Classification and Prediction

- What is classification? What is regression?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian Classification
- Classification based on concepts from association rule mining
- Other Classification Methods
- Prediction
- Classification accuracy
- Summary
Classification vs. Prediction

- **Classification:**
 - predicts categorical class labels
 - classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

- **Regression:**
 - models continuous-valued functions, i.e., predicts unknown or missing values

- **Typical Applications**
 - credit approval
 - target marketing
 - medical diagnosis
 - treatment effectiveness analysis

Why Classification? A motivating application

- **Credit approval**
 - A bank wants to classify its customers based on whether they are expected to pay back their approved loans
 - The history of past customers is used to train the classifier
 - The classifier provides rules, which identify potentially reliable future customers
 - Classification rule:
 - If age = “31...40” and income = high then credit_rating = excellent
 - Future customers
 - Paul: age = 35, income = high ⇒ excellent credit rating
 - John: age = 20, income = medium ⇒ fair credit rating
Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction: training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test samples is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise overfitting will occur

Classification Process (1): Model Construction

<table>
<thead>
<tr>
<th>NAME</th>
<th>RANK</th>
<th>YEARS</th>
<th>TENURED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>Assistant Prof</td>
<td>3</td>
<td>no</td>
</tr>
<tr>
<td>Mary</td>
<td>Assistant Prof</td>
<td>7</td>
<td>yes</td>
</tr>
<tr>
<td>Bill</td>
<td>Professor</td>
<td>2</td>
<td>yes</td>
</tr>
<tr>
<td>Jim</td>
<td>Associate Prof</td>
<td>7</td>
<td>yes</td>
</tr>
<tr>
<td>Dave</td>
<td>Assistant Prof</td>
<td>6</td>
<td>no</td>
</tr>
<tr>
<td>Anne</td>
<td>Associate Prof</td>
<td>3</td>
<td>no</td>
</tr>
</tbody>
</table>

IF rank = ‘professor’ OR years > 6 THEN tenured = ‘yes’
Classification Process (2): Use the Model in Prediction

Accuracy = ?

<table>
<thead>
<tr>
<th>NAME</th>
<th>RANK</th>
<th>YEARS</th>
<th>TENURED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom</td>
<td>Assistant Prof</td>
<td>2</td>
<td>no</td>
</tr>
<tr>
<td>Mellisa</td>
<td>Associate Prof</td>
<td>7</td>
<td>no</td>
</tr>
<tr>
<td>George</td>
<td>Professor</td>
<td>5</td>
<td>yes</td>
</tr>
<tr>
<td>Joseph</td>
<td>Assistant Prof</td>
<td>7</td>
<td>yes</td>
</tr>
</tbody>
</table>

Unseen Data

(Jeff, Professor, 4)

Tenured? Yes

Supervised vs. Unsupervised Learning

- **Supervised learning (classification)**
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set

- **Unsupervised learning (clustering)**
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data
Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian Classification
- Classification based on concepts from association rule mining
- Other Classification Methods
- Prediction
- Classification accuracy
- Summary

Issues regarding classification and prediction (1): Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data
 - numerical attribute income ⇒ categorical {low, medium, high}
 - normalize all numerical attributes to [0,1]
Issues regarding classification and prediction (2): Evaluating Classification Methods

- Predictive **accuracy**
- **Speed**
 - time to construct the model
 - time to use the model
- **Robustness**
 - handling noise and missing values
- **Scalability**
 - efficiency in disk-resident databases
- **Interpretability**:
 - understanding and insight provided by the model
- **Goodness of rules (quality)**
 - decision tree size
 - compactness of classification rules

Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- **Classification by decision tree induction**
- Bayesian Classification
- Classification based on concepts from association rule mining
- Other Classification Methods
- Prediction
- Classification accuracy
- Summary
Classification by Decision Tree Induction

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution

- Decision tree generation consists of two phases
 - **Tree construction**
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 - **Tree pruning**
 - Identify and remove branches that reflect noise or outliers

- Use of decision tree: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree

Training Dataset

This follows an example from Quinlan’s ID3

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>student</th>
<th>credit_rating</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31...40</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31...40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31...40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31...40</td>
<td>high</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
</tbody>
</table>
Output: A Decision Tree for “buys_computer”

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Samples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)

- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning - majority voting is employed for classifying the leaf
 - There are no samples left
Algorithm for Decision Tree Induction (pseudocode)

Algorithm GenDecTree(Sample S, Attlist A)
1. create a node N
2. If all samples are of the same class C then label N with C; terminate;
3. If A is empty then label N with the most common class C in S (majority voting); terminate;
4. Select a ∈ A, with the highest information gain; Label N with a;
5. For each value v of a:
 a. Grow a branch from N with condition a=v;
 b. Let S_v be the subset of samples in S with a=v;
 c. If S_v is empty then attach a leaf labeled with the most common class in S;
 d. Else attach the node generated by GenDecTree(S_v, A-a)

Attribute Selection Measure

- **Information gain** (ID3/C4.5)
 - All attributes are assumed to be categorical
 - Can be modified for continuous-valued attributes

- **Gini index** (IBM IntelligentMiner)
 - All attributes are assumed continuous-valued
 - Assume there exist several possible split values for each attribute
 - May need other tools, such as clustering, to get the possible split values
 - Can be modified for categorical attributes
Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Assume there are two classes, \(P \) and \(N \)
 - Let the set of examples \(S \) contain \(p \) elements of class \(P \) and \(n \) elements of class \(N \)
 - The amount of information, needed to decide if an arbitrary example in \(S \) belongs to \(P \) or \(N \) is defined as
 \[
 I(p,n) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}
 \]

Information Gain in Decision Tree Induction

- Assume that using attribute \(A \) a set \(S \) will be partitioned into sets \(\{S_1, S_2, \ldots, S_v\} \)
 - If \(S_i \) contains \(p_i \) examples of \(P \) and \(n_i \) examples of \(N \), the entropy, or the expected information needed to classify objects in all subtrees \(S_i \) is
 \[
 E(A) = \sum_{i=1}^v \frac{p_i + n_i}{p + n} I(p_i, n_i)
 \]
- The encoding information that would be gained by branching on \(A \)
 \[
 Gain(A) = I(p,n) - E(A)
 \]
Training Dataset

This follows an example from Quinlan’s ID3

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>student</th>
<th>credit_rating</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31...40</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31...40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31...40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31...40</td>
<td>high</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
</tbody>
</table>

Attribute Selection by Information Gain Computation

- Class P: buys_computer = “yes”
- Class N: buys_computer = “no”
- \(I(p, n) = I(9, 5) = 0.940 \)
- Compute the entropy for \(age \):

\[
E(age) = \frac{5}{14} I(2, 3) + \frac{4}{14} I(4, 0) + \frac{5}{14} I(3, 2) = 0.69
\]

Hence

\[
Gain(age) = I(p, n) - E(age)
\]

Similarly

\[
Gain(income) = 0.029
\]

\[
Gain(student) = 0.151
\]

\[
Gain(credit_rating) = 0.048
\]
Splitting the samples using *age*

Output: A Decision Tree for "*buys_computer*"
Gini Index (IBM IntelligentMiner)

- If a data set T contains examples from n classes, gini index, $gini(T)$ is defined as:
 \[
gini(T) = 1 - \sum_{j=1}^{n} p_j^2
\]

 where p_j is the relative frequency of class j in T.

- If a data set T is split into two subsets T_1 and T_2 with sizes N_1 and N_2 respectively, the gini index of the split data contains examples from n classes, the gini index $gini(T)$ is defined as:
 \[
gini_{\text{split}}(T) = \frac{N_1}{N} gini(T_1) + \frac{N_2}{N} gini(T_2)
\]

- The attribute which provides the smallest $gini_{\text{split}}(T)$ is chosen to split the node (we need to enumerate all possible splitting points for each attribute).

Avoid Overfitting in Classification

- The generated tree may **overfit** the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Result is in poor accuracy for unseen samples

- Two approaches to avoid overfitting
 - **Prepruning**: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - **Postpruning**: Remove branches from a “fully grown” tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the “best pruned tree”
Approaches to Determine the Final Tree Size

- Separate training (2/3) and testing (1/3) sets
- Use cross validation
- Use all the data for training
 - but apply a statistical test (e.g., chi-square) to estimate whether expanding or pruning a node may improve the entire distribution
- Use minimum description length (MDL) principle:
 - halting growth of the tree when the encoding is minimized

Extracting Classification Rules from Trees

- Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the class prediction
- Rules are easy for humans to understand

Example

IF age = "<=30" AND student = "no" THEN buys_computer = "no"
IF age = "<=30" AND student = "yes" THEN buys_computer = "yes"
IF age = "31...40" THEN buys_computer = "yes"
IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "yes"
IF age = ">40" AND credit_rating = "fair" THEN buys_computer = "no"
Enhancements to basic decision tree induction

- Allow for continuous-valued attributes
 - Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals
 - E.g., \(A = \{1, \ldots, v\} \) is split to \(A \leq V \) and \(A > V \) for \(v-1 \) positions of \(V \)
- Handle missing attribute values
 - Assign the most common value of the attribute
 - Assign probability to each of the possible values
- Attribute construction
 - Create new attributes based on existing ones that are sparsely represented
 - This reduces fragmentation, repetition, and replication

Classification in Large Databases

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- Why decision tree induction in data mining?
 - relatively faster learning speed (than other classification methods)
 - convertible to simple and easy to understand classification rules
 - can use SQL queries for accessing databases
 - comparable classification accuracy with other methods
Scalable Decision Tree Induction Methods in Data Mining Studies

- **SLIQ** (EDBT’96 — Mehta et al.)
 - builds an index for each attribute and only class list and the current attribute list reside in memory

- **SPRINT** (VLDB’96 — J. Shafer et al.)
 - constructs an attribute list data structure

- **PUBLIC** (VLDB’98 — Rastogi & Shim)
 - integrates tree splitting and tree pruning: stop growing the tree earlier

- **RainForest** (VLDB’98 — Gehrke, Ramakrishnan & Ganti)
 - separates the scalability aspects from the criteria that determine the quality of the tree
 - builds an AVC-list (attribute, value, class label)