Running Time Analysis

I ntroduction to O-notation

How can we quantify and compare performance
of different algorithms given:

different machines, processors, architectures?
different size data sets, orderings?

different computer languages?

different compilers?

Unfortunately, raw performance times don't tell
us much (rigoroudly).

Possible Approaches

» Benchmarks -- test data or test programs
that are designed to help us quantitatively
evaluate performance.

» O-notation (Big-O)

Quantify and compare performance of different
algorithms that is independent of:

machine, processor, architecture
Size of data sets, ordering of data
computer language

compiler used

void guess_game(int n)
{
int guess,

char answer;

assert(n >=1);

cout << “Think of anumber between 1 and” << n<<*“.\n";
answer =‘N’;
for(guess = n; guess > 0 and answer !'= ‘Y’ and answer !'=‘y’;--guess)
{
cout << “Is your number ” << guess << “?’ << endl;
cout << “Please answer Y or N, and press return:”;
cin >> answer;
}
if(answer ==Y’ or answer == ‘y’) cout << “Got it :) \n";
else cout << “I think you are cheating :(\n”;

Algorithm Performance

» Worst case performance?
» Best case performance?
» Average case performance?

Algorithm Performance

» Worst case performance: loops n times!!
» Best case performance?
» Average case performance?

Algorithm Performance

» Worst case performance: loopsn times!!
» Best case performance: loops once.
» Average case performance?

Algorithm Performance

» Worst case performance: loops n times!!
» Best case performance: loops once.

« Average case performance:

— assume; al answers between 1 and n are
equaly likely.
— average case

void guess_game(int n)
{

int guess,

char answer;

1 assat(n>=1);
1 cout << “Think of anumber between1and” << n<<*"“\n";

1 answer =‘N’;
2n+2 for(guess = n; guess> 0 and answer !="Y’ and answer !="y’;--guess)

{
n cout << *Isyour number ” << guess << “?’ << endl;
n cout << “Please answer Y or N, and press return:”;
n cin >> answer;

}
1 if(answer =="'Y’ or answer =="'y’)
1 cout << “Got it:) \n”;
1 else cout << *| think you are cheating :(\n";

}

Total: f(n) =5n+ 7

Computation required as function of n

* What is the total number of operations
needed in guess_game?

* The number of operationsrequired isa
linear function of n: f(n) = c + kn.

» Asnincreases, computation required
increases linearly. We say it is O(n).

Why Simplify?

» Asn gets bigger, highest order term
dominates.

» Takefor instance

 then when n = 2000, the square term accounts
for more than 99% of running time!!

Examples

Examples

| ntuition

scale Adjective O-notation
Str;:gth constant O
logarithmic O(logn)
linear O(n)
nlogn O(nlogn)
quadratic o(n?)
cubic O(n3)
exponential O(2"), O(10M), etc.
I ntuition
scae Example O-notation
Strg’rfgth constant o)
binary search O(logn)
scale vector O(n)
vector, matrix multiply O(n?)
matrix, matrix multiply O(n3)

Running time for algorithm

f(n) n=256 n=1024 n=1,048,576

1 1lpsec 1lpsec lusec

log,n 8usec 10psec 20psec

n 256sec 1.02ms 1.05sec
nlog,n 2.05ms 10.2ms 21sec

n? 65.5ms 1.05sec 1.8wks

nd 16.8sec 17.9min 36,559yrs

2n 3.7x10%3yrs 5.7x10%%yrs 2.1x1081563%rs

Largest problem that can be solved if Time<=T at

1usec per step
f(n) T=1min T=1hr T=1wk T=1yr
n 6x107 3.6x10° 6x1011 3.2x1013
nlogn 2.8x106 1.3x108 1.8x1010 8x1011
n? 7.8x103 6x10% 7.8x10° 5.6x10°%
n3 3.9x107 1.5x108 8.5x103 3.2x10%
2" 25 31 39 44

Warning:

Some algorithms do not always take the same amount of
time for problems of agiven sizen.

Worst case performance vs.
Average case performance

In general, best case performance is not a good measure.

Formal Definition

We say f(n) is O(g(n)) if there exist two positive
constants k and n, such that

[f(n)] <= Kk|g(n)| for al n>=n,
The total number of steps does not exceed

g(n)* constant provided we dea with
sufficiently large problems (large n).

10

