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ABSTRACT

We propose graph encryption schemes that efficiently sup-
port approximate shortest distance queries on large-scale en-
crypted graphs. Shortest distance queries are one of the
most fundamental graph operations and have a wide range
of applications. Using such graph encryption schemes, a
client can outsource large-scale privacy-sensitive graphs to
an untrusted server without losing the ability to query it.
Other applications include encrypted graph databases and
controlled disclosure systems. We propose GRECS (stands
for GRaph EnCryption for approximate Shortest distance
queries) which includes three oracle encryption schemes that
are provably secure against any semi-honest server. Our
first construction makes use of only symmetric-key opera-
tions, resulting in a computationally-efficient construction.
Our second scheme makes use of somewhat-homomorphic
encryption and is less computationally-efficient but achieves
optimal communication complexity (i.e. uses a minimal
amount of bandwidth). Finally, our third scheme is both
computationally-efficient and achieves optimal communica-
tion complexity at the cost of a small amount of additional
leakage. We implemented and evaluated the efficiency of our
constructions experimentally. The experiments demonstrate
that our schemes are efficient and can be applied to graphs
that scale up to 1.6 million nodes and 11 million edges.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory—graph
algorithms; H.2.7 [DATABASE MANAGEMENT]:
Database Administration—=Security, integrity, and protec-
tion; D.4.6 [OPERATING SYSTEMS]: Security and
Protections— Cryptographic controls
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1 Introduction

Graph databases that store, manage, and query large graphs
have received increased interest recently due to many large-
scale database applications that can be modeled as graph
problems. Example applications include storing and query-
ing large Web graphs, online social networks, biological net-
works, RDF datasets, and communication networks. As a
result, a number of systems have been proposed to manage,
query, and analyze massive graphs both in academia (e.g.,
Pregel [35|, GraphLab [34], Horton [42|, Trinity [44], Tur-
boGraph [23], and GraphChi-DB [29]) and industry (e.g.,
Neo4j, Titan, DEX, and GraphBase). Furthermore, with
the advent of cloud computing, there is a natural desire for
enterprises and startups to outsource the storage and man-
agement of their databases to a cloud provider. Increas-
ing concerns about data security and privacy in the cloud,
however, have curbed many data owners’ enthusiasm about
storing their databases in the cloud.

To address this, Chase and Kamara [7] introduced the
notion of graph encryption. Roughly speaking, a graph en-
cryption scheme encrypts a graph in such a way that it can
be privately queried. Using such a scheme, an organization
can safely outsource its encrypted graph to an untrusted
cloud provider without losing the ability to query it. Several
constructions were described in [7] including schemes that
support adjacency queries (i.e., given two nodes, do they
have an edge in common?), neighbor queries (i.e., given a
node, return all its neighbors) and focused subgraph queries
on web graphs (a complex query used to do ranked web
searches). Graph encryption is a special case of structured
encryption, which are schemes that encrypt data structures
in such a way that they can be privately queried. The
most well-studied class of structured encryption schemes are
searchable symmetric encryption (SSE) schemes [46] (6l (20}
13}, 25| 24} 5], |4l |37, [47] which, roughly speaking, encrypt
search structures (e.g., indexes or search trees) for the pur-
pose of efficiently searching on encrypted data.

In this work, we focus on the problem of designing graph
encryption schemes that support one of the most fundamen-
tal and important graph operations: finding the shortest
distance between two nodes. Shortest distance queries are



a basic operation in many graph algorithms but also have
applications of their own. For instance, on a social net-
work, shortest distance queries return the shortest number
of introductions necessary for one person to meet another.
In protein-protein interaction networks they can be used to
find the functional correlations among proteins |39] and on
a phone call graph (i.e., a graph that consists of phone num-
bers as vertices and calls as edges) they return the shortest
number of calls connecting two nodes.

Our techniques and contributions. Computing short-
est distance queries on massive graphs (e.g., the Web graph,
online social networks or a country’s call graph) can be very
expensive, so in practice one typically pre-computes a data
structure from the graph called a distance oracle that an-
swers shortest distance queries approzimately [48| |14l 11];
that is, given two vertices v1 and wve, the structure returns a
distance d that is at most « - dist(v1, v2) + 3, where o, 8 > 1
and dist(v1, v2) is the exact distance between v1 and vs.

In this work, we focus on designing structured encryption
schemes for a certain class of distance oracles referred to
as sketch-based oracles. Below we summarize our contribu-
tions:

e We propose three distance oracle encryption schemes.
Our first scheme only makes use of symmetric-key
operations and, as such, is very computationally-
efficient. Our second scheme makes use of somewhat-
homomorphic encryption and achieves optimal com-
munication complexity. Our third scheme is
computationally-efficient, achieves optimal communi-
cation complexity and produces compact encrypted or-
acles at the cost of some leakage.

e We show that all our constructions are adaptively
semantically-secure with reasonable leakage functions.

e We implement and evaluate our solutions on real large-
scale graphs and show that our constructions are prac-
tical.

1.1 Related Work

Graph privacy. Privacy-preserving graph processing has
been considered in the past. Most of the work in this area,
however, focuses on privacy models that are different than
ours. Some of the proposed approaches include structural
anonymization to protect neighborhood information 17} |33}
9], use differential privacy [15] to query graph statistics pri-
vately [26) |45, or use private information retrieval (PIR)
[36] to privately recover shortest paths. We note that none
of these approaches are appropriate in our context where
the graph itself stores sensitive information (and therefore
must be hidden unlike in the PIR scenario) and is stored
remotely (unlike the differential privacy and anonymization
scenarios). Structured and graph encryption was introduced
by Chase and Kamara in [7]. Structured encryption is a gen-
eralization of searchable symmetric encryption (SSE) which
was first proposed by Song, Wagner and Perrig [46]. The no-
tion of adaptive semantic security was introduced by Curt-
mola, Garay, Kamara and Ostrovsky in [13| and generalized
to the setting of structured encryption in [7]. One could
also encrypt and outsource the graph using fully homomor-
phic encryption 18], which supports arbitrary computations
on encrypted data, but this would be prohibitively slow in
practice. Another approach is to execute graph algorithms

over encrypted and outsourced graphs is to use Oblivious
RAM [21] over the adjacency matrix of the graph. This
approach, however, is inefficient and not practical even for
small graphs since it requires storage that is quadratic in the
number of nodes in the graph and a large number of costly
oblivious operations. Recent work by [49] presents an obliv-
ious data structure for computing shortest paths on planar
graphs using ORAM. For a sparse planar graph with O(n)
edges, their approach requires O(n'®) space complexity at
the cost of O(y/nlogn) online query time. Recent works
based on ORAM, such as [31},|32], also propose oblivious se-
cure computation frameworks that can be used to compute
single source shortest paths. However, these are general pur-
pose frameworks and are not optimized to answer shortest
distance queries. Other techniques, such as those developed
by Blanton, Steele and Aliasgari [2] and by Aly et al. [1]
do not seem to scale to sparse graphs with millions of nodes
due to the quadratic complexity of the underlying operations
which are instantiated with secure multi-party computation
protocols.

Distance oracles. Computing shortest distances on large
graphs using Dijkstra’s algorithm or breadth first search is
very expensive. Alternatively, it is not practical to store all-
pairs-shortest-distances since it requires quadratic space. To
address this, in practice, one pre-computes a data structure
called a distance oracle that supports approximate shortest
distance queries between two nodes with logarithmic query
time. Solutions such as |14} |38 |40, |11, |8, |10, [12] care-
fully select seed nodes (also known as landmarks) and store
the shortest distances from all the nodes to the seeds. The
advantage of using such a data structure is that they are
compact and the query time is very fast. For example, the
distance oracle construction of Das Sarma, Gollapudi, Na-
jork and Panigrahy [14] requires O(n'/¢) work to return a
(2¢—1)-approximation of the shortest distance for some con-
stant c.

2 Preliminaries and Notations

Given an undirected graph G = (V, E), we denote its to-
tal number of nodes as n = |V| and its number of edges
as m = |E|. A shortest distance query ¢ = (u,v) asks for
the length of the shortest path between v and v which we
denote dist(u,v). The notation [n] represents the set of in-
tegers {1,...,n}. We write x < x to represent an element

x being sampled from a distribution x. We write x £ X to
represent an element x being uniformly sampled at random
from a set X. The output x of a probabilistic algorithm A
is denoted by z < A and that of a deterministic algorithm
B by x := B. Given a sequence of elements v, we define
its i'" element either as v; or v[i] and its total number of
elements as |v|. If A is a set then |A| refers to its cardinal-
ity. Throughout, k£ € N will denote the security parameter
and we assume all algorithms take k implicitly as input. A
function v : N — N is negligible in & if for every positive
polynomial p(-) and all sufficiently large k,v(k) < 1/p(k).
We write f(k) = poly(k) to mean that there exists a poly-
nomial p(-) such that f(k) < p(k) for all sufficiently large
k € N; and we similarly write f(k) = negl(k) to mean that
there exists a negligible function v(-) such that f(k) < v(k)
for all sufficiently large k. A dictionary DX is a data struc-
ture that stores label/value pairs (¢;,v;)j—;. Dictionaries
support insert and lookup operations defined as follows: an



insert operation takes as input a dictionary DX and a la-
bel/value pair (¢,v) and adds the pair to DX. We denote
this as DX[¢] := v. A lookup operation takes as input a dic-
tionary DX a label ¢; and returns the associated value v;. We
denote this as v; := DX[¢;]. Dictionaries can be instantiated
using hash tables and various kinds of search trees.

2.1 Cryptographic Tools

Encryption. In this work, we make use of several kinds of
encryption schemes including standard symmetric-key en-
cryption and homomorphic encryption. A symmetric-key
encryption scheme SKE = (Gen, Enc, Dec) is a set of three
polynomial-time algorithms that work as follows. Gen is a
probabilistic algorithm that takes a security parameter k as
input and returns a secret key K; Enc is a probabilistic al-
gorithm that takes as input a key K and a message m and
returns a ciphertext c; Dec is a deterministic algorithm that
takes as input a key K and a ciphertext ¢ and returns m
if K was the key under which ¢ was produced. A public-
key encryption scheme PKE = (Gen, Enc,Dec) is similarly
defined except that Gen outputs a public/private key pair
(pk, sk) and Enc encrypts messages with the public key pk.
Informally, an encryption scheme is CPA-secure (Chosen-
Plaintext- Attack-secure) if the ciphertexts it outputs do not
reveal any partial information about the messages even to
an adversary that can adaptively query an encryption or-
acle. We refer the reader to [27] for formal definitions of
symmetric-key encryption and CPA-security.

A public-key encryption scheme is homomorphic if, in ad-
dition to (Gen, Enc, Dec), it also includes an evaluation al-
gorithm Eval that takes as input a function f and a set of
ciphertexts ¢1 < Ency(m1) through ¢, < Encpk(m,) and
returns a ciphertext ¢ such that Decy(c) = f(m1,...,my).
If a homomorphic encryption scheme supports the evalu-
ation of any polynomial-time function, then it is a fully-
homomorphic encryption (FHE) scheme [41} 18] otherwise
it is a somewhat homomorphic encryption (SWHE) scheme.
In this work, we make use of only “low degree” homomor-
phic encryption; namely, we only require the evaluation of
quadratic polynomials. In particular, we need the evaluation
algorithm to support any number of additions: Encpk(mi +
ma) = Eval(+, Encpi(m1), Encp(m2)); and a single multipli-
cation: Encpr(mimz) = Eval(x, Encpk(ma1), Encpr(mz)), that
is, a ciphertext that results from a homomorphic multiplica-
tion cannot be used in another homomorphic multiplication.
Concrete instantiations of such schemes include the scheme
of Boneh, Goh and Nissim (BGN) [3] based on bilinear maps
and the scheme of Gentry, Halevi and Vaikuntanathan [19]
based on lattices.

Pseudo-random functions. A pseudo-random function
(PRF) from domain D to co-domain R is a function fam-
ily that is computationally indistinguishable from a random
function. In other words, no computationally-bounded ad-
versary can distinguish between oracle access to a function
that is chosen uniformly at random in the family and oracle
access to a function chosen uniformly at random from the
space of all functions from D to R. A pseudo-random per-
mutation (PRP) is a pseudo-random family of permutations
over D. We refer the reader to [27] for formal definitions of
PRFs and PRPs.

3 Distance Oracles

At a high-level, our approach to designing graph encryption
schemes for shortest distance queries consists of encrypting
a distance oracle in such a way that it can be queried pri-
vately. A distance oracle is a data structure that supports
approximate shortest distance queries. A trivial construc-
tion consists of pre-computing and storing all the pairwise
shortest distances between nodes in the graph. The query
complexity of such a solution is O(1) but the storage com-
plexity is O(n?) which is not practical for large graphs.

We consider two practical distance oracle constructions.
Both solutions are sketch-based which means that they as-
sign a sketch Sk, to each node v € V in such a way that
the approximate distance between two nodes u and v can be
efficiently (sublinear) computed from the sketches Sk, and
Sky. The first construction is by Das Sarma et al. [14] which
is itself based on a construction of Thorup and Zwick [48|
and the second is by Cohen et al. [11]. The two solutions
produce sketches of the same form and distance queries are
answered using the same operation.

Sketch-based oracles. More formally, a sketch-based dis-
tance oracle DO = (Setup, Query) is a pair of efficient algo-
rithms that work as follows. Setup takes as input a graph
G, an approximation factor o and an error bound & and
outputs an oracle Qg = {Sky }vev. Query takes as input an
oracle Q¢ and a shortest distance query ¢ = (u,v). We say
that DO is (a,e)-correct if for all graphs G and all queries
q = (u,v), Pr[dist(u,v) < d < - dist(u,v)] > 1 — ¢, where
d := Query(Q¢, u,v). The probability is over the random-
ness of algorithm Setup.

The Das Sarma et al. oracle. The Setup algorithm
makes o = O(n?/(**1)) calls to a Sketch sub-routine with
the graph G. Throughout, we refer to o as the oracle’s sam-
pling parameter and we note that it affects the size of the
sketches. During the ith call, the Sketch routine generates
and returns a collection of sketches (Ski1 s, Sk ), one for
every node v; € V. Each sketch Skij is a set constructed as
follows. During the ith call to Sketch, it samples uniformly
at random A = logn sets of nodes Sp, ..., Sx_1 of progres-
sively larger sizes. In particular, for all 0 < z < A—1, set .S,
is of size 2°. Skfjj then consists of X pairs {(w:,d:)}o<z<r—1
such that w, is the closest node to v; among the nodes in
S. and ¢. = dist(vj, w,). Having computed o collections of
sketches (Skf,1 e Skfjn)ie[g], Setup then generates, for each
node v; € V, a final sketch Sk, = J;_; Skf)j. Finally, it out-
puts a distance oracle Q¢ = (Sky,, ..., Ske, ). Throughout,
we refer to the nodes stored in the node/distance pairs of
the sketches as seeds.

The Cohen et al. oracle. The Setup algorithm assigns
to each node v € V' a sketch Sk, that includes pairs (w,d)
chosen as follows. It first chooses a random rank function
rk : V. — [0,1]; that is, a function that assigns to each
v € V a value distributed uniformly at random from [0, 1].
Let Ng(v) be the set of nodes within distance d — 1 of v
and let p = O(n?/ (V). Throughout, we refer to p as the
oracle’s rank parameter and note that it affects the size of
the sketches. For each node v € V, the sketch Sk, includes
pairs (w, 8) such that rk(w) is less than the p** value in the
sorted set {rk(y) : ¥ € Nyist(uv)(v)}. Finally it outputs a
distance oracle Qg = (Sko;, - .., Sk, ). Like above, we refer



to the nodes stored in the node/distance pairs of the sketches
as seeds.

Shortest distance queries. The two oracle constructions
share the same Query algorithm which works as follows.
Given a query ¢ = (u,v), it finds the set of nodes I in
common between Sk, and Sk, and returns the minimum
over s € I of dist(u, s) + dist(s,v). If there are no nodes in
common, then it returns 1.
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Figure 1: Two sketches for nodes u and v. The approximate
shortest distance d = 5.

4 Distance Oracle Encryption

In this section we present the syntax and security defini-
tion for our oracle encryption schemes. There are many
variants of structured encryption, including interactive and
non-interactive, response-revealing and response-hiding. We
consider interactive and response-hiding schemes which de-
note the fact that the scheme’s query operation requires at
least two messages (one from client and a response from
server) and that queries output no information to the server.

DEFINITION 4.1  (ORACLE ENCRYPTION). A  distance
oracle encryption scheme Graph = (Setup,distQuery) con-
sists of a polynomial-time algorithm and a polynomial-time
two-party protocol that work as follows:

o (K,EO) « Setup(1*,Q,a,¢): is a probabilistic algo-
rithm that takes as input a security parameter k, a
distance oracle ), an approximation factor o, and an
error parameter €. It outputs a secret key K and an
encrypted graph EO.

e (d, L) + distQuery; ¢ ((K7 q), EO): s a two-party pro-
tocol between a client C' that holds a key K and a short-
est distance query q = (u,v) € V? and a server S that
holds an encrypted graph EQ. After executing the pro-
tocol, the client receives a distance d > 0 and the server
receives 1. We sometimes omit the subscripts C' and
S when the parties are clear from the context.

For a > 1 and € < 1, we say that Graph is («a,¢€)-correct if
for all k € N, for all Q and for all ¢ = (u,v) € V2,

Prid < a-dist(u,v)] > 1 —c¢,

where the probability is over the randommness in com-
puting (K,EOQ) <« Setup(1*,Q,a,¢) and then (d,1)
distQuery((K, q), EO).

4.1 Security

At a high level, the security guarantee we require from an
oracle encryption scheme is that: (1) given an encrypted
oracle, no adversary can learn any information about the
underlying oracle; and (2) given the view of a polynomial
number of distQuery executions for an adaptively generated
sequence of queries q = (q1, ..., ¢n), N0 adversary can learn
any partial information about either Q¢ or q.

Such a security notion can be difficult to achieve effi-
ciently, so often one allows for some form of leakage. Follow-
ing |13} 7], this is usually formalized by parameterizing the
security definition with leakage functions for each operation
of the scheme which in this case include the Setup algorithm
and distQuery protocol.

We adapt the notion of adaptive semantic security from
|13 /7] to our setting to the case of distance oracle encryp-
tion.

DEFINITION 4.2. Let Graph = (Setup,distQuery) be an
oracle encryption scheme and consider the following proba-
bilistic experiments where A is a semi-honest adversary, C
is a challenger, S is a simulator and Lsewp and Lquery are
(stateful) leakage functions:

IdealA,S(lk):

e A outputs an oracle 2, its approzimation factor a and
its error parameter €.

o Given Lsetup(Q), 1%, « and e, S generates and sends
an encrypted graph EO to A.

o A generates a polynomial number of adaptively cho-
sen queries (qi,...,qm). For each qi, S is given
Lquery(2,¢:) and A and S execute a simulation of
distQuery with A playing the role of the server and S
playing the role of the client.

o A computes a bit b that is output by the experiment.

Real 4 (1%):

o A outputs an oracle €2, its approzimation factor a and
its error parameter €.

o C computes (K,EOQ) < Setup(1*,Q, a, €) and sends the
encrypted graph EO to A.

e A generates a polynomial number of adaptively cho-
sen queries (qi,...,qm). For each query q;, A and C
execute distQueryc,A((K, q), EO).

o A computes a bit b that is output by the experiment.

We say that Graph is adaptively (Lsetup;s LQuery)-

semantically secure if for all ppt adversaries A, there
exists a ppt simulator S such that

‘Pr [RealA(lk) = 1] —Pr [IdealA,s(lk)] = 1‘ = negl(k).

The definition above captures the fact that, given the en-
crypted oracle and its view of the query protocol, an adver-
sarial server cannot learn any information about the oracle
beyond the leakage.

4.2 Leakage

All the distance oracle encryption schemes we discuss in
this work leak information. We describe and formalize these
leakages below.

Setup leakage. The setup leakage of our first and sec-
ond constructions, GraphEnc; and GraphEncy in Sections
and includes the total number of nodes in the
underlying graph n, the maximum sketch size S =
maxyev |Sky| and the maximum distance over all seeds
D = maxy,ev max(y,s)esk, 0. The setup leakage of our third
construction, GraphEncs in Section[5-3} includes n, S, D and

the total number of seeds Z =3, [Sky|.



Query pattern leakage. The query leakage of our
first two constructions, GraphEnc; and GraphEnc,, reveals
whether the nodes in the query have appeared before. We
refer to this as the query pattern leakage and formalize it
below.

DEFINITION 4.3  (QUERY PATTERN). For two queries
q,q define Sim(q,¢') = u=v ,u=vv=1u,v=10"), e,
whether each of the nodes ¢ = (u,v) matches each of the
nodes of ¢ = (u',v'). Let q = (q1,...,qm) be a non-empty
sequence of queries. Every query q; € q specifies a pair of
nodes u;,v;. The query pattern leakage function Lqop(q) Te-
turns an m X m (symmetric) matriz with entry i,j equals
Sim(qi,q;). Note that Lop does not leak the identities of
the queried nodes.

We do not claim that it is always reasonable for a graph
encryption scheme to leak the query pattern - it may convey
sensitive information in some settings. Furthermore, Defini-
tion [£:2] does not attempt to capture all possible leakages.
As with many similar definitions, it does not capture side
channels, and, furthermore, it does not capture leakage re-
sulting from the client’s behavior given the query answers,
which, in turn may be affected by the choice of an approxi-
mation algorithm (see also |16} [22] for a discussion of privacy
of approximation algorithms).

Sketch pattern leakage. Our third construction,
GraphEncs, leaks the query pattern and an additional
pattern we refer to as the sketch pattern. The sketch
pattern reveals which seeds are shared between the different
sketches of the oracle and the size of the sketches. We
formalize this below by revealing randomized “pseudo-ids”
of the seeds in each sketch.

DEFINITION 4.4  (SKETCH PATTERN LEAKAGE). The
sketch pattern leakage function Lsp(Qa,q) for a graph
G and a query ¢ = (u,v) is a pair (X,Y), where
X = {f(w) : (w,d) € Sku} and Y = {f(w) : (w,d) € Sky}
are multi-sets and f : {0,1}'°8™ — {0,1}°5™ is a random
function.

It is not clear what this leakage implies in practice but
we note that the leakage is not (directly) over the graph but
over the sketches which contain a random subset of nodes.
Therefore, it may be possible to add some form of noise in
the sketches (e.g., using fake sketch elements) to guarantee
some level of privacy to the original graph. We note that
leakage is revealed in all SSE constructions such as [46, |6l 120}
13| 7,125, |28} |24} |5, |37, |4]. However, in all these constructions
the leakage is over a data structure (e.g., an inverted index)
that holds all of the original data (i.e., all the keywords and
documents). In our case, the leakage is over a structure that
holds only a random subset of the data. This could provide
additional help with respect to privacy but this is a topic
for future work and is not the main focus of this paper.

4.3 Efficiency

We evaluate the efficiency and practicality of our construc-
tions according to the following criteria:

e Setup time: the time for the client to pre-process and
encrypt the graph;

e Space complexity: the size of the encrypted graph;

e Query time: The time to execute a shortest distance
query on the encrypted graph;

o Communication complerity: the number of bits ex-
changed during a query operation.

5 Our Constructions

In this section, we describe our three oracle encryption
schemes. The first scheme, GraphEnci, is computationally
efficient, but has high communication overhead. Our second
scheme, GraphEnc,, is communication efficient but has high
space overhead. Our third scheme, GraphEncs, is compu-
tationally efficient with optimal communication complexity.
GraphEnc; and GraphEnc, do not leak anything besides the
Query Pattern, and GraphEncs also leaks the Sketch Pattern.

5.1 A Computationally-Efficient Scheme

We now describe our first scheme which is quite practical.
The scheme GraphEnc; = (Setup, distQuery) makes use of
a symmetric-key encryption scheme SKE = (Gen, Enc, Dec)
and a PRP P. The Setup algorithm works as follows. Given
a 1’“,QG, o and €:

e It pads each sketch to the maximum sketch size S by
filling them with dummy values.

e [t then generates keys Ki, K> for the encryption
scheme and PRP respectively and sets K = (K1, K2).
For all v € V, it computes a label Pg,(v) and cre-
ates an encrypted sketch ESk, = (c1,...,cx), where
¢i « Enck, (w;||d;) is a symmetric-key encryption of
the ith pair (w;,d;) in Sky.

e It then sets up a dictionary DX in which it stores, for
all v € V, the pairs (Pk,(v),ESk,), ordered by the
labels. The encrypted graph is then simply EO = DX.

The distQuery protocol works as follows. To query
EO on ¢ = (u,v), the client sends a token tk =
(tki,tke) = (Pk,(u), Pk,(v)) to the server which returns
the pair ESk, := DX[tki] and ESk, := DX|tks]. The
client then decrypts each encrypted sketch and computes
minger dist(u, s) + dist(s,v) (note that the algorithm only
needs the sketches of the nodes in the query).

Security and efficiency. It is straightforward to see
that the scheme is adaptively (£, Lgp)-semantically secure,
where L is the function that returns n, S and D. We defer
a formal proof to the full version of this work. The com-
munication complexity of the distQuery protocol is linear in
S, where S is the maximum sketch size. Note that even
though S is sub-linear in n, it could still be large in prac-
tice. For example, in the Das Sarma et al. construction
S = O(nz/a -logm). Also, in the case of multiple concurrent
queries, this could be a significant bottleneck for the scheme.

In the following Section, we show how to achieve a solution
with O(1) communication complexity and in Section [ we
experimentally show that it scales to graphs with millions
of nodes.

5.2 A Communication-Efficient Scheme

We now describe our second scheme GraphEnc, =
(Setup, distQuery) which is less computationally efficient



Algorithm 1: Setup algorithm for GraphEnc;

Input : 1% Q¢ a,e
Output: EO

1 begin Setup
2 Sample K & {0,1}%;
3 Initialize a dictionary DX;
4 Generate a key pair (pk, sk) <— SWHE.Gen(1%);
5 Set S := maxyev |Sky|;
6 Set D := maxycv {max(wy,;)eskv 5};
7 Set N:=2-D+1landt=2-58%.¢1;
8 Sample a hash function h : V — [t] from H;
9 foreach v € V do
10 compute £, := Pk (v);
11 initialize an array T, of size t;
12 foreach (w;,d;) € Sk, do
13 set Ty [h(w;)] + SWHE.Encpi(2V ~%);
14 fill remaining cells of T, with encryptions of
0; set DX[ly] := To;
15 Output K and EO = DX

than our first but is optimal with respect to communication
complexity.

The details of the construction are given in Algorithms
and It makes use of a SWHE scheme SWHE =
(Gen, Enc, Dec, Eval), a pseudo-random permutation P and
a family of universal hash functions H.

The Setup algorithm works as follows. Given 1%, Qq, o,
and ¢ as inputs, it generates a public/secret-key pair (pk, sk)
for SWHE. Let D be the maximum distance over all the
sketches and S be the maximum sketch size. Setup sets

N := 2. D+ 1 and samples a hash function h & 9 with
domain V' and co-domain [t], where t = 2- 5% .71,

It then creates a hash table for each node v € V. More
precisely, for each node v, it processes each pair (w;,d;) €
Sk, and stores Encp (2 7%) at location h(w;) of a t-size ar-
ray T,. In other words, for all v € V, it creates an array T,
such that for all (wi,d;) € Ske, To[h(w;)] + Encp(2 ~%).
It then fills the empty cells of T,, with homomorphic encryp-
tions of 0 and stores each hash table T,, through T,, in a
dictionary DX by setting, for all v € V, DX[Pk (v)] := To.
Finally, it outputs DX as the encrypted oracle EO.

Fig. [2] below provides an example of one of the hash tables
T, generated from a sketch Sk, = {(w1,d1),..., (ws,ds)},
where s is the size of the sketch. For all ¢ € [s], the cipher-
text Encok(2V %) is stored at location h(w;) of the table
T,. For example, we place Encp(227%) to T,[h(w;)] since
h(w;) = 1. Finally, all remaining locations of T, are filled
with SWHE encryptions of 0. Notice that, since we are using
probabilistic encryption, the encryptions of 0 are different,
and are indistinguishable from the encryptions of the other
values.

0 hw) 2 o) hOw) e
Enc, (0) [Bney @) Enc,, 0)] - [Eney @™ [Eney, @"%) Enc, 0)

T,

Figure 2: One node’s encrypted hash table.

The distQuery protocol works as follows. Given a
query q = (u,v), the client sends tokens (tki,tks) =
(Pk (u), P (v)) to the server which uses them to retrieve the

hash tables of nodes u and v by computing T, := DX[tki]
and T, := DX]tkz]. The server then homomorphically eval-
uates an inner product over the hash tables. More precisely,
it computes ¢ := 3!, Ty[i] - To[i], where 3" and - refer to
the homomorphic addition and multiplication operations of
of the SWHE scheme. Finally, the server returns only ¢ to
the client who decrypts it and outputs 2N — log, (Decs(c)).

Algorithm 2: DistQuery algorithm for GraphEnc;

Input : Client’s input is (K, ¢) and server’s input is

Output: Client’s output is disty and server’s output is
1.

1 begin distQuery
C': client parses q as (u,v);
3 C = S: client sends
th = (tki, th2) = (Pk (u), Px (v));
4 S: server retrieves T := DX[tky] and T2 := DX[tka];
5 foreach i € [t] do
6 Server computes

Ci < SWHE.EvaI(X,Tl[i], TQ[Z]),
S = C: server sends ¢ < SWHE.Eval(+,c1,...,¢);
8 C: client computes m « SWHE.Decq(c);
9 C': client outputs dist = 2N — log m.

Note that the storage complexity at the server is O(n - t)
and the communication complexity of distQuery is O(1) since
the server only returns a single ciphertext. In Section [5.2.1]
we analyze the correctness and security of the scheme.

Remark. The reason we encrypt 2V =% as opposed to 6;

is to make sure we can get the minimum sum over the dis-
tances from the sketches of both u and v. Our observation
is that 2 +2Y is bounded by 2™*(®¥) =1 Ag we show Theo-
rem this approach does not, with high probability, affect
the approximation factor from what the underlying distance
oracle give us.

Instantiating & optimizing the SWHE scheme. For
our experiments (see Section @ we instantiate the SWHE
scheme with the BGN construction of |3]. We choose BGN
due to the efficiency of its encryption algorithm and the
compactness of its ciphertexts and keys (as compared to the
lattice-based construction of [19]). Unfortunately, the BGN
decryption algorithm is expensive as it requires computa-
tions of discrete logarithms. To improve this, we make use
of various optimizations. In particular, we compute discrete
logs during decryption using the Baby step Giant step al-
gorithm [43] and use a pre-computed table to speed up the
computation. We defer the details of our optimizations to
the full version of this work.

5.2.1 Correctness

Here, we analyze the correctness of GraphEnc,. We first
bound the collision probability of our construction and then
proceed to prove correctness in Theorem [5.2] below.

LEMMA 5.1. Let ¢ = (u,v) be a shortest distance query
and let £, be the event that a collision occurred in the Setup
algorithm while constructing the hash tables T, and T,.

Then, Pr[&q] < 2- STZ

Proof: Let Coll, be the event that at least one collision
occurs while creating v’s hash table T, (i.e., in Algorithm



Setup Line . Also, let XColl, , be the event that there
exists at least one pair of distinct nodes w,, € Sk, and w, €
Sk, such that h(w.) = h(w,). For any g = (u,v), we have

Pr[&,] < Pr[Coll,] + Pr[Coll,] + Pr[XColl,,]. (1)

Let sy be the size of Sk, an s, be the size of Sk,. Since there
are (52“) and (52”) node pairs in Sk, and Sk,, respectively,
and each pair collides under h with probability at most

1/t, Pr[Coll,] < ;—‘2; and Pr[Coll,] < ;—%t On the other
hand, if I is the set of common nodes in Sk, and Sk,, then
Pr[XColly, ] < WM Recall that s, = s, < S, so
by combining with Eq. [I} we have Pr{&,] <2- STQ |

Note that in practice “intra-sketch” collision events Coll,
and Coll, may or may not affect the correctness of the
scheme. This is because the collisions could map the SWHE
encryptions to locations that hold encryptions of 0 in other
sketches. This means that at query time, these SWHE en-
cryptions will not affect the inner product operation since
they will be canceled out. Inter-sketch collision events
XColly,,, however, may affect the results since they will
cause different nodes to appear in the intersection of the
two sketches and lead to an incorrect sum.

THEOREM 5.2. Let G = (V,E), a > 1 and e < 1. For all
q = (u,v) € V* with u # v,

Prla-dist(u,v) —log|I| < d < a-dist(u,v)] > 1 —¢,

where  (d, L) = GraphEncz.distQuery((K7 q), EO),
(K,EQ) < GraphEncy.Setup(1*,Q¢g, o, ¢), and I is the
number of common nodes between Sk, and Sk,.

Proof: Let I be the set of nodes in common between Sk,
and Sk, and let mindist = miny,c1{d;' + d; }, where for all
0 <i < |1, 6 € Sk, and §; € Sk,. Note that at line
in Algorithm [2| distQuery, the server returns to the client
¢= i Tuld] - Toli].

Let &; be the event a collision occurred during Setup in
the construction of the hash tables T, and T, of v and v
respectively. Conditioned on &,, we therefore have that

|1
c = Z Encpk(ZNfég) . Encpk(2N7‘§f)
i=1

_ Encpk(22N ) 2?2\127(5;%63))7

where the first equality holds since for any node w; ¢ I,
one of the homomorphic encryptions Ty[i] or T,[i] is an
encryption of 0. It follows then that (conditioned on &)
at Step [J] the client outputs

d

N I o—(84+6?
2N — log (227 - sl 2= (0¥ +e0)
S IN — lOg (22N—mindist)
< mindist,
where the first inequality holds since mindist < (0;* 4 97) for
all ¢ € |I|. Towards showing a lower bound on d note that

AN I o— (6457
d = 2N —log (2*V . sl 2700
Z 2N—10g (22N7m|nd|st+|1|)

> mindist — log [1],

where the first inequality also holds from mindist < (67 +6;)
for all ¢ € |I|. Now, by the (a, €)-correctness of DO, we have

that mindist < o - dist(u,v) with probability at least (1 — ¢)
over the coins of DO.Setup. So, conditioned on &,

mindist — log |I| < d < « - dist(u, v).

The Theorem follows by combining this with Lemma [5.1
which bounds the probability of £, and noting that Setup
setst =2-8%. 71 |

Space complexity. Note that to achieve («, €)-correctness,
our construction produces encrypted sketches that are larger
than the original sketches. More precisely, if the maximum
sketch size of the underlying distance oracle is S, then the
size of every encrypted sketch is t = 2 - S? - ¢!, which
is considerably larger. In Section we describe a third
construction which achieves better space efficiency at the
cost of more leakage.

Remark on the approximation. Note that Theorem|[5.2]
also provides a lower bound of « - dist(u,v) — log |I| for the
approximate distance. In particular, the bound depends on
the set of common nodes |I| which varies for different queries
but is small in practice. Furthermore, if log|I| is larger than
mindist, the approximate distance returned could be neg-
ative (we indeed observe a few occurrences of this in our
experiments).

To improve the accuracy of the approximation, one
could increase the base in the homomorphic encryptions.
More precisely, instead of using encryptions of the form
Encok(2V7%) we could use Enco(BYN~°) for B = 3 or
B = 4. This would result in an improved lower bound of
mindist — log |I| but would also increase the homomorphic
decryption time since this increases the message space which
in turn adds overhead to the decryption algorithm. We leave
it as an open problem to further improve this lower bound
without increasing the message space.

Remark on error rate. Given the above analysis, a client
that makes v queries will have an error ratio of € - v. In
our experiments we found that, in practice, when using the
Das Sarma et al. oracle, setting o ~ 3 results in a good
approximation. So if we fix ¢ = 3 and set t = O(y/n),
then the error rate is O(y - log®(n)/y/n) which decreases
significantly as n grows. In the case of the Cohen et al. all-
distance sketch, if we fix p = 4 and set ¢ = O(y/n), then
we achieve about the same error rate O(v-In*(n)/\/n). We
provide in Section[f]detailed experimental result on the error
rate.

5.2.2  Security

In the following Theorem, we analyze the security of
GraphEnc;.

THEOREM 5.3. If P is pseudo-random and SWHE
is CPA-secure then GraphEncy, as described above,
is  adaptively (Lsetup, LqQuery)-semantically secure, where

ﬁSetup(QG) = (n7 S7 D) and ﬁQuery(QGﬁ q) = EQP(QG7 CI)

Proof Sketch: Consider the simulator S that works as fol-
lows. Given leakage Lsetp(2¢) = (S, D), it starts by gen-
erating (pk,sk) < SWHE.Gen(1%). For all 1 < i < n, it
then samples ¢; & {0,1}'°2™ without repetition and sets
DX[¢;] := T;, where T; is an array that holds ¢t = 2 - 52 et
homomorphic encryptions of 0 € 2V, where N = 2- D + 1.
It outputs EO = DX.



Given leakage Lquery(Qa,q) = Lor(Qa,q) it checks if ei-
ther of the query nodes u or v appeared in any previous
query. If u appeared previously, S sets tk; to the value that
was previously used. If not, it sets tk; := ¢; for some pre-
viously unused ¢;. It does the same for the query node v;
that is, it sets tka to be the previously used value if v was
previously queried or to an unused ¢; if it was not.

The theorem follows from the pseudo-randomness of P
and the CPA-security of SWHE. |

5.3 A Space-Efficient Construction

Although our second construction, GraphEnca, achieves opti-
mal communication complexity, it has two limitations. The
first is that it is less computationally-efficient than our first
construction GraphEnc; both with respect to constructing
the encrypted graph and to querying it. The second limita-
tion is that its storage complexity is relatively high; that is,
it produces encrypted graphs that are larger than the ones
produced by GraphEnc; by a factor of 2- S -e~*. These lim-
itations are mainly due to the need to fill the hash tables
with many homomorphic encryptions of 0. This also slows
down the query algorithm since it has to homomorphically
evaluate an inner product on two large tables.

To address this, we propose a third construction
GraphEncs = (Setup, distQuery) which is both space-efficient
and achieves O(1) communication complexity. The only
trade-off is that it leaks more than the two previous con-
structions.

Algorithm 3: Setup algorithm for GraphEncs

Input : 1% Qc,a,¢
Output: EO

1 begin Setup
2 Sample K1, K2 & {0,1}*;
3 Initialize a counter ctr = 1;
a | Let Z=3 .y ISkol;
5 Sample a random permutation 7 over [Z];
6 Initialize an array Arr of size Z;
7 Initialize a dictionary DX of size n;
8 Generate (pk,sk) < SWHE.Gen(1%);
9 Set S := maxyev |Sky|;
10 Set D := maxycv { MaX (), 5) €Sk, 5};
11 Set N:=2-D+1landt=2-58%.¢1;
12 Initialize collision-resistant hash function
h:V —[t];
13 foreach v € V do
14 sample K, « {0,1}%;
15 foreach (w;, d;) € Sk, do
16 compute ¢; < SWHE.Encp (2 ~%);
17 if i # |Sky| then
18 | Set N;i = (h(w;)]|eil|w(ctr 4 1));
19 else
20 | Set Ni = (h(w;)]|ei[NULL);
21 Sample 7; & {0,1}*;
22 Set Arr[m(ctr)] := (N; @ H(Ky||ri),7i);
23 Set ctr =ctr+1 ;
24 foreach v € V' (in random order) do
25 | Set DX[Pr, (v)] := (addruer (ho) || Kv) & Fi, (v)
26 Output K = (K1, K2, pk,sk) and EO = (DX, Arr);

The details of the scheme are given in Algorithms[3]and [4]
At a high-level, the scheme works similarly to GraphEnc;
with the exception that the encrypted sketches do not store
encryptions of 0’s, i.e., they only store the node/distance
pairs of the sketches constructed by the underlying distance
oracle. Implementing this high-level idea is not straight-
forward, however, because simply removing the encryptions
of 0’s from the encrypted sketches/hash tables reveals the
size of the underlying sketches to the server which, in turn,
leaks structural information about the graph. We overcome
this technical difficulty by adapting a technique from [13]
to our setting. Intuitively, we view the seed/distance pairs
in each sketch Sk, as a linked-list where each node stores a
seed/distance pair. We then randomly shuffle all the nodes
and place them in an array; that is, we place each node of
each list at a random location in the array while updating
the pointers so that the “logical” integrity of the lists are
preserved (i.e., given a pointer to the head of a list we can
still find all its nodes). We then encrypt all the nodes with
a per-list secret key.

The scheme makes use of a SWHE scheme SWHE =
(Gen, Enc, Eval, Dec), a pseudo-random permutation P, a
pseudo-random function F, a random oracle H and a
collision-resistant hash function h modeled as a random
function

The Setup algorithm takes as input a security parameter
k, an oracle Q)¢ , an approximation factor a, and an error
parameter € < 1. As shown in Algorithm [3] it first initial-
izes a counter ctr = 1 and samples a random permutation
7 over the domain [Z], where Z = 37 _,, [Sky|. It then
initializes an Z-size array Arr. It proceeds to create an en-
crypted sketch ESk, from each sketch Sk, as follows. It first
samples a symmetric key K, for this sketch. Then for each
seed/distance pair (wj, d;) in Sky, it creates a linked-list node
N; = (h(w:)|ei||m(ctr + 1)), where ¢; + Encp (2 7%), and
stores an H-based encryption (N; & H(K,||rv),rv) of the
node at location m(ctr) in Arr. For the last seed/distance
pair, it uses instead a linked-list node of the form N; =
(h(w;)]le;||NULLY), it then increments ctr.

Setup then creates a dictionary DX where it stores for each
node v € V, the pair (Px, (v), (addrar (hy)|| Kv) ® Fk, (v)),
where addrr(hy) is the location in Arr of the head of v’s
linked-list. Figure 3| provides a detailed example for how we
encrypt the sketch. Suppose node u’s sketch Sk, has the
element (a,d1), (b, d2), (¢,ds). The locations ind1,ind2,ind3
in Arr are computed according the random permutation 7.

Arr

4’{ <(h(c)ISWHE.Enc(2V4%))IINULL @H(I‘(‘//rj), r3>A

a{ <h(b)ISWHE Enc(2V42))lind3 @ H( ,J/r;),rpA

<h@)ISWHE Enc(2"))lind2 & H(K /Ir)). ri> A

[ . [ K @rwm | .. |

Figure 3: Example of encrypting Sk, =

{(a7d1)7 (b7 d2)7 (Cv d3)}

The distQuery protocol, which is shown in Algo-
rithm [ works as follows. Given a query q =
(u,v), the client sends tokens (tki,tks,tks,tks) =



Algorithm 4: The protocol distQuery: .

Input : Client’s input is K, ¢ = (u,v) and server’s
input is EO
Output: Client’s output is d and server’s output is L

1 begin distQuery
2 C': computes (tki, tko, tks,tks) =
(Pre, (u), Prey (0), Fiey (1), Fiey (v));5

3 C = S: sends tk = (tki, tka, tks, tka);

4 S: computes 1 + DX[tki] and v2 < DX]tka];
5 if vy =1L or~ = 1 then

6 ‘ exit and return L to the client

7 S: compute (a1||Ku) := 71 P tks;

8 S: parse Arr[ai] as (Ou, Tu);

9 S: compute N1 := oy & H(Ky|rw);
10 repeat
11 parse N; as (hi||ci||ait1);
12 parse Arr[a;11] as (Git1, Tit1);
13 compute Nit1 := 0541 © H(Kul||Ti+1);
14 set it =1+ 1;

15 until a;+1 = NULL;
16 S: compute (b1||Ky) := v2 D tky;

17 S: parse Arr[bi] as (v, Tv);

18 S: compute Nj := 0, ® H(K,||rw);

19 repeat

20 parse N as (h)||c}||bj1);

21 parse Arr[bjy1] as (0j41,7j41);

22 compute N1 = oj41 ® H(Ky||rj41);
23 set =74+ 1;

24 until b1 = NULL;
25 S: set s := SWHE.Encp(0);
26 foreach (I;, V;) do

27 if h; = h; then
28 compute p := SWHE.Eval(x, ¢;, ¢});
29 compute s := SWHE.Eval(+, s, p);

30 S = C: send s;
31 C': compute d := SWHE.Decu(s)

(Pk, (u), Pr, (v), Fry(u), Fr,(v)) to the server which uses
them to retrieve the values 71 := DX[tki] and 72 :=
DX[tkz]. The server computes (a1||K.) := 71 @ tks and
(b1]|Kv) = 2 @ tka. Next, it recovers the lists pointed
to by a1 and bi. More precisely, starting with ¢ = 1, it
parses Arr[ai] as (ow,7.) and decrypts o, by computing
(hilleillaiyr) = ouw ® H(Ku||re) while a;4+1 # NULL. And
starting with j = 1, it does the same to recover (h||c}||b;+1)
while bj4+1 # NULL.

The server then homomorphically computes an inner
product over the ciphertexts with the same hashes. More
precisely, it computes ans := Z(i,j):hFh; ¢i - ¢, where >
and - refer to the homomorphic addition and multiplica-
tion operations of the SWHE scheme. Finally, the server
returns only ans to the client which decrypts it and outputs
2N — log, (SWHE.Decs(ans)).

Note that the storage complexity at the server is O(m +
|V|) and the communication complexity of distQuery is still
O(1) since the server only returns a single ciphertext.

5.3.1 Correctness and Security

The correctness of GraphEncs follows directly from the cor-
rectness of GraphEncz. To see why, observe that: (1) the

homomorphic encryptions stored in the encrypted graph of
GraphEnc; are the same as those in the encrypted graph pro-
duced by GraphEnc; with the exception of the encryptions of
0; and (2) the output d of the client results from executing
the same homomorphic operations as in GraphEncy, with the
exception of the homomorphic sums with 0-encryptions.
We note that GraphEncs leaks only a little more than the
previous constructions. With respect to setup leakage it re-
veals, in addition to (n,S, D), the total number of seeds
Z. Intuitively, for a query ¢ = (u,v), the query leakage
consists the query pattern leakage in addition to: (1) which
seed /distance pairs in the sketches Sk, and Sk, are the same;
and (2) the size of these sketches. This is formalized in Def-
inition as the sketch pattern leakage Lsp(Qc, ¢). In the
following Theorem, we summarize the security of GraphEncs.

THEOREM 5.4. If P and F are pseudo-random, if SWHE
is CPA-secure then GraphEncs, as described above, is
adaptively (Lsetup, Lquery)-semantically secure in the ran-
dom oracle model, where Lsetp(Qq) = (n,S,D,Z) and
Lauery (26, 9) = (Lor(Q6,9), Lsp(Qa,q)).-

Proof Sketch: Consider the simulator S that works as fol-
lows. Given leakage Lsetwp = (1,5, D, Z), forall1 <i< Z

it samples I'; & {0, 1}lost+a(N)+log Z+k " where g(.) is the ci-
phertext expansion of SWHE, t = 2.52.e 71 and N = 2-D+1.
It then stores all the I'y’s in a Z-element array Arr. For

all 1 < 4 < n, it samples ¢; & {0,1}'°#™ without repe-

tition and sets DX[(;] & {0,1}°8 2% Finally, it outputs
EO = (DX, Arr).

Given leakage Lquery (G, q) = (Lor(G,q), Lsp(G,q)) such
that Lsp(G,q) = (X,Y), S first checks if either of the query
nodes u or v appeared in any previous query. If u appeared
previously, S sets tk; and tks to the values that were pre-
viously used. If not, it sets tk; := ¢; for some previously
unused ¢; and tks as follows. It chooses a previously un-

used a € [Z] at random, a key K, & {0,1}* and sets
tks := DX[tki] ® (a||Ku). It then remembers the associa-
tion between K, and X and the sketch size [Sky|. It does
the same for the query node v, sets tke and tks analogously
and associates |Sk,| and Y with the key K, it chooses.

It simulates the random oracle H as follows. Given (K, r)
as input, it checks to see if: (1) K has been queried before
(in the random oracle); and (2) if any entry in Arr has the
form (s,r) where s is a (logt + g(N) + log Z)-bit string.
If K has not been queried before, it initializes a counter
ctrx := 0. If an appropriate entry exists in Arr, it returns
s @ (7,c,p), where v is the ctr'” element of the multi-set
X or Y associated with K, ¢ is a SWHE encryption of 0
and p is an unused address in Arr chosen at random or ) if
ctr = |Sk|, where |Sk| is the sketch size associated with K. If
no appropriate entry exists in Arr, S returns a random value.
The Theorem then follows from the pseudo-randomness of
P and F and the CPA-security of SWHE. |

6 Experimental Evaluation

In this section, we present experimental evaluations of our
schemes on a number of large-scale graphs. We implement
the Das Sarma et al. distance oracle (DO;) and Cohen et
al. distance oracle (DO3) and all three of our graph encryp-
tion schemes. We use AES-128 in CBC mode for symmet-
ric encryption and instantiate SWHE with the Boneh-Goh-



Nissim (BGN) scheme, implemented in C++ with the Stan-
ford Pairing-Based Library PBCﬂ We use OpenSSIEl for all
basic cryptographic primitives and use 128-bit security for
all the encryptions. We use HMAC for PRF's and instanti-
ate the hash function in GraphEncs with HMAC-SHA-256.
All experiments were run on a 24-core 2.9GHz Intel Xeon,
with 512 GBs of RAM running Linux.

6.1 Datasets

We use real-world graph datasets publicly available from the
Stanford SNAP Websiteﬂ In particular, we use as-skitter,
a large Internet topology graph; com-Youtube, a large so-
cial network based on the Youtube web site; loc-Gowalla, a
location-based social network; email-Enron, an email com-
munication network; and ca-CondMat, a collaboration net-
work for scientific collaborations between authors of papers
related to Condensed Matter research. Table [Il summarizes
the main characteristics of these datasets.

[ Dataset [ Nodes [ Edges | Diameter | Storage |
as-skitter 1,696,415 | 11,095,298 25 143MB
com-Youtube | 1,134,890 | 2,987,624 20 37MB
loc-Gowalla 196,591 950,327 14 11MB
email-Enron | 36,692 367,662 11 1.84MB
ca-CondMat | 23,133 186,936 14 158KB

Table 1: The graph datasets used in our experiments

Notice that some of these datasets contain millions of
nodes and edges and that the diameters of these graphs are
small. This is something that has been observed in many
real-life graphs [30] and is true for expander and small-world
graphs, which are known to model many real-life graphs.
The implication of this, is that the maximum distance D in
the sketches generated by the distance oracles is, in practice,
small and therefore the value N that we use in GraphEnc;
and GraphEncs (see Algorithm [1| and [3)) is typically small.

6.2 Overview

For a graph G = (V,E) with n nodes, we summarize in
Table [ our constructions’ space, setup, and communica-
tion complexities as well as the complexities for both the
server and client during the query phase. Note that the
complexities for each scheme also depend on «, however, in
practice, since setting o for DO, (p for DO3) to some small
numbers resulted good approximations, therefore, it makes
a = O(logn). In our experiments, we test different o and
p’s and the sketch size, |Sk,|, for each node is sublinear in
the size of the graph, i.e. O(logn).

[ Scheme [ GraphEnc; | GraphEnc, [ GraphEncs |
Space O(nlogn) | O(nlogZn/e) [ O(nlogn)
Setup Time O(nlogn) | O(nlogZn/e) | O(nlogn)
Communication O(logn) O(1) O(1)
Server Query Comp. O(1) O(log® n/e) O(logn)
Client Query Comp. | O(logn) | O(diameter) | O(diameter)

Table 2: The space, setup, communication, and query com-
plexities of our constructions (« is set to be in O(logn)).

1http ://crypto.stanford.edu/pbc/
2https ://www.openssl.org/
3https ://snap.stanford.edu/data/

Table [3| summarizes our experimental results. Compared
to existing schemes, such as [1], our experiments shows that
the constructions are very efficient and scalable for large
real dataset. For example, in [1], it takes several minutes
to securely compute the shortest path distance for graph
with only tens to hundreds of nodes, whereas it takes only
seconds for our scheme to query the encrypted graph up to
1.6 million nodes.

6.3 Performance of GraphEnc,

We evaluate the performance of GraphEnc; using both the
Das Sarma et al. and Cohen et al. distance oracles. For the
Das Sarma et al. oracle (DO1), we set the sampling param-
eter 0 = 3 and for the Cohen et al. oracle (DO2) we set the
rank parameter p = 4. We choose these parameters because
they resulted in good approximation ratios and the maxi-
mum sketch sizes (i.e., S) of roughly the same amount. Note
that, the approximation factor « in those then is in O(logn)
for GraphEncy, therefore, the communication complexity (see
Table in GraphEnc; is O(logn). We can see from Table
that the time to setup an encrypted graph with GraphEnc;
is practical—even for large graphs. For example, it takes
only 8 hours to setup an encryption of the as-skitter graph
which includes 1.6 million nodes. Since the GraphEnc;.Setup
is highly-parallelizable, we could speed setup time consider-
ably by using a cluster. A cluster of 10 machines would be
enough to bring the setup time down to less than an hour.
Furthermore, the size of the encrypted sketches range from
1KB for CondMat to 1.94KB for as-skitter per node. The
main limitation of this construction is that the communica-
tion is proportional to the size of the sketches. We tested
for various sketch sizes, and the communication per query
went up to 3.8KB for as-skitter when we set S = 80. This
can become quite significant if the server is interacting with
multiple clients.

6.4 Performance of GraphEnc,

The first column in Table [3] of the GraphEnc, experiments
gives the size the encrypted hash tables T, constructed dur-
ing GraphEncy.Setup. Table sizes range from 5K for ca-
CondMat to 11K for as-skitter.

The Time column gives the time to create an encrypted
hash-table/sketch per node. This includes generating the
BGN encryptions of the distances and the 0-encryptions.
Note that this makes GraphEnc,.Setup quite costly, about 3
orders of magnitude more expensive than GraphEnc;.Setup.
This is mostly due to generating the 0-encryptions. Note,
however, that similarly to GraphEnc;, we can use extensive
parallelization to speed up the setup. For example, using a
cluster of 100 machines, we can setup the encrypted graph
on the order of hours, even for as-skitter which includes 1.6
million nodes. The space overhead per node is also large, but
the encrypted graph itself can be distributed in a cluster
since every encrypted sketch is independent of the other.
Finally, as shown in Table[3] GraphEnc; achieves a constant
communication cost of 34B.

In Fig. El, we report on the intra- and inter-collisions that
we observed when executing over 10K different queries over
our datasets. The collision probability ranges between 1%
and 3.5%. As we can see from the results, the oracle DO>
has less collisions than DO;.

We would like to point out that those inter-collisions can
be detected by associating with each encryption of a node
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GraphEnc; GraphEncp GraphEncs
sketch Graph Comm. Setup Time Size Comm. Setup Time Size Comm. Setup Time Size
Dataset size Sketching || per query per node per node T per query per node per node || per query per node per node
S Scheme (in bytes) (in ms) (in KBs) size | (in bytes) (in secs) (in MBs) || (in bytes) (in ms) (in KBs)
As-skitter 80 DO; 3,840 16.7 1.94 11K 34 7.3 1.1 34 20.1 1.91
i 71 DO> 3,120 14 1.63 8.4K 34 6.59 0.76 34 16 1.83
Youtube 80 DO; 3,840 16.5 1.94 10K 34 8 1.1 34 18.2 1.91
68 DO> 3,120 14.5 1.63 8.5K 34 6.57 0.76 34 17.3 1.7
Gowalla 70 DO 3360 14.9 1.7 7.5K 34 7.4 0.82 34 15.6 1.71
53 DO, 2544 12 1.29 7K 34 5 0.62 34 14.7 1.41
Enron 60 DO; 2880 12.5 1.44 7K 34 5.6 0.76 34 14 1.48
45 DO> 2160 9.39 1.11 6.5K 34 4.81 0.53 34 10 1.25
CondMat 55 DO; 2640 11.8 1.34 5.5K 34 4.65 0.65 34 13.2 1.31
42 DO> 2016 7.8 1.03 5K 34 3.8 0.49 34 8.2 1.21
Table 3: A full performance summary for GraphEnci, GraphEnc,, and GraphEncs
a random value and its inverse value that are unique for 6.5.2 Query Time
each node. If two different nodes collide, the product of
these values will be a random value, whereas if the same
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6.5 Performance of GraphEnc; g
) g -
The GraphEncs columns in Table [3| show that GraphEncs kS
is as efficient as GraphEnc; in terms of setup time and en-
crypted sketch size. Moreover, it achieves O(1) commu- 3 4 5 6

nication of 34B like GraphEnc,. Using a single machine,
GraphEncs.Setup took less than 10 hours to encrypt as-
skitter, but like the other schemes, it is highly paralleliz-
able, and this could be brought down to an hour using 10
machines. We instantiated the hash function h using a cryp-
tographic keyed hash function HMAC-SHA-256.

6.5.1 Construction time & encrypted sketch size

Since the performance of GraphEncs depends only on the
size of the underlying sketches we investigate the relation-
ship between the performance of GraphEncs.Setup and the
sampling and rank parameters of the Das Sarma et al. and
Cohen et al. oracles, respectively. We use values of o and p
ranging from 3 to 6 in each case which resulted in maximum
sketch sizes S ranging from 43 to 80. Figure 5| and Figure |§|
give the construction time and size overhead of an encrypted
sketch when using the Das Sarma et al. oracle and Cohen
et al. oracle respectively.

In each case, the construction time scales linearly when o
and p increase. Also, unlike the previous schemes, GraphEncs
produces encrypted sketches that are compact since it does
not use 0-encryptions for padding purposes.

P
(b) Query Time (in ms) DO>
Figure 7: Average Query time

We measured the time to query an encrypted graph as a
function of the oracle sampling/rank parameter. The aver-
age time at the server (taken over 10K random queries) is
given in Figure[7] for all our graphs and using both distance
oracles. In general, the results show that query time is fast
and practical. For as-skitter, the query time ranges from 6.1
to 10 milliseconds with the Das Sarma et al. oracle and from
5.6 to 10 milliseconds with the Cohen et al. oracle. Query
time is dominated by the homomorphic multiplication oper-
ation of the BGN scheme. But the number of multiplications
only depends on the number of common seeds from the two
encrypted sketches and, furthermore, these operations are
independent so they can be parallelized. We note that we
use mostly un-optimized implementations of all the underly-
ing primitives and we believe that a more careful implemen-
tation (e.g., faster pairing library) would reduce the query
time even further. We also measure the decryption time at
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the client. As pointed out previously, decryption time de-
pends on N which itself is a function of the diameter of the
graph. Since all our graphs have small diameter, client de-
cryption time—which itself consists of a BGN decryption—
was performed very efficiently. In particular, the average
decryption time was less than 4 seconds and in most cases
the decryption ranged between 1 and 3 seconds.

Finally, we would like to mention that there is some ad-
ditional information that is leaked. In our construction, we
leak the parameter p and o that are related to the size of
the encrypted graph and this may leak some information
about how “hard” it is to approximate the shortest distance
values for the particular graph at hand. Also, the time that
it takes to estimate the final result at the client may reveal
the diameter of the graph, since it is related to the N and
the max distance in the sketches.

6.6 Approximation errors

We investigate the approximation errors produced by our
schemes. We generate 10K random queries and run the
Query ¢ protocol. For client decryption, we recover 2N —
logm and round it to its floor value. We used breadth-first
search (BFS) to compute the exact distances between each
pair of nodes and we compare the approximate distance re-
turned by our construction to exact distances obtained with
BFS. We report the mean and the standard deviation of the
relative error for each dataset. We used both oracles to com-
pute the sketches. We present our results in Figure[§] which
shows that our approximations are quite good. Indeed, our
experiments show that our constructions could report bet-
ter approximations than the underlying oracles. This is due
to the fact that both oracles overestimate the distance so
subtracting log |I| can improve the approximation. For the
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Figure 8: Mean of Estimated Error with Standard Deviation

Gowalla dataset, the mean of the relative error ranges from
0.36 to 0.13 when using the Das Sarma et al. oracle DO;.
For as-skitter, it ranges from 0.45 to 0.22. The mean error
and the variance decreases as we increase the size of each
sketch. In addition, we note that DOs performs better in



all datasets. Also, half of the distances returned are exact
and most of the distances returned are at most 2 away from
the real distance. Figure [J] shows the histogram for the ab-
solute error when using DOs with p = 3. All the other
datasets are very similar to them, so we omit them due to
space limitations.
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Figure 9: Absolute error histogram DO3 and p = 3

We note that a very small number of distances were neg-
ative and we removed them from the experiments. Nega-
tive distances result from the intersection size |I| being very
large. Indeed, when the client decrypts the SWHE cipher-
text returned by the server, it recovers d > mindist — log [I].
If |I] is large and mindist is small (say, 1 or 2) then it is very
likely that d is negative. However, in the experiments, the
number of removed negative values were very small (i.e., 80
out of 10000 queries).

7 Conclusion

In this work, we described three graph encryption schemes
that support approximate shortest distance queries. Our
first solution, GraphEnci, is based only on symmetric-key
primitives and is computationally very efficient while our
second solution, GraphEnc;, is based on somewhat homomor-
phic encryption and is optimal in terms of communication
complexity. Furthermore, our third solution, GraphEncs,
achieves the “best of both worlds” and is computationally
very efficient with optimal communication complexity. Our
schemes work with any sketched-based distance oracle. We
implemented our constructions and evaluated their efficiency
experimentally, showing that our constructions are practical
for large-scale graphs.
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