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1 A First Example

In natural languages, a recursive (circular) de�nition is meaningless. For example, suppose that I de�ne
\vituperate" as \to speak with vituperation". This is a recusive de�nition, since it refers to the word being
de�ned.

Some kinds of computational problems, however, have natural and meaningful recursive de�nitions. A
recursive function|one that calls itself|can solve such a problem in a direct and simple way. Iterative
(loop-based) solutions to the same problem are often complicated and hard to understand.

The standard �rst example is the factorial function n! (pronounced n factorial), the product of all
positive integers up to n. For example, 5! = 5 � 4 � 3 � 2 � 1 = 120.

We wish to write a function that takes an integer n and returns n!. The question to ask is, how could the
problem be solved by breaking it into smaller pieces? The crucial observation is that n! = n � (n� 1)!. The
term (n� 1)! is the smaller piece; once a solution is found for it, a multiplication by n gives the �nal result.
How is (n� 1)! computed? The same way, recursively, by breaking it into the product (n� 1) � (n� 2)!. We
can continue this process with smaller and smaller pieces, until we reach the base case|an instance of the
problem so simple that it can be computed directly, without recursion. Our base case is n = 0, since 0! is
de�ned to be 1. So|

n! =

�
1 : if n = 0

n � (n� 1)! : if n > 0

Translating a recursive de�nition into a C++ function is easy:

int fact(int n)

{

if (n==0)

return 1;

else return n * fact(n-1);

}

How would a computer evalutate fact(n)? Consider, for example, the case n = 3. According to our code,
fact(3) returns the integer 3 � fact(2), but fact(2) must �rst be evaluated in order to compute this product.
It is evaluated the same way, recursively.

A recursion tree helps to visualize the action:

fact(3)

/ \

3 * fact(2)

/ \

2 * fact(1)

/ \

1 * fact(0)

We have now reached the base case. The value 1 is returned and the recursion \unwinds" like this|

fact(3) fact(3) fact(3) = 6

/ \ / \ / \

3 * fact(2) 3 * fact(2) 3 * 2

/ \ / \

2 * fact(1) 2 * 1

/ \

1 * 1
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The trick to tracking the action in your mind is to imagine each execution of the function being performed
on a separate machine with its own local variable(s). Each machine waits for the one below it in the recursion
tree to return a result so that the multiplication can be performed. This agrees with our understanding of
C++ functions as completely self-contained modules that receive inputs and return outputs without any
other connection to the outside world.

Our factorial function could easily have been implemented as a multiplication within a loop, and this
would in fact have been much more eÆcient since function calls are expensive|the operating system must
halt the program and perform certain administrative tasks before control is transferred to the function. But
we will soon see some problems that do not have obvious iterative solutions. In these cases recursion can
still be removed, but only at the expense of clarity and simplicity.

There are many basic computational tasks that have nice recursive solutions. One example is sorting a
list. Consider also the compiler's job of translating source code into assembly code. It is relatively easy to
design a compiler that performs this task recursively.

Exercise 1 Evaluate f(3); f(4); f(5) and f(6) for

f(n) =

8<
:

n : if n � 1
n+ f(n=2) : if n > 1 is even

f(n+1
2
) + f(n�1

2
) : if n > 1 is odd

Exercise 2 Write a recursive function that takes an integer and returns the sum of the digits of that integer.
Four or �ve lines of code should suÆce. Hint: Consider the sequence of digits dkdk�1 � � � d1 of input x, where
di is the ith digit of x from the right. Observe that the sum would be easy to compute if we knew the sum
dk + � � �+ d2, because then all we would have to do is add d1.

Exercise 3 What is returned by f(5; 3)?

// Assume x greater than or equal to y.

int f(int x, int y)

{

if (y==0 || y==x)

return 1;

return f(x-1,y) + f(x-1,y-1);

}

Exercise 4 What is returned by g(2; 7)?

// Assume x less than or equal to y.

int g(int x, int y)

{

if (x==y)

return x*y;

return g(x, (x+y)/2) + g((x+y)/2+1,y);

}
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Exercise 5 Write a recursive function f with one positive int parameter n. The function prints out 2n � 1
integers as follows:

f(1) outputs 1

f(2) outputs 1 2 1

f(3) outputs 1 2 1 3 1 2 1

f(4) outputs 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

f(5) outputs 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

and so on.

The function does not return a value. Four or �ve lines of code will do the job.

Exercise 6 Write a recursive function that takes a positive integer and returns the number of 1's in the
binary representation of that integer.

Exercise 7 Explain in one simple sentence what the following function computes.

int f(int n)

{

if (n==0)

return 0;

if (n%2==0)

return f(n/2);

else return 1+f(n/2);

}

Exercise 8 Evaluate f(5). What familiar function does f compute?

int f(int b) int g(int a, int b)

{ {

if (b==0) if (b==0)

return 1; return 0;

else return g(b, f(b-1)); else return a + g(a,b-1);

} }

Exercise 9 Explain what common task the following function performs.

double m(double x, int y)

{

if (y==0)

return 1;

if (y%2==0)

return m(x,y/2) * m(x,y/2);

else return x*m(x,y-1);

}
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2 Fibonacci Numbers

The Fibonacci numbers are the terms of the in�nite sequence

0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; : : :

where the two initial terms are 0 and 1, and any other term is the sum of the two preceding it. Let us denote
by F (n) the n-th Fibonacci number. We consider 0 to be the 0th Fibonacci number, i.e. F (0) = 0 and, for
example, F (7) = 13; F (8) = 21, etc. Formally|

F (n) =

�
n : if n = 0; 1

F (n� 2) + F (n� 1) : if n > 1

An interpretation of the sequence relates its terms to the (exponentially growing) population of rabbits
after �xed units of time, say months. We begin with a single pair of rabbits and apply the rule that every
female rabbit at age two months gives birth to a pair of rabbits. How many pairs of rabbits are there after
n months (assuming that none has died)? The rabbits that were living during the previous month are still
alive, but also the rabbits that were born two months ago have just reproduced. So the current number of
living pairs is the number of pairs living in the previous month plus the number of pairs living two months
ago.

Here is a recursion tree for F (4):

F(4)

/ \

/ \

F(3) + F(2)

/ \ / \

F(2) + F(1) F(1) + F(0)

/ \ | | |

F(1) F(0) 1 1 0

| |

1 0

You can see that there is a lot of redundancy|F (2), for example, is computed twice. In fact, the amount
of duplicated computation grows exponentially. An iterative solution is far more eÆcient.

Exercise 10 Write an iterative function that takes an integer n and returns the nth Fibonacci number. You
need a single loop and several integer variables, properly initialized. Do not use an array.

Exercise 11 Write an iterative function that computes the �rst n Fibonacci numbers, saving them all in a
dynamically allocated array. At the expense of memory, this function is even simpler than the one of the
previous exercise.
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Exercise 12 This exercise assumes that you have studied elementary discrete math, speci�cally inductive
proofs. Prove the following facts about Fibonacci numbers:

1. F (1) + F (3) + F (5) + � � �+ F (2n� 1) = F (2n).

2. F (2) + F (4) + F (6) + � � �+ F (2n) = F (2n+ 1)� 1.

3. F (n+ 1)2 � F (n)F (n+ 2) = (�1)n.

4. F (1)F (2) + F (2)F (3) + F (3)F (4) + � � �+ F (2n� 1)F (2n) = F (2n)2.

5. F (1)F (2) + F (2)F (3) + F (3)F (4) + � � �+ F (2n)F (2n+ 1) = F (2n+ 1)2 � 1.

Exercise 13 This exercise assumes that you know about binary trees, a certain recursively de�ned data
structure.

De�ne the Fibonacci tree of order n as follows: if n = 0 or n = 1, the tree consists of a single node. If
n � 2, the tree consists of a root, with the Fibonacci tree of order n� 1 as the left subtree and the Fibonacci
tree of order n� 2 as the right subtree.

What is the number of leaves in the Fibonacci tree of order n? What is its depth?

3 Organizing a Mob

100 students wish to form an unruly mob of size 10 in order to demand easier homeworks from the instructor.
How many possible 10-student mobs are there? More generally, how many ways are there to choose k objects
from a group of n?

If you have studied discrete math, then you know that the number is given by a simple formula. But an
easy recursive solution can be derived using a standard technique. The question is, as always, how can we
break the problem into smaller, simpler pieces?

Let us solve the problem for the particular instance given above, and then generalize it. So we wish to
compute d(100; 10), the number of ways to choose 10 outraged students from a class of 100. We designate a
distinguished member of the class, say Jane. Now, in every mob Jane is either present or not present, and
we consider these two cases separately.

1. Jane is present. There are d(99; 9) such mobs, since the remaining 9 members must be chosen from a
group of 99 (100 minus Jane) students.

2. Jane is not present. There are d(99; 10) such mobs since all 10 members must be chosen from a group
of 99 students.

So we get d(100; 10) = d(99; 9) + d(99; 10). Both terms of the sum can be computed recursively by the
same process. In general|

d(n; k) = d(n� 1; k � 1) + d(n� 1; k):

Note that it is possible for both arguments to be decremented or for only the �rst argument to be
decremented in the recursive calls. This gives rise to two base cases: d(n; n) = 1 since there is only one way
to choose n objects from a group of size n, and d(n; 0) = 1 since there is only one way to choose none of
them. We have de�ned|

d(n; k) =

8<
:

1 : if k = 0
1 : if k = n

d(n� 1; k � 1) + d(n� 1; k) : otherwise

and translating this to C++ is trivial.

The usual notation for d(n; k) is
�
n

k

�
, pronounced n choose k. The following exercises use this notation.
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Exercise 14 Prove that
�
n

k

�
=
�

n

n�k

�
.

Exercise 15 This exercise assumes that you have studied inductive proofs. Prove by induction that for any
real numbers x and y and any non-negative integer n:

(x+ y)n =
nX

i=0

�
n

i

�
xiyn�i

For this reason,
�
n

k

�
is also called the binomial coeÆcient.

Exercise 16 Can you generalize the result of the previous exercise to get multinomial coeÆcients, e.g.

(x1 + x2 + � � �+ xk)
n = ?

4 The Towers of Hanoi

Three huge pegs stand in the courtyard of a monastery in Hanoi. 64 disks are stacked on the �rst peg, in
order of size from the largest on the bottom to the smallest on the top.

The monks want to move the entire stack from the �rst peg to the third, using the second as a temporary
holding spot. There are two restrictions on how the disks can be moved. First, the disks are heavy, so only
one at a time can be moved. Second, the size ordering must be maintained on every peg so that each disk
is smaller than the one below it.

It was foretold that once the monks accomplish their task, the world will end. We will see that this is a
reasonable prophesy, for even generously supposing that the monks could move a disk each second, the sun
would burn out long before the monks could move the entire stack.

Let's label the pegs A, B and C. We want to write a function

void towers(int n, char start, char finish, char spare);

that outputs the steps required to move n disks from A to B, using C as a spare.

For example, towers(3, 'A', 'B', 'C') would output:

Move disk from A to B

Move disk from A to C

Move disk from B to C

Move disk from A to B

Move disk from C to A

Move disk from C to B

Move disk from A to B

Let us concentrate on the case n = 64. It seems, at �rst, that we are up against an exceedingly diÆcult
problem, but there is a natural recursive solution.
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The crucial observation is that this problem would be easy to solve if only we knew how to move 63 disks
from one peg to another. To see why, suppose we have this ability. We can move the tower from A to B in
3 steps:

1. Move 63 disks from peg A to peg C.

2. Move the single disk on peg A to peg B.

3. Move the 63 disks from peg C to peg B.

But how do we move 63 disks from one peg to another? Just repeat the same procedure recursively. The
base case is when we are moving a single disk|there is no real work to be done, just pick it up and move it.
As always, having de�ned the problem recursively, the code follows easily:

void towers(int n, char start, char finish, char spare)

{

if (n == 1)

cout << "Move disk from " << start << " to " << finish << endl;

else {

towers(n-1, start, spare, finish);

cout << "Move disk from " << start << " to " << finish << endl;

towers(n-1, spare, finish, start);

}

}

You should step through the code on a small sample input, say towers(4;0A0;0B0;0 C 0).

How many times must a disk be moved? The answer is 2n� 1, which as an exercise you can easily prove.
So to move a tower of 64 disks at a rate of one per second takes 264 � 1 seconds, or about 500 trillion years.
There is no faster way, as you can also easily determine.

The second recursive call can be replaced with a loop, as is always the case with tail recursion (i.e.
when no code follows the recursive call), but the �rst call is not so easily replaced. It can be done, but at
considerable expense of clarity and simplicity.

Exercise 17 This exercise assumes that you have had an introduction to data structures, or at least that
you know about stacks. Remove the recursion from the towers function. Push the appropriate parameters
onto a stack to simulate the recursive calls, and pop the parameters from the stack to handle the return from
recursion.

Open Question. Consider the problem of moving a tower from one peg to another using two spare pegs.
There is no known solution that is provably optimal. The above algorithm will do the job|it just ignores
the second spare peg|but perhaps you can improve on this...?
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5 Ackermann's Function

Ackermann's function, conceived in the 1920s, has an interesting theoretical property and arises in the
analysis of certain algorithms. Even small inputs result in a huge number of recursive calls, and for this
reason it is often used to test how eÆciently a particular computer implements recursion.

Ack(m;n) =

8<
:

n+ 1 : if m = 0 and n > 0
Ack(m� 1; 1) : if n = 0 and m > 0

Ack(m� 1; Ack(m;n� 1)) : if m > 0 and n > 0

For example|

Ack(2; 1) = Ack(1; Ack(2; 0))

= Ack(1; Ack(1; 1))

= Ack(1; Ack(0; Ack(1; 0)))

= Ack(1; Ack(0; Ack(0; 1)))

= Ack(1; Ack(0; 2))

= Ack(1; 3)

= Ack(0; Ack(1; 2))

= Ack(0; Ack(0; Ack(1; 1)))

= Ack(0; Ack(0; Ack(0; Ack(1; 0))))

= Ack(0; Ack(0; Ack(0; Ack(0; 1))))

= Ack(0; Ack(0; Ack(0; 2)))

= Ack(0; Ack(0; 3))

= Ack(0; 4)

= 5

Exercise 18 What is Ack(3; 2)? What is the smallest natural number n such that the number of recursive
calls in Ack(3; n) is greater than 10,000?

Exercise 19 (DiÆcult) Write an iterative function that computes Ackermann's function.
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6 Exhaustive Search via Backtracking

It is possible to write an optimal chess-playing program. It simply examines all possible opening moves, and
for each of these it examines all possible next moves, and so on, until all possibilities have been exhausted.1

The problem with this strategy is that the sun will burn out long before it could be computed up to even
20 levels.

Actual chess-playing programs choose only a few pro�table-looking paths at each level to pursue, up to a
certain number of levels. But for less complicated problems, exhaustive search may be feasible. An example
is the well-known 8 Queens problem. You are given an 8x8 chessboard and 8 queens, and you must place
these queens on the board so that none of them is attacking any other.2

Obviously there must be exactly one queen in each row. A safe position is one that is not being attacked
by any other queen on the board. Let n represent the number of queens that are currently on the board.
Here, in pseudo-code, is the basic idea:

To place the n-th queen on the board:

For each safe column c of row n

Put queen in position (n,c).

If n equals 8 then display the board and exit.

Recursively place the (n+1)-st queen on the board.

The only way to get here is to return from a recursive

call, which means we hit a dead-end, so remove the

queen from position (n,c) and continue in the loop.

The only way to return from the AddQueen function is by being unable to �nd a safe position in the current
row, i.e. by reaching a dead-end. Therefore, after the return from the recursive call, we need to remove the
current queen and continue looking for the next safe position in its row. This is called backtracking.

Here is a solution:

Q . . . . . . .

. . . . Q . . .

. . . . . . . Q

. . . . . Q . .

. . Q . . . . .

. . . . . . Q .

. Q . . . . . .

. . . Q . . . .

1All chess games end after a �nite number of steps. If 50 moves are made without a piece being captured, or if any player

repeats a sequence of moves 3 times in a row, then the game ends in a draw.
2A queen can move any number of squares left, right, up, down, or diagonally.
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Exercise 20 Implement the backtracking algorithm to solve the 8 Queens problem. Maintain the board as
a boolean matrix. Display a solution as above. It should be possible to modify a single line of your code in
order to solve the general N Queens problem for any positive integer N .

Exercise 21 This exercise assumes that you have know about stacks. Implement the backtracking algorithm
using a stack rather than recursion. For each queen placed, push its coordinates onto the stack. When a
deadend is reached, backtrack to the previous position by popping a coordinate o� the stack. Count the number
of stack calls.

Exercise 22 Write a recursive backtracking function to solve the Knight's Tour problem. The idea is to
place a knight at a designated position on an empty chessboard and to compute a sequence of legal moves
such that each square is visited exactly once.3 For example, starting in the lower left corner, here is one
solution:

14 11 16 5 22 9 20 7

17 4 13 10 19 6 23 64

12 15 18 29 24 21 8 31

3 28 25 44 33 30 63 42

26 45 34 59 38 43 32 55

35 2 27 48 51 54 41 62

46 49 58 37 60 39 56 53

1 36 47 50 57 52 61 40

3A knight moves one square horizontally then two vertically, or two squares horizontally then one vertically.
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