routes
from the last route recomputation that exclude all nodes on
the route just used: this reflects link contention due to in-
terference. We repeat this process until we find no reachable
destinations. We simulate a set of T values and use results
for the T value that maximizes goodput over the entire sim-
ulation.

DTN forwarding. Rather than using a fixed τ as in
Section 4, nodes now store a data packet until it is deliv-
ered. At each timestep, DTN forwarding randomly selects
two nodes, i and j, that are in contact: if i is holding a packet
destined for j, that packet is transmitted and removed from
the queues of all nodes in addition to being removed from
node i’s queue. If i does not have a packet destined for j,
i transmits a copy of a randomly selected data packet that
j does not yet have. This process is repeated for all node
pairs in contact that have not yet participated in a packet
exchange at the timestep. Again, we intentionally abstract
the spectrum of DTN forwarding strategies using the simple
strategy of holding the data.

Hybrid forwarding. This strategy is a purposefully sim-
ple hybrid of our routing and DTN forwarding strategies: at
each timestep, we first use routing to deliver packets to all
reachable destinations using the routes available from the
last route recomputation. Once all reachable destinations
have been exhausted, we use DTN forwarding to transmit
data packets over any remaining links that exist that are not
incident to nodes previously used in routing. For compari-
son purposes, we plot the hybrid forwarding results for the
T value that was optimal for routing; we leave optimizing
the T value for hybrid forwarding for future work.

5.4.2 Results
Infocom06. Fig. 6 shows the empirical measures and

goodput for the Infocom06 trace as a function of the time
of day, averaged over 10 runs. Below the goodput plot, each
interval is annotated with the regime identified by the frame-
work and the number of packets delivered by routing (R),
DTN forwarding (D), and hybrid forwarding (H) within the
interval. These annotations are used to show cumulative
goodput since the plots themselves only show time-averaged
instantaneous goodput. The figure shows distinct time-of-
day behaviour for hj ; however, we note that hj is always
below 0.5 and φj is always low. The figure also illustrates a
number of features of the framework. First, during periods
when φ is relatively large, goodput is also greatest. Second,
while no strategy can achieve high goodput when both h
and φ are small, the strategy that consistently achieves the
highest goodput throughout the trace is the hybrid strat-
egy. This can be seen from the annotations at times t = 1,
t = 26001, and t = 75001, which show the goodput achieved
during the three intervals. In each of the intervals, the
hybrid strategy has the highest goodput. This is as pre-
dicted by the framework, given that each interval lies en-
tirely within the (low h, low φ) region. Our analysis of
the Infocom05 trace shows that hybrid forwarding again has
highest goodput and is not shown due to space constraints.

DieselNet. Fig. 7 shows the empirical measures and
goodput for the DieselNet trace as a function of the time
of day, averaged over 30 runs. The figure shows that during
the daytime interval (until t = 56701), the network is in the
data-state regime, which suggests that DTN forwarding is
appropriate. Indeed, as seen in the annotation, DTN for-
warding has the highest goodput during this interval. The
nighttime interval (after t = 56701, when buses are in the
garage) is in the control-state regime which suggests that
routing is appropriate. The annotations show that routing
has the highest goodput during this interval. Unlike the
other traces, the DieselNet trace shows properties that cor-
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Figure 8: Intel trace results.

respond only to data-state or control-state; the DieselNet
traces are never in the hybrid region.

Taken together, the Infocom06 and DieselNet traces show
behavior that spans all three regimes of interest (control-
state, data-state, and control+data state) and show that
in each case, the framework gives the correct guidance for
the appropriate strategy to use. Interestingly, the DieselNet
trace is the only trace we analyzed that primarily falls in
the data-state region (corresponding to DTN forwarding),
despite the fact that all the traces we analyzed have been
used in studies evaluating DTN forwarding.

Intel. Fig. 8 shows the empirical measures and goodput
for the Intel trace as a function of the time of day, averaged
over 10 runs. Like the other traces, for the intervals falling in
the (low h, low φ) region, hybrid forwarding has the highest
goodput. At the end of the Intel trace, after t = 35601,
there is a brief interval falling in the (high h, low φ) region,
for which DTN forwarding has the highest goodput, again
as predicted by the framework.

Cambridge. Fig. 8 shows the empirical measures and
goodput for the Cambridge trace as a function of the time
of day, averaged over 10 runs. Unlike the other traces,
the Cambridge trace has an initial interval, until t = 5001,
falling in the (low h, high φ) region at the start of the trace.
As predicted by the framework, routing has highest goodput
during this interval.

5.5 Discussion
The framework gives insight into what type of state (con-

trol or data) should be stored as a function of the given
network characteristics (h and φ). Our analysis also shows
the importance of the hybrid region in practice, and that as
predicted by the framework, control+data state strategies
(like hybrid forwarding) are indeed the most appropriate
strategy for this region.

The framework also provides insight into why flooding (a
no-state strategy) is not often seen in practice. The (high
h, high φ) region where we expect no-state strategies to
be appropriate occurs when routes are very likely to exist
but are constantly breaking. Such a scenario can be envi-

sioned by the motion of heated gas molecules trapped in a
container. People or vehicles moving in the same way as
molecules seems unlikely to arise in practice, and none of
the traces we analyzed spent time in the (high h, high φ)
region.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a framework for understand-

ing when a communication strategy should maintain state,
and what state should be maintained, in an ad hoc net-
work. We made the following three contributions. First,
we illustrated the framework by showing an instantiation in
terms of specific measures (φ, h, N) that can be used to
describe a network setting. Second, we validated the frame-
work by showing it correctly and consistently organizes the
decision space for different communication strategies (using
the torus and random waypoint models). Finally, we demon-
strated the analytic power of the framework by using it to
(1) uncover surprising aspects of well-known traces, and (2)
identify the need for and value of a new strategy for network
communication, hybrid forwarding.

In future work, we will examine how to practically esti-
mate the empirical measures, and will investigate how quickly
the estimated measures converge. Gossip algorithms are one
way to estimate (φ, h, N) in a distributed way, with informa-
tion piggy-backed on data and control packets whenever pos-
sible. In this way, φ could be approximated using the average
fraction of nodes in the network with which a node shares
a connected component. Conversely, each node can locally
estimate h using passive observation of its links; more accu-
rate estimation can be achieved by having nodes additionally
gossip their estimated h values (or the conditional probabil-
ities needed to compute h and the fraction of timesteps at
which no links are found). As potentially significant over-
head is needed to compute measures, it may be useful is to
locally compute the measures for different regions of a net-
work. Since different nodes may have different views of the
ad hoc network, different nodes may also estimate different
values for the empirical measures. We will thus also inves-
tigate the consequences of different nodes in the network
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Figure 9: Cambridge trace results.

maintaining different amounts and types of state, as well as
further explore strategies that simultaneously maintain both
control state and data state. Finally, we have not considered
energy issues in this work: further work is needed since con-
trol can be used to manage energy (such as in a duty-cycling
network) as well as increase goodput.
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APPENDIX

A. AVERAGE LINK-UP ENTROPY PLOTS
Fig. 10(a) plots average link-up entropy, h, for the torus as

a function of p and q. Fig. 10(a) shows that h is maximized
in the region where p = q. Conversely, Fig. 10(a) shows that
h is minimized when q is very large and p is very small, or
q is very small and p is very large: this is because links are
very likely to stay down (or up), respectively, and so links
are very predictable. Similarly, when p and q are both small,
h is again low: this is because while links may be frequently
breaking and reappearing, links are predictably breaking.
Thus, the frequency of network change is important, but so
is the predictability of that change. Note that h is slightly
lower in the q < p region versus the p > q region, because
h focuses only on the links that existed when routes were
last updated. Finally, observe that the region where h
is maximized in Fig. 10(a) corresponds to the region
where flooding is most preferred in Fig. 4(a).

Since we use a two-state Markov model for link behavior
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Figure 11: Average link-up entropy, h, and optimal
update interval, t = T ∗

h , for the torus, computed an-
alytically.

in the torus, we can also analytically compute h. We first
compute the t-step transition probabilities for a link (see,
e.g., Ch. 1 of [16]) as follows.

p(t)
uu =



1−q

2−p−q
+ 1−p

2−p−q
(p + q − 1)t if p + q < 2

1 if p + q = 2

p
(t)
dd =



1−p

2−p−q
+ 1−q

2−p−q
(p + q − 1)t if p + q < 2

1 if p + q = 2

The notation p
(t)
ud indicates the probability that a link is in

state d = down after t transitions and having started in state

u = up. We assume p
(0)
uu = p

(0)
dd = 1 and p

(0)
ud = p

(0)
du = 0.

From the (p + q − 1)t term, when p + q − 1 < 0 links tend
to oscillate. The network is thus stable when p + q − 1 = 1
and bistable when p + q − 1 = −1.

The link-up entropy of Equation (1) computed analyti-
cally for the torus is then as follows.

Hu(gt+i|gt) = −
X

y=u,d

p(t+i)
uy log p(t+i)

uy (5)

Average link-up entropy, h, can then be computed analyti-
cally and is shown in Fig. 11(a). Fig. 11(b) plots the T ∗

h

values used to compute the h values in Fig. 11(a).
Finally, Fig. 10(b) plots h for the random waypoint model

as a function of r and v: h is maximized where r is around
the percolation threshold of 100 m and v is high. Although
many fewer links may actually exist than could potentially
exist (unlike in the case of the torus), h focuses only on
the predictability of those links found when routes were last
updated. As with the torus, again observe for the ran-
dom waypoint model that the region where h is max-
imized in Fig. 10(b) corresponds to the region where
flooding is most preferred in Fig. 4(c).


