Management of Highly Dynamic
Multidimensional
Data in a Cluster of Workstations

Vassil Kriakov!, Alex Delis?, and George Kollios?

! Polytechnic University, Brooklyn NY 11201
vassil@milos.poly.edu
2 The Univ. of Athens, Athens GR15771, Greece
ad@di.uoa.gr
3 Boston University, Boston, MA 02215
gkollios@cs.bu.edu

Abstract. Due to the proliferation and widespread use of mobile de-
vices and satellite based sensors there has been increased interest in
storing and managing spatio-temporal and sensory data. It has been rec-
ognized that centralized and monolithic index structures are not scalable
enough to address the highly dynamic nature (high update rates) and
the unpredictable access patterns in such datasets. In this paper, we
propose an adaptive networked index method designed to address the
above challenges. Our method not only facilitates fast query and update
response times via dynamic data partitioning but is also able to self-
tune highly loaded sites. Our contributions consist of techniques that
offer dynamic load balancing of computing sites, non-disruptive on-the-
fly addition/removal of storing sites, distributed collaborative decision
making for the self-administering of the manager, and statistics-based
data reorganization. These features are incorporated into a distributed
software layer prototype used to evaluate the design choices made. Our
experimentation compares the performance of a baseline configuration
with our multi-site system, examines the attained speed-up as a func-
tion of the sites participating, investigates the effect of data reorgani-
zation on query/update response times, asserts the effectiveness of our
proposed dynamic load balancing method, and examines the behavior of
the system under diverse types of multi-dimensional data.

Index Terms: Data Management in Cluster of Workstations, Networked
Storage Manager, Self-tuning Storage Nodes, and Multi-dimensional Data.

1 Introduction

Modern applications have to manage continuously growing and morphing vol-
umes of data [2,19,9, 26, 7]. The high update rates and unpredictable access pat-
terns in such applications make it challenging to provide short and consistent
database response times. For example, the Terra spacecraft (EOSDIS project [7])



produces around 200 GB/day and Landsat 7 another 150 GB/day of geophysi-
cal data [30]. As pointed out in [29], science is becoming very data intensive for
many fields. A wide range of integrated medical instrumentation and patient-
care systems also produce massive spatio-temporal data [5,24,23]. The man-
agement of data networks and content delivery networks calls for efficient data
visualization of network datasets [1] to help track changes and maintain good
levels of resource provisioning for applications. Finally, critical areas that involve
continuously changing and voluminous spatio-temporal data include intelligent
transportation and traffic systems, fleet and movement-aware information sys-
tems, and management of digital battlefields. The inherent multi-dimensional
nature of this data calls for the use of indexing methods that are capable of
providing efficient data access [21,25,22]. It is worth pointing out that in the
aforementioned areas data access as well as update patterns vary over time due
to a number of reasons including ever-changing user interests, weather condi-
tions, formation of new traffic congestion points, production of updated medical
records, sensor failures, and network topology changes.

In order to facilitate the continuous, yet incremental growth of data without
resorting to specialized hardware, we develop a networked storage manager based
on a Cluster of Workstations (COW) connected via a high speed LAN. Portions
of data are assigned to and indexed at these workstations (sites). We use R*-
trees to index multidimensional data [9,4] because their leaf-level nodes are not
correlated (in contrast, there is an absolute order of the leaves of a Bt-tree).
This feature is leveraged by our system to extract a subset of the data indexed
by one of the sites in the COW, insert it in the R*-tree of another site, and
preserve the overall integrity of the dataset [18]. This load balancing through
data migration involves a number of challenging trade-off questions: should data
be moved at all, which data should be migrated, how much data is it necessary
to ship and finally, between which sites is data to be migrated. We resolve these
questions by adopting soft lower/upper limits on load variations, maintaining
access statistics for nodes in the R*-trees, and continually controlling the load
of the COW sites.

Our proposal builds on prior research [18,20,27,28]. However, a number of
salient features substantially differentiate our work and include: support for high
update rates; decentralized collaborative decision making to improve scalability;
hot spots identification for efficient load balancing; graceful upscaling without
any down-time; and lastly, evaluation of the usefulness of a Top-k-Levelvariable
indexing scheme in the COW environment. We develop a full-fledged prototype
in C++/BSD-sockets and carry out an extensive experimental study to demon-
strate the benefits of our proposed techniques. Our main performance indicator
is the average response time (ART) of requests (queries or updates) [8]. The main
results of our evaluation are: a) achieved speedups of up to 50 times as compared



to identical non-self-tuning systems (eg. [28]); b) sizable (10-50%) concurrent
updates of the data set impose only minimal degradation of the average query
response times; c) robust scalability characteristics are exhibited with minimal
human intervention; d) the proposed Top-k-Level indexing scheme establishes
that query redirection is best achieved through broadcasting.

The remainder of this paper is structured as follows: Section 2 discusses
related work. Section 3 describes the architecture of our system and outlines the
proposed load-sharing and data migration techniques. Our experimental analyses
are discussed in Section 4 while conclusions and future research directions can
be found in Section 5.

2 Related Work

In [6,16] distributed extendible and linear hashing are examined. A combined
distributed index-hashing approach for one-dimensional data is proposed in [10].
Indexing suitable for shared-memory multiprocessor systems appears in [17],
while [3] discusses issues pertinent to the reliability of distributed structures.
[11] introduce the B-link tree which provides multiple levels of parallelism for ac-
cessing one-dimensional data. The levels of parallelism are achieved by a shared-
nothing distributed approach, locking mechanisms working off individual sites,
and partial replication of data. A load-conscious approach is also proposed in
[14]. Load balancing techniques for parallel disks that allow for judicious file
allocation and dynamic redistributions when page access patterns change are
discussed in [27].

In [13] a “semi-distributed” version of R-Trees is proposed and formulae
regarding optimality of data sizes and response times are derived. In [12] paral-
lelism is exploited by distributing an R-Tree across several disks managed by a
single processor and in [28] this concept is extended to a shared-nothing R-tree
architecture. For one dimensional dataset, a globally height-balanced adaptive
parallel B-tree (AB*-tree) is introduced in [15]. An improved version based
on R-trees is proposed in [18], where the strength of the approach is evaluated
via a simulation study. Finally, on-line reorganization of a centralized B+-tree
is investigated in [31].

Our proposal and development work introduce a number of innovations in-
cluding: a) a dynamic load balancing component facilitates data reorganization
among the distributed computing sites due to random and heavily mixed work-
loads; b) we use on-the-fly fine-tuning of data distributions to tailor for high-rate
access patterns and frequently occurring sizable updates; ¢) data selection dur-
ing migration occurs in a way that minimizes the amount of data shipped, while
maximizing the improvement on performance. The scalable LAN-based archi-
tecture reaps the benefits of a centralized global view at a master site, without
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impeding scalability. System upscaling can occur on demand, without any down-
time, by simply adding more COW client sites which are gracefully populated.

3 System Architecture, Models and Heuristics

The ultimate design goal of our COW-based manager is for it to exhibit superior
performance under very intensive workloads, where skewed access patterns shift
load conditions, and sustainable update rates increase resource demands.

3.1 Distributed Storage Manager Architecture

Our model consists of a cluster of workstations (COW) which communicate
over a high-speed network and host the underlying data set. The COW storage
manager functionality is divided between the the clients and a network coor-
dinator (or simply coordinator) as depicted in Figure 1. The responsibilities of
the network coordinator are reduced to a minimum to eliminate any bottleneck
effects. The coordinator keeps a global load table which is used when making
load balancing decisions. Any of the sites can also act as a coordinator.

Each site’s basic tool for autonomous data management is as an R*-tree
which indexes the local data set fragment assigned to it. Furthermore, each client
receives and executes requests which are submitted locally (through APIs), for-
warded from other clients, or forwarded from the coordinator. The supported
request operations are the containment or intersection queries and data inser-
tions and deletions (updates).

In the following sections we look more closely at the reasons for some of our
design choices and describe the client-client and client-coordinator interactions.

3.2 Evaluation of Top-k-Level Indexing

Past research efforts propose that a server holds a “distribution catalog” which
contains partial information about the data located at the client sites. In [28,
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Fig. 2. Evaluating the costs of maintaining a central distribution catalog: response
time is seriously affected under high update rates.

13] the coordinator holds copies of all non-leaf-level nodes of the index structure
of each client, with the postulation that this portion of the index comprises a
negligible part of the total index space. This approach suffers under heavy and
frequent updates as these trees have to be modified continually. In an ad-hoc
manner, [18] suggests that only the root level nodes of each client site should be
held at the coordinator. Empirically, we establish that the wide overlap in root
nodes renders this method inefficient.

A more general approach is to keep the Top-k-Levels for each tree in the
coordinator. We conduct a series of experiments to evaluate this approach for
values of k ranging from 0 (no catalog) to TreeHeight — 1 (full catalog). Figure
2 shows the results for an experiment involving ten million elements distributed
among six sites where one million insertions are intermixed with a sustained high
workload of 200,000 queries each retrieving 0.1-1% of the dataset. Results for
other experiments are similar but are omitted for brevity. The y-axis represents
the average response time (ART), which is our primary performance measure.
Our experimental results show that, under conditions involving heavy update
loads, the best performance is achieved when Top-k-Level Indexing is not used
and requests are broadcast to all client sites (i.e. k = 0). Based on this finding and
under the assumption of heavy update workloads, we adopt the approach where
the coordinator holds no information on data placement at client sites. Another
significant benefit of this scheme is that any site may be an entry point of data
requests which reduces the centralized role of the coordinator and, consequently,
improves on scalability.

3.3 Self-Tuning Principles

Dynamic load balancing is required in a COW environment subject to changing
access patterns as it helps achieve the following goals:



1. Detection of hot spots due to skewed access patterns and redistribution of
loads without service disruption and performance degradation.

2. The overhead of self-tuning is more than compensated for by the resultant
performance gains after completion of balancing.

3. No administrative work is involved during the redistribution process.

To our knowledge, this is the first work to address this issue in the described
shared-nothing environment. In [27], the matter is discussed in a shared-memory
parallel-disk system where device statistics are readily available. The data mi-
gration algorithms in [18] do not identify how queries are handled during the
redistribution process and do not deal extensively with the issue of skewed access
patterns on a per-site basis.

In our network storage manager, dynamic load balancing is facilitated through
on-line data reorganization. To avoid disruptions to user requests, we employ a
concurrency control mechanism between the client sites involved in the data
migration. The overhead of self-tuning is minimized through quick but careful
selection of data for migration such that the balance achieved is near-optimal,
while the amount of data migrated is minimal. In addition, we employ a dis-
tributed collaborative decision making process during the load balancing phase
which reduces processing at the network coordinator and minimizes the num-
ber of load-balancing considerations. These points are discussed in detail in the
following sections.

. Load (elements/second) |Parameter |Symbol|Values |
P load capacity |7 3k - 30k
VD oper max load Ymaz |3k - 30k
load pct A ’)’/’Ymam
o sampling period|7 1 second
e max samples  |Trmaz |3-5
load increment |§ 1-3
o e upper threshold |Aupper |50-85%
lower threshold |Ajpwer |40-75%
o overloaded load deviation |A 5-25%
— — sites N 1-20
Tl (a0 0 e dataset size D 0.1M - 10M

Fig. 3. Sample load variations for a Fig. 4. System parameters and values
given client site. for individual sites.
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3.4 Component Interaction

We define “client site load” as the number of data elements retrieved per second
by a client site. This measurement is derived in connection with the CPU usage,
disk I/0, and memory paging operations and implicitly reflects a workstation’s
resource utilization. In our experiments this value ranged from 3,000 to 30,000
elements per second (see table in Figure 4).

Each client i continuously measures its current load +* for each epoch elapsed
(a sampling period of 1 second as indicated in the table in Figure 4). Clients
have a fixed maximum sustainable load capacity v.,,,, which can be determined
a-priori by running a test benchmark* and is used to compute the current load
percentage A' = v%/~¢, ... Clients use the two system-wide parameters Aypper
and Aj,yer to determine whether they are overloaded. Site i is considered over-
loaded as long as the condition

(7" > Vimaz * Aupper)

holds true for an epoch. Using this epoch prevents load balancing from occurring
during spurious high loads. Prior to a client site’s first migration request, the
epoch must last at least T, * 7 seconds, where 7 is the load measurement
time interval in seconds, and T},.; is the number of load measurements. If a site
requests migration but the coordinator decides that the system is balanced and
denies the request, the site increases its value of Ty,., by . Thar is reset to
its original value when a migration request is granted. When a client considers
itself to be overloaded it sends a Request Migration message to the network

4 To establish the value of fyfmm for a site i, we retrieve all data stored at that site.
Assuming that sufficient amount of data is present, the site operates at its maximum
sustainable load 7,4, as reported by the Load Monitor.
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Fig. 6. The coordinator qualifies data migration based on the current load of each site,
and selects for destination sites with the least load.

coordinator as indicated in Figure 5. This triggers the self-tuning mechanism
and the coordinator evaluates the system’s state of balance as shown in Figure
6. It is important to note that there is no continuous processing or polling at
the coordinator. This certainly aids in the scalability of our architecture.

Effectively, the set of measurements and parameters in the table in Figure
4 provides soft thresholds for determining a site’s load state. This reduces the
number of migration requests during system-wide overloads when self-tuning
is not possible. In essence, the dynamic tuning of T,,,, allows client sites to
“learn” about the overall state of the system and attempt to adjust accordingly.
A sample load situation for a client site is given in Figure 3, where it can be seen
that the client requests migration only after its load has crossed 7% Aypper
for Th,ae * T seconds, and discontinues its migration requests after its load line

crosses 2, .o * Aower-

The coordinator records each site’s load in the Global Load Table (GLT)
shown in Figure 6 and uses this information to decide whether the COW manager
is balanced. The network coordinator computes the difference between the loads
of the most (Amaz) and least (Apmin) loaded sites in O(N) time where N is the
number of active client sites. When the condition:

()\maw - /\min) <A



qualifies, the system is balanced. The parameter A constitutes the system’s
tolerance for imbalance in terms of percentage and can be configured according
to the specific application needs. Finding an optimal value for A is beyond the
scope of this paper, but we provide an empirical approach and experiment with
values (5% - 25%) that are deemed representative for the parameter.

When the system is balanced, the requesting site is denied migration. Oth-
erwise, the least loaded client is selected to be the destination site and the
requesting site is redirected to continue negotiations with that client. The de-
tails of these negotiations are discussed in the next section. Since concurrent
requests for migration may be issued by multiple client sites, the coordinator
marks current destination/source pairs in the GLT, indicated by the ‘dst’ and
‘src¢’ columns in Figure 6. Such pairs of clients are not considered for destination
candidates until the migration process between them completes.

3.5 Data Migration

The data migration scheme must be very efficient: data must be selected quickly
and it must be shipped to the recipient site fast. To achieve these goals, each
site collects access and update statistics for each node in its R*-tree tree. This
information helps select minimal amount of data for migration, while maximizing
the effect on load redistribution. This reduces the overhead of data transfers
among the client sites and increases the system’s self-tuning responsiveness.

In the context of skewed access patterns following Zipfian or Gaussian dis-
tribution we maintain that it is of significant importance what data is claimed
for migration. If data accesses are uniformly distributed in space, to achieve a
desired load reduction, say 50%, a client has to migrate an equivalent proportion
(50%) of data. When access patterns are skewed, the degree of skew determines
the amount of data to be migrated. Figure 7 depicts the relationship between
load reduction rates and data migration size for various types of access skew. It
can be seen that for a desired load reduction, very few elements must be redis-
tributed under higher skews as compared to a uniform access distribution. Thus,
by exploiting access pattern information, migration overheads can be reduced
substantially.

Prior to selecting migration data, the overloaded client determines a target
load reduction A¢grger. This is the equilibrium point between the local load and
the destination site’s load: Aiarget = (Asre — Ajgr)/2. Atarget represents the load
percentage that the overloaded site would like to reduce its load by while X, is
Adst normalized to the source’s maximum load capacity ;<. . This normalization

is necessary when the COW is composed of heterogeneous sites with different
capacities Ymaqz-
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tributions. Therefore it is important to identified skewed access patterns when dealing
with data redistribution.

To select data for migration, a client first examines its root in the R*-tree
and using its access statistics determines the total R*-tree load over all subtrees
st:

TotalLoad = Z (o * st.read-count + B * st.write_count) /At

st € Toot

where a and (B are weight coefficients for adjusting the significance of reads
relative to writes since writes are usually more costly. The T'otal Load represents
the frequency of reads and writes applied to the tree.

Consequently, the most loaded subtree at the root is discovered. If this sub-
tree’s load is not sufficient to reach the target load reduction (i.e. if MazLoad-
edSubtreeLoad | TotalLoad < Migrget%), the subtree is selected for migration to
the destination site and the selection process terminates. Otherwise, that sub-
tree is examined: its most loaded subtree is found and the evaluation process
is repeated recursively. Note that the Total Load is determined only at the root
level. If the leaf-level is reached and no subtree has been selected for migration,
the most loaded node in that leaf is selected for migration. To select data for
migration, a site navigates its R*-tree tree, following the most loaded branches.
Therefore, the data selection process runs in time proportional to the height of
the tree, which is logarithmic with the number of elements indexed.
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3.6 Concurrency Control and Upscaling of the COW Manager

Once a subtree is selected for migration, a concurrency mechanism allows for
data migration and query execution to proceed simultaneously. This concurrent
execution is important not only from a synchronization standpoint but also
because of the overheads involved during data reorganization. Thus, we allow
request processing and data migration to occur simultaneously. To facilitate this,
the subtree chosen for migration is marked prior to any data migration. Queries
are allowed to enter the marked subtree at no cost. When updates enter a marked
subtree, they are propagated to the destination site which received the migrated
data as Figure 8 shows.

Once migration commences, two copies of the data exist: one at the des-
tination site and one at the source site. The forwarding of updates guarantees
that the two sets are synchronized. When migration is completed, the requesting
site sends a “Migration Complete” message to the coordinator. The coordinator
immediately enqueues a “Migration Cleanup” message on the outgoing queue
for the requesting site. When the requesting site receives this message, it safely
deletes the migrated data and stops forwarding messages to the destination site.
At this stage, the data migration process is complete and there is only one copy
of the migrated data at the destination site.

Due to this concurrency control mechanism, our COW manager provides a
flexible environment for automatic system upscaling with the growth of the data
set. New sites can be introduced into the distributed system by attaching them
to the same network cluster. Gradually, part of the data set is relocated to the
new site, alleviating the workload on the other sites. Down-scaling of the system
is accomplished in a similar manner.



4 Experimental Results

4.1 Experimental Setup

Our prototype system is entirely developed in C. The computing sites consist of a
cluster of SPARC-stations connected through a dedicated high-speed (100Mbps)
LAN.

The experiments were performed using both synthetically generated and real-
life data. The synthetic data was either uniformly distributed (hyper-squares
with sides of length 0.0005) or exponentially distributed (using Gaussian distri-
bution with ¢ = 1.0 and p = 0) in unit space. Furthermore, the experiments were
performed with data of three dimensionalities: 2D, 4D, and 8D. The number of
synthetic data elements (rectangles and hyper-cubes) used in the experiments
ranged from one-hundred thousand to ten million. The queries were also syn-
thetically generated (hyper-) rectangles, distributed uniformly or exponentially
in the unit square. Three types of queries were used with sides of length 0.005
(small), 0.015 (medium), and 0.05 (large). The main factors affecting the ex-
periment’s workload are the query area and the query inter-arrival rate. The
real-life data® consisted of 208,688 points in two-dimensional space representing
functional densities of a computational-fluid-dynamics experiment on the wing
of an airplane (Boeing 737).

Our main performance metric is the turnaround time for a given query (mea-
sured in seconds). We refer to this as the average response time (ART). The
experimental objective was to evaluate the performance of the COW-based self-
tuning manager under skewed access patterns and compare it to a system which
does not employ dynamic load balancing. By “skewed access patterns” we refer
to accesses which create hot spots in the distribute COW-manager. For persis-
tently high workloads, speed-ups of a factor of 50 were achieved. Under short
peak workloads, the performance improvements were a factor of 5.

Moreover, we evaluated experimentally the benefits of the combination of the
dynamic load balancing algorithm with our selective data migration technique.
Although the technique incurs extra overhead on the R*-tree processing, it re-
sulted in migration of up to 3 times fewer data elements as compared to when
no access information was tracked.

4.2 Results

Multi-Site Gains: Figure 9 depicts the performance gains achieved by increasing
the parallelism of the COW-based manager by introducing new sites. For the
cases when one to four sites were used, the system’s query processing time was

® This and additional multi-dimensional data can be found at Scott Leutenegger’s web
page: http://www.cs.du.edu/~leut/MultiDimData.html
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Fig. 9. Response times of a static system with 1 million 2-D elements for varying
number of sites (log scale).

slower than the query arrival time. When a fifth site was introduced, the system
was able to deliver optimal performance for the specific dataset, and the response
times were only affected by the processing of each query at the five sites (since
queries did not wait on the queue for previously submitted queries to complete).
On a multi-site system there is an additional improvement for insertions and
updates due to the smaller amount of data managed at each site (approximately
n/N records, as opposed to n records on a single site system). This reduces some
of the processing costs for data management.

Self Tuning Improvements: Figure 10 shows the response times for a two
site system indexing 100,000 two-dimensional rectangles. During the experiment
10% of the stored data was modified. For the given workload, which was skewed
to retrieve 70% of the requested data from one of the two sites and the remain-
ing data from the other site, the system could not cope with the requests when
self-tuning was turned off. Because the data retrieval time was greater than the
query inter-arrival rate, the response time of the system increased progressively.
However, with dynamic load balancing, during the first one-third of the exper-
iment, the system automatically migrated data from the overloaded site to the
underloaded site, resulting in significant improvements (up to a factor of 25).

The loads of the two sites for the duration of the experiment with migration
are shown in Figure 11. The skewed query workloads cause the loads on the
two sites to differ by about 50%. This is a typical unbalanced system. When the
overloaded site requests migration permission from the coordinator, it is granted
the request and the site begins migrating data to the underloaded site. This is
seen in the gradual increase of the load of the underloaded site as it begins to
index more and more data. When the two loads converge (at the 50% mark)
data migration ceases and the system is optimally balanced. This corresponds
to the steady low response time in Figure 10.
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Similar results were achieved with the real-life data set although the results
are not shown due to space limitations. Surprisingly, the performance improve-
ments were higher when operating on the real-life data: the speed-up was a factor
of 9.23 on average.

With uniformly distributed data set (Figure 12) data migration again resulted
in overall better performance. However, the gain ratio was much lower. This was
due to two factors. Firstly, in general the response times for the uniformly dis-
tributed data set were much shorter than in the previous two cases (5.5 seconds
vs. 35 seconds with exponential and 110 seconds with real-life data). Second, the
overhead of data migration in the first half of the experiment was higher than
the compensation achieved by moving the data to the overloaded site. However,
the eventual balancing out of the load between the two sites resulted in a steady
low response time (approximately 2 seconds).

The results of dynamic load balancing were comparable when data of higher
dimensionalities was indexed as can be seen in Figures 13 and 14. With self-
tuning, the system was slower at balancing out the load among the two sites
than in the case of two-dimensional data. The spikes of the graph in the self-
tuning case are result of the occurring data migration—the periods when the
site is busy selecting data for migration, shipping it to the destination site, and
removing it locally. These are periods when incoming requests are not processed,
hence the short spikes.

When more sites are available (Figures 18, and 15), it takes more time to
balance the system load because the dataset size is larger. For example, Figure
15 shows the response times of a system with ten client sites, two of which are
overloaded (processing 70% of the workload) and eight underloaded (processing
the remaining 30% of the workload). In such environment, it took almost 20
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minutes for the system to achieve a balanced state. as larger amounts of data are
stored on more sites, the “migration spikes” become more prominent, resulting
in larger delays. However, it is important to note that when the system does
reach a balanced state, the query response times decrease significantly, whereas
in the case of no data migration, there is no prospect for such a decrease unless
the query workload decreases.

In the case of system upscaling Figure 16 depicts the load percentage of one of
the sites of a working system where at time 50 seconds, a new site was introduced
in the system. At that point, load balancing was initiated and through a series
of data migrations, the load on the specific site was more than halved as its data
was relocated to the newly introduced site.
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Fig. 16. System upscaling: a new site

introduced at t = 50 seconds.
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Fig. 19. Effect of migration dur-
ing normal vs. peak workloads.

Previously discussed experiments were performed under constant workload
conditions. To evaluate the COW-based manager’s performance under more real-
istic conditions we created a workload consisting of relatively infrequent requests
(see Table 17 for details on the workload), with two instances of high workloads
in the duration of the experiment. Under normal workloads, the self-tuning sys-
tem under-performed due to the occurring data migrations. However, the load
balancing paid off handsomely during peak loads (see Figure 19), where the
self-tuning system performed up to 8 times better.

5 Conclusions and Future Work

We have presented a self-tuning storage management system for multi-dimensional
data distributed on a cluster of commodity workstations. Compared to prior ap-
proaches, our network-based system exhibits significant performance improve-
ments due to a number of techniques: 1) dynamic data reorganization for load



balancing identifies hot spots in the COW to efficiently manage data migra-
tions; 2) distributed collaboration in the self-tuning decision process avoids the
bottleneck of the central site; 3) a variable-level distribution catalog reveals the
system’s scalability issues when managing high volumes of frequently updated
data. The above provide for robustness and consistent performance in a variety
of settings, especially in conditions of unpredictably changing access patterns
and high frequency updates to the underlying data. Our prototype helped us
to evaluate empirically the key features of our proposal and the trade-offs of
our system design. Future work includes extension of the prototype to incor-
porate bulk-loading mechanisms for data migration, replication schemes, and a
server-less architecture.
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