
A Cost Function for Uniformly Partitioned UB-Trees

Volker Markl Rudolf Bayer

Bayerisches Forschungszentrum
für Wissensbasierte Systeme

Orleansstraße 34
81667 München

Germany

volker.markl@forwiss.de, bayer@in.tum.de

Abstract
Most operations of the relational algebra or SQL - like
projection with duplicate elimination, join, ordering,
group by and aggregations - are efficiently processed
using a sorted stream of tuples. Often these operations
are combined with restrictions in one or several
attributes. Previous research has proposed algorithms for
efficiently dealing with this kind of query pattern, which is
highly relevant with respect to both data warehousing,
data mining and GIS systems. In this paper we present a
cost model that enables a concise estimation of both
memory costs and run-time costs for processing queries
with restrictions in multiple attributes that may in
addition involve a sort operation. Our cost model
considers uniformly distributed UB-Trees with
independent dimensions and is derived analytically in
three steps, starting with a very simple perfectly idealized
partitioning scheme, moving on to imperfect partitioning
schemes and finally evaluating a probabilistically
partitioned UB-Tree. We also reason to what extent our
cost model might be taken into account if the data is not
distributed uniformly by investigating the connection
between the cost model and selectivities.

1. Introduction

The UB-Tree is a multidimensional access method that
relies on Z-ordering for multidimensional clustering.
During an ESPRIT project we have integrated the UB-
Tree [Bay97] into the kernel of the commercial relational
DBMS TransBase [RMF+00]. The full integration of a
multidimensional index into a DBMS not only speeds up
range queries, it also ensures that the index is transparent
to the user and solves concurrency and recovery issues. In

contrast to all other relational DBMS, the UB-Tree in
TransBase is not an add-on, but is fully integrated into the
kernel. UB-Trees are almost transparent to the user, since
queries are issued via standard SQL. Thus the user can
define a multidimensional index on a set of attributes and
use standard SQL for data manipulation and retrieval, and
does not have to learn new constructs to especially work
with multidimensional add-ons. For that reason, existing
applications with standard SQL can take advantage of the
performance benefits of multidimensional access
methods.

If query optimization is to take a multidimensional
index into account, a cost model for range queries is
necessary. Since one additional benefit of a
multidimensional index is the ability to use Tetris
techniques for processing range queries with sort
operations, we also present a cost analysis for this
operation. Analyzing the cost of query processing with
certain access methods is crucial to cost-based query
optimization. Next to that it allows one to simulate query
processing without actually creating the database and thus
saves time and resources while gaining a better
understanding of access methods. In addition a cost
function is a benchmark for the query performance since
it defines the expected response time and thus allows one
to judge the quality of an access method implementation.
Cost functions can further be used to predict the result
sizes of a query or tell a user the expected processing time
of a query before query execution has started. We define
cost functions for page accesses for idealized uniformly
partitioned universes, i.e., a multidimensional universe
with uniformly distributed data in each dimension and
independent dimensions. However, we also sketch how
our approach is generalized to arbitrary independent data
distributions by the use of histograms. We prove the
quality of our cost function by comparing the predicted

number of page accesses with the actual number of page
accesses measured with our prototype implementation of
the UB-Tree. We also explain how our cost function is
linked to the selectivity of a multidimensional query box.

The paper is organized as follows: Section 2 gives a
brief survey on related work. In Section 3 the UB-Tree,
the base access structure of our cost model is introduced.
The cost model for uniformly partitioned UB-Trees is
derived in Section 4 in an incremental way, starting with
perfectly idealized partitioned UB-Trees and moving on
to probabilistically partitioned UB-Trees. Section 5 gives
our conclusions as well as an outlook on our future work.

2. Related Work

Much work has been published on the cost of access
methods and sort operations for optimizing queries in
single-database or multi-database applications by
academia and has been applied by industry [ROH99,
GGS96]. [Knu73] gives a comprehensive overview of
searching and sorting as well as a careful and detailed cost
analysis of related algorithms. [AV88] and [Vit99] focus
on external memory algorithms. Much work about cost
analysis has also been done for query algorithms in
database systems. [HR96] analyzes the cost of join
operations in this context. [Mer81] focuses on merge-sort
operations. [Gra93] investigates a broad variety of query
processing methods. [GG97] as well as [Gre89]
investigate multidimensional access methods for multi-
attribute searching. Many textbooks deal with cost models
for classical DBMS algorithms, e.g., [Dat88], [GR97],
[Ull88], [Ull89]. Many cost models have also been
proposed focusing on special query types like nearest
neighbor queries [BBK+97, CNP99] or access structures
like R-Trees [TSS00, AS94] or Grid-Files [Bec93]. In
contrast to our paper none of the previous work has
addressed the cost of processing range queries with the
UB-Tree as well as the cost of simultaneously handling
range queries and sort operations by a single operator, the
Tetris algorithm [MZB99]. Our work therefore extends
previous work by giving new cost formulas for the UB-
Tree and Tetris query processing methods. The
contribution of our paper in combination with existing
work enables to design a query optimizer or prediction
unit for a database system, which in addition to traditional
processing techniques also exploits the capabilities of
UB-Tree and Tetris algorithms.

3. The UB-Tree

The basic idea of the UB-Tree [Bay97] is to use a
space-filling curve to partition a multidimensional
universe. Using the Z-Curve (Figure 1) the UB-Tree
preserves the multidimensional clustering. A Z-Address α
= Z(x) is the ordinal number of the key attributes of a
tuple x on the Z-Curve, which can be efficiently computed

by bit-interleaving (cf. Algorithm 1 or [OM84]). A
standard B-Tree is used to index the tuples taking the
linear Z-Address of the tuples as keys.

The fundamental innovation of UB-Trees is the
concept of Z-Regions to create a disjunctive partitioning
of the multidimensional space. This allows for very
efficient processing of multidimensional range queries
[Mar99]. A Z-Region [α : β] is the space covered by an
interval on the Z-Curve and is defined by two Z-
Addresses α and β. We call β the region address of [α :
β].Each Z-Region maps exactly onto one page on
secondary storage, i.e., to one leaf page of the B-Tree.

1 0 5 4 17 16 21 20
3 2 7 6 19 18 23 22
9 8 13 12 25 24 29 28

11 10 15 14 27 26 31 30
33 32 37 36 49 48 53 52
35 34 39 38 51 50 55 54
41 40 45 44 57 56 61 60
43 42 47 46 59 58 63 62

1 0 3 2 5 4 7 6

1
0

4

2

5

3

7
6

(a) (b)

Figure 1: Z-ordering

For an 8×8 universe, i.e., s = 3 and d = 2, Figure 2
shows the corresponding Z-addresses. Figure 1c shows
the Z-region [4: 20] and Figure 1d shows a partitioning
with five Z-regions [0 : 3], [4 : 20], [21: 35], [36 : 47] and
[48 : 63]. Assuming a page capacity of 2 points, Figure 1e
shows ten points, which create the partitioning of Figure
1d. The details of the UB-Tree algorithms are described in
[Bay97, Mar99].

(a) (b) (c)
Figure 2: Z-regions

Definition 1: The number of steps for attribute Ai of a
domain with cardinality ri is determined by its resolution:

steps(i) = log2ri

Definition 2: The length of step k in bits (i.e., the num-
ber of dimensions in step k) is:

steplength(k) = |i | steps(i) ≥ k and i ∈ D}|

Input: x : tuple
Output: Z-address α

for step = 1 to max({steps(r

j
) | j ∈ D})

 for i = 1 to steplength(step)
 copy bit step of x

i
 to bit i of α

step

 end for
end for

Algorithm 1: Bit-Interleaving

With r = max({steps(rj) | j ∈ D}) bit interleaving has a
CPU-complexity of O(d⋅r) bit operations The same holds
for the inverse algorithm Z-1 that calculates the Cartesian
coordinates of a tuple from its address.

4. The Cost of UB-Tree Range Queries

For a cost analysis of the UB-Tree range query
performance it is necessary to have a cost function for the
retrieved pages, i.e., the regions overlapped by a query
box. This enables the prediction of the run time of a range
query and yields a base for query optimization. In
addition, a cost function permits to produce a statistical
relevant number of measures by simulating range queries
with varying table sizes and dimensionalities. This is
especially useful, when practical measurements with our
prototype implementation cannot be performed due to
their memory requirements or their long run time. The
cost function also allows a theoretical analysis of the
range query performance and provides an excellent
insight in the impact of the attribute order on a
multidimensional index based on bit-interleaving.

To be useful for a broad range of applications, a cost
function should not require too much knowledge about
the queried database. The minimum requirements for
input parameters of a cost function are the database size
and the query restriction. For multi-dimensional index
structures the dimensionality of the index is also
necessary, i.e., the number of attributes contributing to the
index. These parameters are in general easy to obtain and
maintain.

To derive a cost function using only these input
parameters is not achievable in general, since the data
distribution is another decisive factor for the query
performance. Yet it is possible to develop such a cost
function for a certain case of space partitioning, the so-
called idealized uniform partitioning, consisting of
uniformly distributed and independent attributes.

4.1 A Cost-Function for Perfect Idealized
Uniform Partitioning

In the following we use P for the number of data pages
of a table. For a multidimensional partitioning we assume
that the data has been partitioned over a total of d
dimensions. A multidimensional interval (or query box) is
specified by the lower bounds vector y and the upper
bounds vector z. yi and zi denote the lower and upper limit
of the restriction in dimension i. For two points (or tuples)
y, z the multidimensional interval [[y, z]] is denoted by:

[[y, z]] = [y1, z1] × ... × [yd, zd] =
= {(x1,...,xd) | yi ≤ xi ≤ zi for all i ∈ D}.

The volume of a multidimensional interval [[y, z]] is
calculated by multiplying the lengths of each of the one-

dimensional intervals [yi, zi]. Without loss of generality
we assume the multidimensional space in each dimension
to be normalized to the interval [0,1].

Definition 3 (perfect idealized uniform
partitioning): A perfect idealized uniform partitioning
splits the multidimensional space in P hypercubes
(subcubes) with volume 2-d⋅k, i.e., P = 2d⋅k for some k > 0,
k ∈ 1 (cf. to Figure 3 for a two-dimensional example).
Otherwise we call an idealized uniform partitioning
imperfect.

Figure 3: Perfect idealized uniform partitioning

Thus for perfect idealized uniform partitioning each
dimension j of the universe has been partitioned by
recursively dividing the universe lj(d, P) = log2 P / d = k
times. We call lj(d, P) the number of split levels in
dimension j. For perfect idealized uniform partitioning the
number of Z-regions intersected by a query box [[y, z]] is
identical to the number of subcubes overlapped by [[y, z]]
(cf. Figure 4).

Q=[[y,z]]Q=[[y,z]]

Figure 4: A Range Query on a Perfect idealized
uniform partitioning

For an easy mathematical treatment we therefore
define ^, a normalization operation of each domain to a

value of the interval [0, 1]. If a is a value in a domain =
[amin, amax] ⊂ R, then we normalize in the following
way:

1

1
:ˆ

minmax

min

+−
+−

=
aa

aa
a

If we have lj completed split levels in dimension j, the
number of slices of the multi-dimensional space that are
overlapped by the query box [[y, z]] in dimension j can be
determined by calculating the number of the slices, that
are contained in interval [0, jẑ], but not in interval [0,

jŷ], i e., the number of slices in [0, jẑ] minus the
number of slices in [0, jŷ]. Since the slice containing jŷ
is also a slice overlapped by the query box, we must
increment the above number by one to get the correct
number of slices. If the number of slices for the interval
[0, ĉ] is calculated as ĉ ⋅ jl2 , a non-existing slice

jl2 +1 is added for jẑ =1 by the formula derived above.
We must correct this error for the case jŷ < 1 and jẑ = 1.
This is achieved by decrementing the number of slices by
one. For jŷ = jẑ = 1 the subtraction removes the error,
therefore no correction is necessary here.

Thus the number of slices n(yj, zj ,lj) in dimension j
overlapped by the query interval [yj, zj] for lj completed
splits in dimension j can be calculated by the following
formula:

+−

≠∧=−
=

 otherwise ,12ˆ2ˆ

1 ˆ 1 ˆ if ,2ˆ2
),,(

jj

jj

l
j

l
j

jj
l

j
l

jjj

yz

yzy
lzyn

The number of subcubes intersected by the query box
c(y, z, P, d) then is the product of n(yj, zj, lj(d, P)) over all
dimensions:

()()∏
=

=
d

j
jjj PdlzynzyPdc

1

,,,),,,(

4.2 A Cost-Function for Semi-Perfect Idealized
Uniform Partitioning

We call a partitioning an imperfect idealized uniform
partitioning, if it produces rectangular regions, where
each region has either the shape of a subspace with

volume P2log2− or consists of two of these subspaces. In
this case the multidimensional space has been partitioned
recursively log2 P mod d times for some dimensions and
log2 P mod d + 1 times for some other dimensions. One
dimension may exist, where some parts of the space
already have been partitioned log2 P mod d + 1 times,
while other parts of the space only have been partitioned
log2 P mod d times.

Because of the above considerations we distinguish
two cases of imperfect partitioning:

Definition 4 (semi-perfect and probabilistic
idealized uniform partitioning): If P = 2k for some k >

0, k ∈ 1, we call an imperfect idealized uniform
partitioning semi-perfect. Otherwise we call it
probabilistic.

Definition 5 (probabilistic dimension): For a
probabilistic idealized uniform partitioning we call a
dimension probabilistic, if with respect to this dimension
some parts of the space have been partitioned log2 P
mod d + 1 times, while other parts of the space only have
been partitioned log2 P mod d times.

Lemma 1: Each probabilistic idealized uniform
partitioning has exactly one probabilistic dimension.

Proof:
Bit interleaving takes place in a fixed order of

dimensions. Our implementation of bit interleaving starts
with the rightmost dimension. 2l splits need to take place
to completely split the space with respect to split level l
(i.e., bit l of the binary representation of the Z-address).
After these 2l splits have taken place (i.e., enough data has
been inserted into the UB-Tree), the next split takes place
at split level l + 1 (i.e., bit l + 1 of the binary
representation of the standard address). This split level
corresponds to the next bit in the binary representation of
standard addresses as obtained by bit interleaving.
Therefore it splits the next dimension in the order of
dimensions as used by bit interleaving.

Since splits complete one split level before moving to
the next split level, only one dimension may have both
subspaces with split level l and subspaces with split level
l + 1.

As a consequence of the proof of Lemma 1 the index
of the probabilistic dimension in the order of dimension
as used by bit interleaving [OM84] is calculated as:

 ()dPdPd mod log -) ,tic(probabilis 2=

Example:
Split levels for perfect and imperfect uniform

partitioning are illustrated in Figure 5 for a 6-dimensional
space: For a table size of 64 pages the space is perfectly
partitioned (k = 1, d = 6) with one split level for each
dimension. With 512 (k = 9) pages this space is
partitioned semi-perfectly with one split level in the first
three dimensions and two split levels for the last three
dimensions. With a page number of 700, the partitioning
is probabilistic with dimension 3 as probabilistic
dimension.

Split Levels per Dimension
Pages Dim

1
Dim

2
Dim

3
Dim

4
Dim

5
Dim

6
64

(perfect) 1 1 1 1 1 1

512
(semi-perfect) 1 1 1 2 2 2

700
(probabilistic) 1 1 >1 2 2 2

Figure 5: Split levels

For a semi-perfect idealized uniform partitioning the
number of completed splits lj(d,P) with respect to
dimension j is calculated as

 ≤+

=
↓

↓

 otherwise,),(

 mod log if,1),(
),(

2

Pdl

jdPPdl
Pdl

j

j
j

where

=

↓ d

P
Pd

j
l 2log

),(

With lj(d,P) as defined above the c(y, z, P, d) is
calculated in the same way as for perfect idealized
uniform partitioning:

+−

≠∧=−
=

 otherwise ,12ˆ2ˆ

1 ˆ 1 ˆ if ,2ˆ2
),,(

jj

jj

l
j

l
j

jj
l

j
l

jjj

yz

yzy
lzyn

The key attributes are independent and the query box
[[x, y]] is iso-oriented with respect to each dimension.
Therefore the total number of pages is obtained by
multiplication of the slices in each dimension:

()()∏
=

=
d

j
jjj PdlzynzyPdc

1

,,,),,,(

4.3 A Cost-Function for Probabilistic Idealized
Uniform Partitioning

If an idealized uniform partitioning is probabilistic (cf.
Figure 6 for an example), the formula n(yj, zj, lj(d, P))
needs to be modified for the probabilistic dimension to
take the probability of an incomplete split into account.

Figure 6: Probabilistic uniform partitioning

The complete split levels produce only P2log2 pages,
thus P - P2log2 additional regions are needed to obtain
the given number of pages, i.e., the table size. These
regions are created from the P2log2 pages by splitting
these pages with respect to attribute j. Therefore the
probability of an additional split in an attribute j is:

 =−=

 otherwise ,0

),listic(iprobab if ,1
 2),(yprobabilit 2log

Pd j
P

Pd P
j

If the probability of an incomplete split is taken into
account, the number of slices overlapped by a query range
in a certain dimension can be derived from the value for
the completed splits. By subtraction we calculate, how
many slices would be overlapped additionally, if another
completed split were existing. For each of these splits the
probability of its existence is probabilityj(d, P). The
average number of additional splits may then be
calculated by multiplication.

Thus, the average number of slices in dimension j
overlapped by the range [yj, zj] is:

nj(d, P, yj, zj) = n(yj, zj, lj(d, P)) + (n(yj, zj , lj(d, P) + 1)
- n(yj, zj , lj(d, P))) ⋅ probabilityj(d, P)

The key attributes are independent and the query box
[[x, y]] is iso-oriented with respect to each dimension.
Thus the total number of pages is obtained by
multiplication of the slices in each dimension as in the
previous sections.

Q=[[y,z]]Q=[[y,z]]

Figure 7: Range Queries and Probabilistic
uniform partitioning

4.4 Cost-Functions and Selectivity

For independently uniformly distributed data the
restriction of each attribute in percent of space also
defines the selectivity of that attribute. Thus the
restriction [yj, zj] in attribute Aj has a selectivity of sj =

jj yz ˆˆ − .

∏ nj(d, P, yj, zj) can be considered to be ∏ js
) ⋅P with

js
)

 as a special ceiling function rounding the selectivity sj
of dimension j to the next partitioning grid point. Then the
cost function can also be represented as:

∏∏
==

⋅==
d

j
j

d

j
jj sPsPdnsPdc

11

),0,,(),,(
)

Note that by using 0 and sj instead of zj and yj some
information for the accuracy of the cost function is lost,
since the position of the query box influences the number
of Z-regions overlapped by a query box. Thus c(d, P, y, z)
should be used instead of c(d, P, s), if not only the
selectivity, but also start and endpoint of the query in
space are known.

5. Conclusion and Future Work

We have derived a cost model for range queries for
UB-Trees storing uniformly distributed data with
independent dimensions. Next to analyzing and predicting
the results of range queries, our results may also be used
in conjunction with the Tetris algorithm and thus also take
sort operations into account. Due to a lack of space the
conclusion, a more detailed elaboration of the cost model
as well as the conclusions for the Tetris paper can be
found in [Mar99]. There the interested reader may also
find performance comparisons using the cost model as
well as comparisons of the cost model with the actual
query performance.

We found out that our cost model is a sufficient
decision basis for query optimization under the
assumption of uniformly distributed, independent
attributes. However, our cost model may also be
generalized to arbitrary data distributions by taking the
selectivity of each dimension into account. In this case the
major importance comes to the application of techniques
like multidimensional histograms for storing and
maintaining the multidimensional data distribution. A
very accurate estimate here might be to use the actual UB-
Tree nodes and levels as a histogram in the same way as
B-Trees can be considered to be histograms.

The cost model can also be applied to access methods
that specifically deal with the data distribution, like VUB-
Trees [MBB99]. The cost model is applicable for all
databases that store multidimensional point data, e.g, data
warehousing applications, in particular for the TPC-D
benchmark (cf. [MZB99] for an evaluation), archiving
systems, life-cycle management, data mining and the like.

Since any relation can be considered to store
multidimensional points, it even generalizes to multi-
attribute access methods for relational database systems.
Our cost models can be used for cost-based query
optimization as well as for simulation, theoretical
comparison and analysis of access methods. In addition, it
is useful for run-time prediction of algorithm, e.g., when
informing a user about the expected response time to his
query or when balancing system load.

Our future work includes deriving a set of cost based
decision rules for how to – possibly multidimensionally -
index a relation for a given set of queries. We also intend
to apply our model to cost based query optimization and
combine the model with multidimensional histograms in
order to take dependencies and correlations between the
attributes into account.

Acknowledgments

We thank our project partners Teijin Systems
Technology, the European Commission and Microsoft
Research for funding this research work.

References

[AS94] W. G. Aref and H. Samet: A Cost Model for

Query Optimization Using R-Trees. ACM-GIS
1994

[AV88] A. Aggarwal and J.S. Vitter. The
Input/Output Complexity of Sorting and
Related Problems. Comm. ACM 31(9),
p.1116 – 1127, 1988

[Bec93] L. Becker: A New Algorithm and a Cost
Model for Join Processing with Grid Files. GI
Datenbank Rundbrief 12, 1993

[BBK+97] S. Berchtold, C. Böhm, D. A. Keim et al. A
Cost Model For Nearest Neighbor Search in
High-Dimensional Data Space. PODS 1997,
p. 78-86

[Bay97] R. Bayer. The universal B-Tree for
multidimensional Indexing: General
Concepts. World-Wide Computing and Its
Applications '97 (WWCA '97). Tsukuba,
Japan, 10-11, Lecture Notes on Computer
Science, Springer Verlag, March, 1997.

[CNP99] P. Ciaccia, A. Nanni, and M. Patella: A Query-
sensitive Cost Model for Similarity Queries
with M-tree. Australasian Database
Conference 1999, p. 65-76

[Dat88] C.J. Date. A Guide to the SQL Standard,2nd
edition. Addison-Wesley, 1988.

[GGS96] S. Ganguly, A. Goel, and A. Silberschatz:
Efficient and Acurate Cost Models for
Parallel Query Optimization. PODS 1996, p.
172-181

[GG97] V. Gaede and O. Günther. Multidimensional
Access Methods. ACM Computing Surveys
30(2), 1997.

[GR97] J. Gray and A. Reuter. Transaction
Processing: Concepts and Techniques. 3rd
edition. Morgan Kaufmann Publishers, 1997.

[Gra93] G. Graefe. Query Evaluation Techniques for
Large Databases. ACM Computing Surveys
25, 1993, pp. 73-170.

[Gre89] D. Greene. An Implementation and
Performance Analysis of Spatial Data Access
Methods. Proc. of 5th ICDE, 1989.

[HAM+97] C.T. Ho, R. Agrawal, N. Megiddo, and R.
Srikant. Range Queries in OLAP Data Cubes.
Proc. of ACM SIGMOD Conf., Tucson,
Arizona, 1997, pp. 73-88.

[HR96] E.P. Harris and K. Ramamohanarao. Join
algorithm costs revisited. VLDB Journal, 5,
1996.

[Knu73] D.E. Knuth. The Art of Computer
Programming Volume 3: Sorting and
Searching. Addison-Wesley, Reading, MA,
1973.

[Mar99] V. Markl. MISTRAL: Processing Relational
Queries using a Multidimensional Access
Method. Ph.D. Thesis, Technische Universität
München, 1999

[MBB99] V. Markl, M. Bauer and R. Bayer. Variable
UB-Trees. DMDW 99, Magdeburg, 1999

[Mer81] T.H. Merret. Why Sort-Merge gives the best
Implementation of the Natural Join. ACM
SIGMOD Record 13(2), 1981, pp. 39-51.

[MZB99] V. Markl, M. Zirkel, and R. Bayer.
Processing Operations with Restrictions in
Relational Database Management Systems
without external Sorting. Proc. of ICDE,
Sydney, Australia, 1999.

[RMF+00] F. Ramsak, V. Markl, R. Fenk et al.
Integrating the UB-Tree into a data-base
system kernel. VLDB 2000, Cairo.

[ROH99} M. Tork Roth, F. Ozcan, and L: M. Haas:
Cost Models DO Matter: Providing Cost
Information for Diverse Data Sources in a
Federated System. VLDB 1999, p. 599-610

[TSS00] Y. Theodoridis, E. Stefanakis, and T. K.
Sellis: Efficient Cost Models for Spatial
Queries Using R-Trees. TKDE 12(1), p. 19-
32, 2000

[Ull88] J.D. Ullman. Database and Knowledge Based
Systems Volume I. Computer Science Press,
Rockville, MD, 1988.

[Ull89] J.D. Ullman. Database and Knowledge Based
Systems Volume II. Computer Science Press,
Rockville, MD, 1989

[Vit99] J.S. Vitter. External Memory Algorithms and
Data Structures. DMACS Series in Discrete
Mathematics and Theoretical Computer
Science, 1999

