Spatial Database Systems

Spatial Database Applications

- GIS applications (maps):
 - Urban planning, route optimization, fire or pollution monitoring, utility networks, etc
- Other applications:
 - VLSI design, CAD/CAM, model of human brain, etc
- Traditional applications:
 - Multidimensional records
What is a Spatial Database?

- A SDBMS is a DBMS
- It offers spatial data types/data models/query language
 - Support spatial properties/operations
- It supports spatial data types in its implementation
 - Support spatial indexing, algorithms for spatial selection and join

Spatial Representation

- Raster model:

- Vector model:
Spatial data types

- **Point**: 2 real numbers
- **Line**: sequence of points
- **Region**: area included inside n-points

Spatial Relationships

- **Topological relationships**: adjacent, inside, disjoint, etc
- **Direction relationships**: Above, below, north_of, etc
- **Metric relationships**: “distance < 100”
- And operations to express the relationships
Models, Algebras, Languages

- Extent relational model, or use Object-relational model: define new ADTs
- Spatial algebra: ex. ROSE algebra
- Query languages:
 - Extend SQL: GEOQL, PSQL
 - New graphical languages: GEO-SAL

Examples

- A database:
 - Relation states(sname: string, area: region, spop: int)
 - Relation cities(cname: string, center: point; ext: region)
 - Relation rivers(rname: string, route: line)
- SELECT * FROM rivers WHERE route intersects R
- SELECT cname, sname FROM cities, states WHERE center inside area
- SELECT rname, length(intersection(route, California)) FROM rivers WHERE route intersects California
Spatial Queries

- Selection queries: “Find all objects inside query q”, inside -> intersects, north
- Nearest Neighbor-queries: “Find the closest object to a query point q”, k-closest objects
- Spatial join queries: Two spatial relations S1 and S2, find all pairs: {x in S1, y in S2, and x rel y= true}, rel= intersect, inside, etc

Access Methods

- Point Access Methods (PAMs):
 - Index methods for 2 or 3-dimensional points (k-d trees, Z-ordering, grid-file)
- Spatial Access Methods (SAMs):
 - Index methods for 2 or 3-dimensional regions and points (R-trees)
Indexing using SAMs

- Approximate each region with a simple shape: usually Minimum Bounding Rectangle (MBR) = \([(x_1, x_2), (y_1, y_2)]\)

Indexing using SAMs (cont.)

Two steps:
- Filtering step: Find all the MBRs (using the SAM) that satisfy the query
- Refinement step: For each qualified MBR, check the original object against the query
Spatial Indexing

- Point Access Methods (PAMs) vs Spatial Access Methods (SAMs)
- PAM: index only point data
 - Hierarchical (tree-based) structures
 - Multidimensional Hashing
 - Space filling curve
- SAM: index both points and regions
 - Transformations
 - Overlapping regions
 - Clipping methods