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Abstract

In the emerging area of sensor-based systems, a sig-
ni�cant challenge is to develop scalable, fault-tolerant
methods to extract useful information from the data the
sensors collect. An approach to this data management
problem is the use of sensor database systems, exempli-
�ed by TinyDB and Cougar, which allow users to per-
form aggregation queries such as MIN, COUNT and
AVG on a sensor network. Due to power and range con-
straints, centralized approaches are generally impracti-
cal, so most systems use in-network aggregation to re-
duce network traÆc. However, these aggregation strate-
gies become bandwidth-intensive when combined with the
fault-tolerant, multi-path routing methods often used in
these environments. For example, duplicate-sensitive ag-
gregates such as SUM cannot be computed exactly us-
ing substantially less bandwidth than explicit enumera-
tion. To avoid this expense, we investigate the use of ap-
proximate in-network aggregation using small sketches.
Our contributions are as follows: 1) we generalize well
known duplicate-insensitive sketches for approximating
COUNTto handle SUM, 2)we present and analyzemeth-
ods for using sketches to produce accurate results with
low communication and computation overhead, and 3)
we present an extensive experimental validation of our
methods.

1. Introduction

As computation-enabled devices shrink in scale and
proliferate in quantity, a relatively recent research di-
rection has emerged to contemplate future applications
of these devices and services to support them. A canon-
ical example of such a device is a sensor mote, a de-
vice with measurement, communication, and computa-
tion capabilities, powered by a small battery [12]. In-
dividually, these motes have limited capabilities, but
when a large number of them are networked together
into a sensor network, they become much more capa-
ble. Indeed, large-scale sensor networks are now being
applied experimentally in a wide variety of areas |
some sample applications include environmental mon-
itoring, surveillance, and traÆc monitoring.

In a typical sensor network, each sensor produces
a stream of sensory observations across one or more
sensing modalities. But for many applications and sens-
ing modalities, such as reporting temperature readings,
it is unnecessary for each sensor to report its entire
data stream in full �delity. Moreover, in a resource-
constrained sensor network environment, each message
transmission is a signi�cant, energy-expending oper-
ation. For this reason, and because individual read-
ings may be noisy or unavailable, it is natural to
use data aggregation to summarize information col-
lected by sensors. As a reection of this, a database
approach to managing data collected on sensor net-
works has been advocated [15, 20], with particular at-
tention paid to eÆcient query processing for aggregate
queries [15, 20, 23].

In the TAG system [15], users connect to the sen-
sor network using a workstation or base station directly
connected to a sensor designated as the sink. Aggregate
queries over the sensor data are formulated using a sim-
ple SQL-like language, then distributed across the net-
work. Aggregate results are sent back to the worksta-
tion over a spanning tree, with each sensor combining
its own data with results received from its children. If
there are no failures, this in-network aggregation tech-
nique is both e�ective and energy-eÆcient for distribu-
tive and algebraic aggregates [11] such as MIN, MAX,
COUNT and AVG. However, as we will argue, this
technique is much less e�ective in sensor network sce-
narios with moderate node and link failure rates. Node
failure is inevitable when inexpensive, faulty compo-
nents are placed in a a variety of uncontrolled or even
hostile environments. Similarly, link failures and packet
losses are common across wireless channels because of
environmental interference, packet collisions, and low
signal-to-noise ratios [23].

When a spanning tree approach is used for aggre-
gate queries, as in TAG, a single failure results in an
entire subtree of values being lost. If this failure is close
to the sink, the change in the resulting aggregate can be
signi�cant. Retransmission-based approaches are ex-
pensive in this environment, so solutions based upon
multi-path routing were proposed in [15]. For aggre-



gates such as MIN and MAX which are monotonic and
exemplary, this provides a fault-tolerant solution. But
for duplicate-sensitive aggregates such as COUNT or
AVG, that give incorrect results when the same value
is counted multiple times, existing methods are not sat-
isfactory.

In this paper, we propose a robust and scalable
method for computing duplicate-sensitive aggregates
across faulty sensor networks. Guaranteeing exact so-
lutions in the face of losses is generally impractical, so
we instead consider approximate methods. These meth-
ods are robust against both link and node failures. Our
contributions can be summarized as follows:

� We extend well-known duplicate insensitive
sketches [7] to handle SUM aggregates. Through
analysis and experiments, we show that the new
sketches provide accurate approximations.

� We present a method to combine duplicate insen-
sitive sketches with multi-path routing techniques
to produce accurate approximations with low com-
munication and computation overhead.

� We provide an analysis of the expected perfor-
mance of previous methods as well as our method.

� Finally, we present an extensive experimental eval-
uation of our proposed system which we compare
with previous approaches.

Concurrent with our work, Nath and Gibbons [17]
independently studied the use of duplicate-insensitive
sketches for aggregation in sensor networks. Their work
focused more on the logical decoupling of routing and
aggregation, along with the necessary sketch properties
for correctness using multipath routing, namely having
an associative, commutative, and idempotent aggrega-
tion operation.

The remainder of this paper proceeds as follows.
Background material is covered in Section 2. Count-
ing sketches, along with theory and new generaliza-
tions, are discussed in Section 3. A robust aggrega-
tion framework using these sketches is then presented
in Section 4. We validate our methods experimentally
in Section 5 and conclude in Section 6.

2. Background

We now briey survey the related work of our meth-
ods. Sensors and their limitations are described in Sec-
tion 2.1. Previous frameworks for processing aggregates
are covered in 2.2, and multipath routing techniques
are covered in 2.3. Finally, the sketches which we use
to improve upon these frameworks are introduced in
Section 2.4.

2.1. Sensor Devices

Today's sensor motes (e.g. [12]) are full edged com-
puter systems, with a CPU, main memory, operat-
ing system and a suite of sensors. They are powered
by small batteries and their lifetime is primarily de-
pendent on the extent to which battery power is con-
served. The power consumption tends to be dominated
by transmitting and receiving messages and most sys-
tems try to minimize the number of messages in order
to save power. Also, the communication between sen-
sors is wireless and the packet loss rate between nodes
can be high. For example, [23] reports on experiments
in which more than 10% of the links su�ered average
loss rate greater than 50%. Another challenge is that
links may be asymmetric, both in loss rates and even
reachability. These limitations motivate query evalua-
tion methods in sensor networks that are fundamen-
tally di�erent from the traditional distributed query
evaluation approaches. First, the query execution plan
must be energy eÆcient and second, the process must
be as robust as possible given the communication lim-
itations in these networks.

2.2. In-network Aggregate Query Processing

A simple approach to evaluate an aggregation query
is to route all sensed values to the base station and
compute the aggregate there. Although this approach
is simple, the number of messages and the power con-
sumption can be large. A better approach is to lever-
age the computational power of the sensor devices and
compute aggregates in-network. Aggregates that can
be computed in-network include all decomposable func-
tions [15].

De�nition 1 A function f is decomposable, if it
can be computed by another function g as follows:
f(v1; v2; :::; vn) = g(f(v1; :::; vk); f(vk+1; :::; vn)).

Using decomposable functions, the value of the ag-
gregate function can be computed for disjoint subsets,
and these values can be used to compute the aggre-
gate of the whole using the merging function g. Our
discussion is based on the Tiny Aggregation (TAG)
framework used in TinyDB [15]. However, similar ap-
proaches are used to compute aggregates in other sys-
tems [20, 21, 23, 13].

In TAG, the in-network query evaluation has two
phases, the distribution phase and the collection phase.
During the distribution phase, the query is ooded in
the network and organizes the nodes into an aggrega-
tion tree. The base station broadcasting the query is the
root of the tree. The query message has a counter that
is incremented with each retransmission and counts the
hop distance from the root. In this way, each node is



assigned to a speci�c level equal to the node's hop dis-
tance from the root. Also, each sensor chooses one of
its neighbors with a smaller hop distance from the root
to be its parent in the aggregation tree.

During the collection phase, each leaf node produces
a single tuple and forwards this tuple to its parent. The
non-leaf nodes receive the tuples of their children and
combine these values. Then, they submit the new par-
tial results to their own parents. This process runs con-
tinuously and after h steps, where h is the height of
the aggregation tree, the total result will arrive at the
root. In order to conserve energy, sensor nodes sleep
as much as possible during each step where the pro-
cessor and radio are idle. When a timer expires or an
external event occurs, the device wakes and starts the
processing and communication phases. At this point, it
receives the messages from its children and then sub-
mits the new value(s) to its parent. After that, if no
more processing is needed for that step, it enters again
into the sleeping mode [16].

As mentioned earlier, this approach works very well
for ideal network conditions, but is less satisfactory un-
der lossy conditions. To address these issues, Madden
at al. [15] proposed various methods to improve the
performance of their system. One solution is to cache
previous values and reuse them if newer ones are un-
available. Of course, these cached values may reect
losses at lower levels of the tree.

Another approach considered in [15] takes advan-
tage of the fact that a node may select multiple par-
ents from neighbors at a higher level. Using this ap-
proach, which we refer to as \fractional parents," the
aggregate value is decomposed into fractions equal to
the number of parents. Each fraction is then sent to a
distinct parent instead of sending the whole value to a
single parent. For example, given an aggregate sum of
15 and 2 parents, each parent would be sent the value
7:5. It is easy to demonstrate analytically that this ap-
proach does not improve the expected value of the es-
timate over the single parent approach; it only helps to
reduce the variance of the estimated value at the root.
Therefore, the problem of losing a signi�cant fraction
of the aggregate value due to network failures remains.

2.3. Best Effort Routing in Sensor Networks

Recent years have seen signi�cant work on best-
e�ort routing routing in sensor and other wireless net-
works. Due to high loss rates and power constraints, a
common approach is to use multi-path routing, where
more than one copy of a packet is sent to the desti-
nation over di�erent paths. For example, directed dif-
fusion [13] uses a ood to discover short paths which
sensors would use to send back responses. Various pos-

itive and negative reinforment mechanisms are used to
improve path quality. Braided di�usion [8] builds on di-
rected di�usion to use a set of intertwined paths for in-
creased resilience. A slightly di�erent approach is used
by GRAB [22], where paths are not explicitly chosen,
but the width of the upstream broadcast is controlled.

Our techniques are meant to complement and lever-
age any of these routing techniques. We note that
combining these methods with duplicate-insensitive in-
network aggregation will allow some of the overhead of
these techniques to be amortized and shared amongst
data items from many di�erent sensors.

2.4. Counting Sketches

Counting sketches were introduced by Flajolet and
Martin in [7] for the purpose of quickly estimating the
number of distinct items in a database (or stream) in
one pass while using only a small amount of space.
Since then, there has been much work developing and
generalizing counting sketches (e.g. [1, 6, 10, 3, 9, 2]).

It is well known that exact solutions to the distinct
counting problem require 
(n) space. As shown in [1],
�(log n) space is required to approximate the number
of distinct items in a multi-set with n distinct items.
The original FM sketches of [7] achieve this bound,
though they assume a �xed hash function that appears
random, so they are vulnerable to adversarial choices
of inputs. We use these sketches since they are very
small and accurate in practice, and describe them in
detail in Section 3.

A di�erent sketching scheme using linear hash func-
tions was proposed in [1]. These sketches are somewhat
larger than FM sketches in practice, although a very re-
cent technique [5] extending these methods uses only
O(log logn) space. We intend to investigate the e�ec-
tiveness of these \loglog" sketches for sensor databases
in future work.

3. Sketch Theory

One of the core ideas behind our work is that dupli-
cate insensitive sketches will allow us to leverage the
robustness typically associated with multi-path rout-
ing. We now present some of the theory behind such
sketches and extend it to handle more interesting ag-
gregates. First, we present details of the FM sketches
of [7] along with necessary parts of the theory behind
them. Then, we generalize these sketches to handle
summations, and show that they have almost exactly
the same accuracy as FM sketches.

3.1. Counting Sketches

We now describe FM sketches for the distinct count-
ing problem.



De�nition 2 Given a multi-set of items M =
fx1; x2; x3; : : : g, the distinct counting problem is to
compute n � jdistinct(M)j :

Given a multi-set M , the FM sketch of M , denoted
S(M), is a bitmap of length k. The entries of S(M),
denoted S(M)[0; : : : ; k� 1], are initialized to zero and
are set to one using a random binary hash function h
applied to the elements of M . Formally,

S(M)[i] � 1 i� 9x 2M s:t: minfj j h(x; j) = 1g = i:

By this de�nition, each item x is capable of setting a
single bit in S(M) to one { the minimum i for which
h(x; i) = 1. This gives a simple serial implementation
which is very fast in practice and requires two invoca-
tions of h per item on average.

Theorem 1 An element xi can be inserted into an FM
sketch in O(1) expected time.

Algorithm 1 CountInsert(S,x)

1: i = 0;
2: while hash(x,i) = 0 do
3: i = i + 1;
4: end while

5: S[i] = 1;

We now describe some interesting properties of the
sketches observed in [7].

Property 1 The FM sketch of the union of two multi-
sets is the bit-wise OR of their FM sketches. That is,
S(M1 [M2)[i] = (S(M1)[i] _ S(M2)[i]):

Property 2 S(M) is entirely determined by the distinct
items ofM .Duplication and ordering donot a�ectS(M).

Property 1 allows each node to compute a sketch
of locally held items and send the small sketch for ag-
gregation elsewhere. Since aggregation via union oper-
ations is cheap, it may be performed in the network
without signi�cant computational burden. Property 2
allows the use of multi-path routing of the sketches for
robustness without a�ecting the accuracy of the esti-
mates. We expand upon these ideas in Section 4.

The next lemma provides key insight into the be-
havior of FM sketches and will be the basis of eÆcient
implementations of summation sketches later.

Lemma 1 For i < log2 n � 2 log2 log2 n, S(M)[i] = 1

with probability 1 � O(ne� log22 n). For i � 3
2 log2 n + Æ,

with Æ � 0, S(M)[i] = 0 with probability 1�O
�
2�Æp
n

�
.

Proof: This lemma is proven in [7] and follows from
basic balls and bins arguments.

The lemma implies that given an FM sketch of n
distinct items, one expects an initial pre�x of all ones
and a suÆx of all zeros, while only the setting of the
bits around S(M)[log2 n] exhibit much variation. This
gives a bound on the number of bits k required for
S(M) in general: k = 3

2 log2 n bits suÆce to repre-
sent S(M) with high probability. It also suggests that
just considering the length of the pre�x of all ones in
this sketch can produce an estimate of n. Formally, let
Rn � minfi j S(M)[i] = 0g when S(M) is an FM
sketch of n distinct items. That is, Rn is a random
variable marking the location of the �rst zero in S(M).
In [7], a method to use Rn as an estimator for n is de-
veloped using the following theorems.

Theorem 2 The expected value of Rn for FM sketches
satis�es E(Rn) = log2('n) + P (log2 n) + o(1); where
the constant ' is approximately 0:775351 and P (u) is a
periodic and continuous function of u with period 1 and
amplitude bounded by 10�5.

Theorem 3 The variance of Rn for FM sketches, de-
noted �2n, satis�es �

2
n = �21 + Q(log2 n) + o(1); where

constant �21 is approximately 1:12127 and Q(u) is a pe-
riodic function with mean value 0 and period 1.

Thus, Rn can be used for an unbiased estimator of
log2 n if the small periodic term P (log2 n) is ignored.
A much greater concern is that the variance is slightly
more than one, dwar�ng P (log2 n), and implying that
estimates of n will often be o� by a factor of two or
more in either direction. To address this, methods for
reducing the variance will be discussed in Section 3.3.

3.2. Summation Sketches

As our �rst theoretical contribution, we generalize
approximate counting sketches to handle summations.
Given a multi-set of items M = fx1; x2; x3; : : : g where
xi = (ki; ci) and ci is a non-negative integer, the dis-
tinct summation problem is to calculate

n �
X

distinct((ki;ci)2M)

ci:

When ci is restricted to one, this is exactly the distinct
counting problem.

We note that for small values of ci, one might
simply count ci di�erent items based upon ki and
ci, e.g. (ki; ci; 1); : : : ; (ki; ci; ci), which we denote sub-
items of (ki; ci). Since this is merely ci invocations of
the counting insertion routine, the analysis for proba-
bilistic counting applies. Thus, this approach is equally
accurate and takes O(ci) expected time. While very
practical for small ci values (and trivially paralleliz-
able in hardware), this approach does not scale well



for large values of c. Therefore, we consider more scal-
able alternatives for handling large ci values.

Algorithm 2 SumInsert(S,x,c)

1: d = pick threshold(c);
2: for i = 0, : : : , d - 1 do
3: S[i] = 1;
4: end for

5: a = pick binomial(seed=(x, c), c, 1=2d);
6: for i = 1, : : : , a do
7: j = d;
8: while hash(x,c,i,j) = 0 do
9: j = j + 1;

10: end while

11: S[j] = 1;
12: end for

The basic intuition beyond our more scalable ap-
proach is as follows. We intend to set the bits in the
summation sketch as if we had performed ci successive
insertions to an FM sketch, but we will do so much
more eÆciently. The method proceeds in two steps:
we �rst set a pre�x of the summation sketch bits to
all ones, and then set the remaining bits by randomly
sampling from the distribution of settings that the FM
sketch would have used to set those bits. Ultimately,
the distribution of the settings of the bits in the sum-
mation sketch will bear a provably close resemblance to
the distribution of the settings of the bits in the equiv-
alent FM sketch, and we then use the FM estimator to
retrieve the value of the count.

We now describe the method in more detail. First, to
set the pre�x, we observe that it follows from Lemma 1,
that the �rst Æi = blog2 ci�2 log2 log cic bits of a count-
ing sketch are set to one with high probability after ci
insertions. So our �rst step in inserting (ki; ci) into the
summation sketch is to set the �rst Æi bits to one. In the
proof of Theorem 2 in [7], the authors prove that the
case where the �rst Æi bits are not all set to one only af-
fects the expectation of Rn by O(n�0:49). In practice,
we could correct for this small bias, but we disregard
it in our subsequent aggregation experiments.

The second step sets the remaining k � Æi bits by
drawing a setting at random from the distribution in-
duced by the FM sketch we are emulating. We do so
by simulating the insertions of items that set bits Æi
and higher in the counting sketch. First, we say an
insertion xi reaches bit z of a counting sketch if and
only if minfj j h(xi; j) = 1g � z. The distribution
of the number of items reaching bit z is well-known
for FM sketches. An item xi reaches bit z if and only
if 80�j<z(h(xi; j) = 0), which occurs with probabil-
ity 2�z. So for a set of ci insertions, the number of
insertions reaching bit Æi follows a binomial distribu-

tion with parameters ci and 2�Æi . This leads to the
following process for setting bits Æi; Æi + 1 : : : k (ini-
tialized to zero). First, draw a random sample y from
B(ci; 2

�Æi), and consider each of these y insertions as
having reached bit Æi. Then use the FM coin-ipping
process to explicitly set the remaining bits beyond Æi.

The pseudo-code for this approach is shown in Al-
gorithm 2, and the analysis of its running time is pre-
sented next.

Theorem 4 An element xi = (ki; ci) can be inserted
into a sum sketch in O(log2 ci) expected time.

Proof Sketch: Let �i denote the number of items cho-
sen to reach Æi. Setting the �rst Æi bits takes O(Æi)
time and simulating the �i insertions takes expected
O(�i) time. The total expected time to insert xi is
then O(Æi + f(�i) + �i), where f(�i) denotes the time
to pick �i. Thus, the time depends on both �i and the
method used to pick �i. By construction,

E(�i) = ci � 2�blog2 ci�2 log2 log cic;
so

log2 ci � E(�i) < 2 log2 ci:

Selecting an appropriate method for picking �i re-
quires more care. While there exist many eÆcient
methods for generating numbers from a binomial dis-
tribution ([14] has a brief survey), these generally re-
quire oating point operations or considerable mem-
ory for pre-computed tables (linear in ci). Since exist-
ing sensor motes often have neither, in Section 4.3.1
we describe a space-eÆcient method that uses no oat-
ing point operations, uses pre-computed tables of size
O(c= log2 c), where c is an upper bound on the ci values,
and individual insertions take time O(log2 ci). Combin-
ing these results give the stated time bound.

We note that for small ci values, it may be faster to
use a hybrid implementation combining the naive and
scalable insertion functions. Especially for very low ci
values, the naive insertion function will be faster.

Theorem 5 The expected value of Rn for sum sketches
satis�es E(Rn) = log2('n) + P (log2 n) + o(1); where '
and P (u) are the same as in Theorem 2.

Proof: The proof of this theorem follows the proof of
Theorem 2 since the sum insertion function approxi-
mates repeated use of the count insertion function. Let

cmax = maxfci j (ki; ci) 2Mg
and

Æmax = blog2 cmax � log2 log cmaxc:
By the insertion method, the bottom Æmax bits of
S�(M) are guaranteed to be set. By construction, the



remaining bits are distributed identically to those of an
FM sketch with n distinct items have inserted. Thus,
the distribution of Rn is the same except for the cases
when the FM sketch had one of the �rst Æmax bits
not set. By Lemma 1, these cases occur with proba-
bility O(ne� log2 n), so the di�erence in the expectation

is at most (log2 n � log2 logn) � O(ne� log2 n), which
is bounded (loosely) by O(1=n). Therefore, E(Rn)
for summation sketches is within o(1) of that of FM
sketches.

Theorem 6 The variance of Rn for sum sketches, also
denoted �2n, satis�es �

2
n = �21+Q(log2 n)+ o(1); where

�21 andQ(u) are as de�ned in Theorem 3.

Proof: The proof of Theorem 3 is adapted in a similar
fashion.

3.3. Improving Accuracy

To improve the variance and con�dence of the es-
timator, FM sketches can use multiple bitmaps. That
is, each item is inserted into each of m independent
bitmaps to produce m R values, Rh1i; : : : ; Rhmi. The
estimate is then calculated as follows:

n � (1=')2
P

i
Rhii=m:

This estimate is more accurate, with standard error
O(1=

p
m), but comes at the cost of increased insertion

times (O(m)). To avoid this overhead, an algorithm
called Probabilistic Counting with Stochastic Averaging,
or PCSA, was proposed in [7]. Instead of inserting each
item into each of the m bitmaps, each item is hashed
and inserted into only one of them. Thus, each of the
bitmaps summarizes approximately n=m items. While
there is some variation in how many items are assigned
to each bitmap, further analysis showed that the stan-
dard error of PCSA is roughly 0:78=

p
m. Using PCSA,

insertion takes O(1) expected time.
PCSA can also be applied to summation sketches,

but greater care must be applied when combining
PCSA to summation sketches. The potential for imbal-
ance is much larger with summation sketches - a sin-
gle item can contribute an arbitrarily large fraction of
the total sum. Thus, we employ the following strategy.
Each ci value has the form ci = qim+ ri for some inte-
gers qi and ri, with 0 � ri < m. We then add ri distinct
items once as in standard PCSA, and then add qi to
each bitmap independently. Thus, we preserve the bal-
ance necessary for the improved accuracy and its anal-
ysis, but at the cost of O(m log2(ci=m)) for each inser-
tion. We will employ PCSA in our experiments.

3.4. Tradeoffs and Other Approaches

In situations where computational resources are
severely constrained, it may be desirable to re-

duce the cost of performing insertion operations
with summation sketches. We now briey men-
tion some tradeo�s in the computational time at the
cost of increased communication and decreased accu-
racy. While this is unlikely to be desirable in sensor
networks, given the high power costs of commu-
nication relative to computation, it may be desir-
able in other settings where there are large numbers
of items per node.

Suppose that the largest value being inserted is
bounded by yx. Insertions with the algorithm described
already take O(x2 log2 y) time. We can instead use x
di�erent summation sketches, each corresponding to a
di�erent digit of the ci's using radix y. To add a ci
value, each digit of ci is inserted into the correspond-
ing sketch, taking expected O(x log2 y) time, and esti-
mates are made by summing the counting sketch esti-
mates with the appropriate weights. The accuracy of
this approach is essentially the same as before, and the
increase in space is bounded by a factor of x.

An alternative approach for reducing the space over-
head is to replace FM sketches with the very recently
developed \loglog" sketches of [5]. The reduction of
Section 3.2 can be applied similarly, again with small
e�ects on accuracy. In parallel with our work, the
sketches of [1] were adapted to summations in [17], but
their methods involve both logarithms and exponenti-
ation, making them unsuitable for sensor networks.

3.5. Other Aggregates

So far, we have only discussed two aggregates,
COUNT and SUM. These techniques can also be ex-
tended to other aggregate functions beyond summation
and counting. For example, AVG can also be com-
puted directly from COUNT and SUM sketches.
The second moment can be computed as an aver-
age of the squares of the items, and then combined
with the average of the items, to compute the vari-
ance and standard deviation. Finally, we note that
the sketches themselves are easily generalized to han-
dle other data types such as �xed point and signed
numbers, and to a certain extent, products (sum-
ming logarithms) and oating point.

4. Approximate Estimation of Dupli-

cate Sensitive Aggregates

In this section, we show how to use duplicate insensi-
tive sketches to build a robust, loss-resilient framework
for aggregation. First, our algorithm for leveraging the
broadcast nature of wireless communication in combi-
nation with sketching techniques is described in Sec-
tion 4.1. A simple analytic evaluation of the proposed



methods is given in Section 4.2. Finally, practical de-
tails of implementations on sensor motes are given in
Section 4.3.

4.1. Algorithm and Discussion

Our methods for aggregation leverage two main ob-
servations. First, the wireless communication of sensor
networks gives the ability to broadcast a single mes-
sage to multiple neighbors simultaneously. Second, the
duplicate-insensitive sketches discussed in Section 3 al-
low a sensor to combine all of its received sketches into
a single message to be sent. Given proper synchroniza-
tion, this will allow us to robustly aggregate data with
each sensor sending just one broadcast.

For simplicity, the remainder of this section will fo-
cus on continuous queries (one-shot queries simply ter-
minate earlier). Given a new continuous query, the
computation proceeds in two phases. In the �rst phase,
the query is distributed across the sensor network, of-
ten using some form of ooding. During this phase,
each node also computes its level (i.e. its hop distance
from the root), and notes the level values of its immedi-
ate neighbors. The second phase is divided into a series
of epochs speci�ed by the query. The speci�ed aggre-
gate will be computed once for each epoch.

At the beginning of each epoch, each node con-
structs a sketch of its local values for the aggregate.
The epoch is then sub-divided into a series of rounds,
one for each level, starting with the highest (farthest)
level. In each round, the nodes at the corresponding
level broadcast their sketches, and the nodes at the
next level receive these sketches and combine them
with their sketches in progress. In the last round, the
sink receives the sketches of its neighbors, and com-
bines them to produce the �nal aggregate.

As an example, we step through a single epoch ag-
gregating over the topology of Figure 1. First, each
node creates a fresh sketch summarizing its own ob-
served values. In the �rst round of communication,
nodes at level 3 broadcast their sketches, which are
then received by neighboring level 2 nodes and com-
bined with the sketches of the level 2 nodes. In the sec-
ond round, nodes at level 2 broadcast their sketches,
which are then received by neighboring level 1 nodes
and combined with the sketches of the level 1 nodes.
In the third and last round, nodes at level 1 send their
sketches to the sink, which combines them and extracts
the �nal aggregate value. Note that each node in this
topology except those on the diagonals has multiple
shortest paths which are e�ectively used, and a value
will be included in the �nal aggregate unless all of its
paths su�er from losses.

Nodes at Level 2 Root

Figure 1. Routing topology for 49 node grid.

The tight synchronization described so far is not ac-
tually necessary. Our methods can also be applied us-
ing gossip-style communication - the main advantage
of synchronization and rounds is that better schedul-
ing is possible and power consumption can be reduced.
However, if a node receives no acknowledgments of its
broadcast, it may be reasonable in practice to retrans-
mit. More generally, loosening the synchronization in-
creases the robustness of the �nal aggregate as paths
taking more hops are used to route around failures.
This increased robustness comes at the cost of power
consumption, since nodes broadcast and receive more
often (due to values arriving later than expected) and
increased time (and variability) to compute the �nal
aggregate. As mentioned earlier, this general principle
allows us to make use of any best-e�ort routing proto-
col (e.g. [13, 8]), with the main performance metric of
interest being the delivery ratio.

4.2. Analysis

We now analyze the methods discussed so far for a
restricted class of regular topologies. We compare the
resilience of a single spanning tree against using mul-
tiple parents, but only one broadcast per node, as de-
scribed in the previous section. For simplicity, we only
consider exact COUNT aggregate under independent
link failures; more elaborate analysis for other aggre-
gates and failure models is possible. These calculations
tend to be \back of the envelope" in nature; they illus-
trate the advantages of multipath routing over span-
ning trees for resilience. For more detailed analysis, we
refer the reader to work such as [22].

In the following, we use p as the probability of (in-
dependent) link loss, and h as the maximum number
of hops from the sink.

4.2.1. Fault Resilience of the Spanning Tree
First, we consider a baseline routing topology in which
aggregates are computed across a single spanning tree.



For simplicity, we assume that we have a complete
d-ary tree of height h. In general, the probability of
a value from a node at level i to reach the root is
proportional to (1 � p)i. The expected value of the

COUNT aggregate is E(count) =
Ph

i=0(1 � p)ini,
where ni is the number of nodes at level i. This gives

us E(count) =
Ph

i=0((1 � p)d)i = (d�pd)h+1�1
d�pd�1 . For

h = 10, d = 3 and p = 0:1 (a 10% link loss rate) the
expected fraction of the nodes that will be counted is
poor, only 0:369.

4.2.2. Fault Resilience of Multiple Paths In or-
der to analyze the use of multiple paths we now make a
stronger assumption about the routing topology. Start-
ing with the leaves at level 0, we assume that each node
at level i has exactly d neighbors within its broadcast
radius at level i + 1, for all 0 � i � h� 1. From these
neighbors, each node selects k � d of these nodes as its
parents, where k is a fault-resilience parameter, and it
transmits its aggregate value to all k of these nodes. We
use the pessimistic simpli�cation that only one copy of
a leaf's value reaches a level; while somewhat tighter
bounds can be obtained, it suÆces to provide close
agreement with our experimental results. Let Ei de-
note the event that a copy of the leaf's value reached
level i conditioned on the value having reached level
i + 1. With leaves at level h, these events are well-
de�ned for levels 1; 2 : : : h�1. Clearly Pr[Ei] � (1�pk)
(from the above simpli�cation), and thus the overall
probability of a message successfully reaching the root
is �i Pr[Ei] � (1 � pk)h. Using the same argument
for the other levels of the tree we can get the follow-

ing: E(count) � Ph
i=0(1 � pk)ini =

(d�pkd)h+1�1
d�pkd�1 . For

k = 2, p = 0:1 and h = 10 we get E(count) � 0:9n,
where n is the total number of nodes. For k = 3 the
bound is close to 0:99n, thus we have only a 1% degra-
dation in the set of reporting sensors.

4.3. Practical Details

Since our protocols are being developed for use in
sensor networks, it is important to ensure that they do
not exceed the capabilities of individual sensors. Sec-
tion 4.3.1 considers the computational costs of gen-
erating random numbers for the summation sketches
of 3.2. Section 4.3.2 considers the bandwidth overhead
of sending sketches.

4.3.1. Binomial Random Number Generation
Existing sensor motes have a small word size (8 or
16 bits), lack oating point hardware and have little
available memory for pre-computed tables. For these
reasons, standard methods for drawing from the bino-
mial distribution are unsuitable. Here, we outline a ran-
domized algorithm which draws from B(n; p) in O(np)

expected running time using O(1=p) space in a pre-
computed table and without use of oating point oper-
ations. We �rst note the following relationship between
drawing from the binomial distribution and drawing
from the geometric distribution, also used in [4].

Fact 1 Suppose we have a method to repeatedly draw at
random from the geometric distribution G(1 � p). Let d
be the random variable that records the number of draws
from G(1 � p) until the sum of the draws exceeds n. The
value d � 1 is then equivalent to a random draw from
B(n; p).

The expected number of draws d from the geomet-
ric distribution using this method is np, so to bound the
expected running time to draw from B(n; p), we simply
need to bound the running time to draw from G(1�p).
We will make use of the elegant alias method of [19] to
do so in O(1) expected time. In [19] Walker demon-
strates the following (which has a simple and beautiful
implementation):

Theorem 7 (Walker) For any discrete probabil-
ity density function D over a sample space of size k, a
table of sizeO(k) can be constructed inO(k) time that en-
ables random variables to be drawn from D using two
table lookups.

We can apply this method directly to construct a ta-
ble of size n+1 in which the �rst n elements of the pdfD
respectively correspond to the probabilities pi of draw-
ing 1 � i � n from the geometric distribution G(1�p),
and the �nal element corresponds to the tail probabil-
ity of drawing any value strictly larger than n from
G(1�p). Note that for simulating a draw from B(n; p)
using the method implicitly de�ned by Fact 1, we never
care about the exact value of a draw from G(1�p) that
is larger than n. This direct application enables O(1)
draws from G(1� p) in O(n) space, thus yields O(np)
expected running time to draw from B(n; p).

To achieve O(1=p) space, we make use of the memo-
ryless property of the geometric distribution (which the
binomial distribution does not have). Instead of stor-
ing the �rst n probabilities pi for the geometric distri-
bution, we store only the �rst d1=pe such probabilities,
and a �nal element corresponding to the tail probabil-
ity of drawing any value strictly larger than d1=pe from
G(1� p). By the memorylessness property, if we select
the event corresponding to the tail probability, we can
recursively draw again from the table, setting our out-
come to d1=pe + x, where x is the result of the recur-
sive draw. The recursion terminates whenever one of
the �rst d1=pe events in the table is selected, or when-
ever the accumulated result exceeds n. Since 1=p is the
expectation of G(1�p), this recursion terminates with



constant probability at each round, and thus the ex-
pected number of table lookups is O(1). Further re-
duction in space is possible, but at the cost of incur-
ring a commensurate increase in the expected number
of recursive calls.

Using table sizes of d1=pe and assuming a maxi-
mum sensor value of ci � 216 (from a 16 bit word
size), the lowest value of p used in summation sketches
will be 162=216 = 1=28. Therefore, we will have ta-
bles for p = 1=21; : : : ; 1=28, with 2; : : : ; 28 entries each,
respectively. Walker's method utilizes two values for
each entry - the �rst is an index into the table and
the second is a real value used for comparison. The in-
dex value only requires one byte since the largest ta-
ble size is 28, and a 64 bit �xed-point real value (8
bytes) should more than suÆce. This gives a total ta-

ble size of
P8

i=1(2
i) � (1 + 8) = 4590 bytes. This can

be improved further by reducing the number of entries
in each table as mentioned before. The smaller tables
(e.g. for p = 1=2 and p = 1=4) can also be removed in
favor of directly simulating the \coin ips" of the geo-
metric distribution, but with negligible space savings.

4.3.2. Sketch Sizes and Compression As men-
tioned earlier, the other main limitation of sensor net-
works is their limited bandwidth. This limitation is
a cause for concern when comparing sketching based
techniques against the spanning tree strategies of TAG.
While 2 bytes of data per packet will generally suÆce
for TAG, a single 16 bit sketch takes the same amount
of space and our later experiments will actually be us-
ing 20 sketches per packet for a single aggregate. How-
ever, as one might guess from Lemma 1, these sketches
are quite compressible. To leverage this, our experi-
ments will use the compression techniques of [18]. In
brief, the sketches are �rst \attened", enumerating
the �rst bit of each sketch, then the second bit of each
sketch, and so on, and then the result sequence of bits
is run-length encoded. This reduces the space require-
ments to about 30% of uncompressed versions. This is
suÆcient for two aggregates to be sketched within one
TinyDB packet (up to 48 bytes).

5. Experimental Evaluation

In this section, we present an evaluation of our meth-
ods using the TAG simulator of [15]. Section 5.1 de-
scribes the various strategies employed for aggregation
and transmission of data and Section 5.2 presents the
experimental results for di�erent scenarios.

5.1. Experimental Setup

We implemented various strategies for aggregation
and transmission using the TAG simulator. Under each

Strategy Total Messages
Data Bytes Sent Received

TAG1 1800 900 900
TAG2 1800 900 2468
SKETCH 10843 900 2468
LIST 170424 900 2468

Table 1. Communication Cost Comparisons

of these strategies, each node aggregates results re-
ceived from its children with its own reading, and then
sends the aggregate to one or more of its parents. Any
node within broadcast range which was at a lower level
(closer to the root) was considered a candidate parent.
In particular, we used the following methods in our ex-
periments:

TAG1: The main strategy of [15] (each sensor sends
its aggregate to a single parent).
TAG2: The \fractional parents" strategy of [15] de-

scribed in Section 2.2.

LIST: The aggregate consists of an explicit list of
all the items in the aggregate with any duplicates re-
moved. These lists are sent to all parents.

SKETCH: The strategy described in Section 4 us-
ing duplicate insensitive sketches. The default values
for sketches is 20 bitmaps and 16 bits in each bitmap
using the PCSA technique.

For our basic experimental network topology, we
used a regular 30 � 30 grid with 900 sensors, where
each sensor was placed at each grid point. The com-
munication radius was

p
2 (allowing the nearest eight

grid neighbors to be reached) and the default link loss
rate was set at 5%. The root node is always at the cen-
ter of the grid. Figure 1 illustrates an example of 7� 7
grid.

In all the graphs, we show the average values of 500
runs. Also, for each average value, we show the 5th and
95th percentiles.

5.2. Experimental Results

First, we evaluate the communication cost of each
approach. Table 1 shows the total number of bytes
transmitted for a single sum query during one epoch,
along with the total number of messages sent and re-
ceived (assuming no losses). For TAG1 and TAG2, we
assume that values are 16 bits each. SKETCH uses 20
bitmaps and the compression techniques of [18] with
group size of 2 (the uncompressed size is 36000 bytes).
LIST sends (id; value) pairs as its message format us-
ing 32 bits in total for ids and values (two bytes each).
As expected, the TAG strategies send the least data,
while LIST sends the most and SKETCH is between
them. We note that the message size of SKETCH can
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Figure 3. Performance varying link loss rates.

be tuned further at the cost of accuracy by changing
the number of bitmaps used, as Figure 2 illustrates.
Similar results were obtained for count queries.

Figure 3 shows the e�ects of link losses on the per-
formance of each strategy for a count query. In Fig-
ure 3(a), we see that for all loss rates, the average
counts returned by LIST and SKETCH are extremely
close, as are the average counts returned by TAG1
and TAG2. As the loss rates increase, the counts re-
turned by LIST and SKETCH decrease slowly, while
the counts returned by TAG1 and TAG2 decrease at
a much higher rate. For both pairs, the main di�er-
ence is that SKETCH and TAG1 have higher variation
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Figure 5. Performance with random placement

and communication radius 2
p
2

than LIST and TAG2 respectively.
Figure 3(b) shows the relative errors of SKETCH,

TAG1, and TAG2 compared to LIST. Here, given sam-
ple value x and correct value x̂, the relative error is��x�x̂

x̂

��. Again, TAG1 and TAG2 are virtually identi-
cal, with quickly growing relative errors. In compar-
ison, the relative error of SKETCH only increases a
small amount, but we note that SKETCH has higher
relative errors for very small loss rates. We omit plots
of the relative error for most of the remaining scenarios
since they have similar performance trends and are eas-
ily extrapolated from the average counts returned. We
also omit plots for LIST and TAG1 since LIST is in-
feasible in practice, and TAG1 is strictly worse than
TAG2.

Figure 4 shows the e�ect of node losses for the same
query. The general trends here look similar to link loss
plots in Figure 3(a), but the average counts reported
drop o� faster, while the average relative error grows
more slowly. Intuitively, a major di�erence here for the
LIST and SKETCH strategies is that a value can be
\lost" if just the node fails, while all of the links to par-
ents must fail to achieve the same loss.

Figure 5 shows the results of placing sensor nodes at
random grid locations, with the communication range
was increased to 2

p
2 for the random grid placements

to compensate for sparse regions of connectivity. Fig-
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Figure 7. Performance varying network size.

ure 6 shows the results of using sum sketches, where
each node chose an integer value uniformly at ran-
dom from the range [0; 100], so the expected sum is
50 � 900 = 45; 000. The basic trends in both �gures
were essentially the same as when just loss rates were
varied. Results for AVG aggregates, combining summa-
tion and count sketches, were similar to those of SUM
and were omitted.

Finally, Figure 7 shows the results of varying the net-
work size while preserving the grid shape. Despite the
loss rate being held constant, the TAG strategies per-
form increasingly poorly as the network size increases.
Meanwhile, the SKETCH strategy maintains an al-

most constant average relative error around 13 per-
cent, though it seems slightly higher for the larger net-
work sizes (14 percent).

6. Conclusions and Future Work

We have presented new methods for approximately
computing duplicate-sensitive aggregates across dis-
tributed datasets. Our immediate motivation comes
from sensor networks, where energy consumption is a
primary concern, faults occur frequently, and exact an-
swers are not required or expected. An elegant building
block which enables our techniques are the duplicate-
insensitive sketches of Flajolet and Martin, which give
us considerable freedom in our choices of how best to
route data and where to compute partial aggregates. In
particular, use of this duplicate-insensitive data struc-
ture allowed us to make use of dispersity routing meth-
ods to provide fault tolerance that would be inappro-
priate otherwise.

The implications of these results reach beyond sen-
sor networks to other unreliable systems with dis-
tributed datasets over which best-e�ort aggregate
queries are posed. Examples include estimating the
number of subscribers participating in a multicast ses-
sion, or counting the number of peers storing a copy
of a given �le in a peer-to-peer network. In these set-
tings, nodes are less resource-constrained than in sen-
sor networks, but the problems are still diÆcult due
to packet loss and frequent node arrivals and depar-
tures.
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