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Abstract 
Most operations of the relational algebra or SQL - like 
projection with duplicate elimination, join, ordering, 
group by and aggregations - are efficiently processed 
using a sorted stream of tuples. Often these operations 
are combined with restrictions in one or several 
attributes. Previous research has proposed algorithms for 
efficiently dealing with this kind of query pattern, which is 
highly relevant with respect to both data warehousing, 
data mining and GIS systems. In this paper we present a 
cost model that enables a concise estimation of both 
memory costs and run-time costs for processing queries 
with restrictions in multiple attributes that may in 
addition involve a sort operation. Our cost model 
considers uniformly distributed UB-Trees with 
independent dimensions and is derived analytically in 
three steps, starting with a very simple perfectly idealized 
partitioning scheme, moving on to imperfect partitioning 
schemes and finally evaluating a probabilistically 
partitioned UB-Tree. We also reason to what extent our 
cost model might be taken into account if the data is not 
distributed uniformly by investigating the connection 
between the cost model and selectivities. 

1. Introduction 

The UB-Tree is a multidimensional access method that 
relies on Z-ordering for multidimensional clustering. 
During an ESPRIT project we have integrated the UB-
Tree [Bay97] into the kernel of the commercial relational 
DBMS TransBase [RMF+00]. The full integration of a 
multidimensional index into a DBMS not only speeds up 
range queries, it also ensures that the index is transparent 
to the user and solves concurrency and recovery issues. In 

contrast to all other relational DBMS, the UB-Tree in 
TransBase is not an add-on, but is fully integrated into the 
kernel. UB-Trees are almost transparent to the user, since 
queries are issued via standard SQL. Thus the user can 
define a multidimensional index on a set of attributes and 
use standard SQL for data manipulation and retrieval, and 
does not have to learn new constructs to especially work 
with multidimensional add-ons. For that reason, existing 
applications with standard SQL can take advantage of the 
performance benefits of multidimensional access 
methods. 

If query optimization is to take a multidimensional 
index into account, a cost model for range queries is 
necessary. Since one additional benefit of a 
multidimensional index is the ability to use Tetris 
techniques for processing range queries with sort 
operations, we also present a cost analysis for this 
operation. Analyzing the cost of query processing with 
certain access methods is crucial to cost-based query 
optimization. Next to that it allows one to simulate query 
processing without actually creating the database and thus 
saves time and resources while gaining a better 
understanding of access methods. In addition a cost 
function is a benchmark for the query performance since 
it defines the expected response time and thus allows one 
to judge the quality of an access method implementation. 
Cost functions can further be used to predict the result 
sizes of a query or tell a user the expected processing time 
of a query before query execution has started. We define 
cost functions for page accesses for idealized uniformly 
partitioned universes, i.e., a multidimensional universe 
with uniformly distributed data in each dimension and 
independent dimensions. However, we also sketch how 
our approach is generalized to arbitrary independent data 
distributions by the use of histograms. We prove the 
quality of our cost function by comparing the predicted 



number of page accesses with the actual number of page 
accesses measured with our prototype implementation of 
the UB-Tree. We also explain how our cost function is 
linked to the selectivity of a multidimensional query box.  

The paper is organized as follows: Section 2 gives a 
brief survey on related work. In Section 3 the UB-Tree, 
the base access structure of our cost model is introduced. 
The cost model for uniformly partitioned UB-Trees is 
derived in Section 4 in an incremental way, starting with 
perfectly idealized partitioned UB-Trees and moving on 
to probabilistically partitioned UB-Trees. Section 5 gives 
our conclusions as well as an outlook on our future work. 

2. Related Work 

Much work has been published on the cost of access 
methods and sort operations for optimizing queries in 
single-database or multi-database applications by 
academia and has been applied by industry [ROH99, 
GGS96]. [Knu73] gives a comprehensive overview of 
searching and sorting as well as a careful and detailed cost 
analysis of related algorithms. [AV88] and [Vit99] focus 
on external memory algorithms. Much work about cost 
analysis has also been done for query algorithms in 
database systems. [HR96] analyzes the cost of join 
operations in this context. [Mer81] focuses on merge-sort 
operations. [Gra93] investigates a broad variety of query 
processing methods. [GG97] as well as [Gre89] 
investigate multidimensional access methods for multi-
attribute searching. Many textbooks deal with cost models 
for classical DBMS algorithms, e.g., [Dat88], [GR97], 
[Ull88], [Ull89]. Many cost models have also been 
proposed focusing on special query types like nearest 
neighbor queries [BBK+97, CNP99] or access structures 
like R-Trees [TSS00, AS94] or Grid-Files [Bec93]. In 
contrast to our paper none of the previous work has 
addressed the cost of processing range queries with the 
UB-Tree as well as the cost of simultaneously handling 
range queries and sort operations by a single operator, the 
Tetris algorithm [MZB99]. Our work therefore extends 
previous work by giving new cost formulas for the UB-
Tree and Tetris query processing methods. The 
contribution of our paper in combination with existing 
work enables to design a query optimizer or prediction 
unit for a database system, which in addition to traditional 
processing techniques also exploits the capabilities of 
UB-Tree and Tetris algorithms. 

3. The UB-Tree 

The basic idea of the UB-Tree [Bay97] is to use a 
space-filling curve to partition a multidimensional 
universe. Using the Z-Curve (Figure 1) the UB-Tree 
preserves the multidimensional clustering. A Z-Address α 
= Z(x) is the ordinal number of the key attributes of a 
tuple x on the Z-Curve, which can be efficiently computed 

by bit-interleaving (cf. Algorithm 1 or [OM84]). A 
standard B-Tree is used to index the tuples taking the 
linear Z-Address of the tuples as keys. 

The fundamental innovation of UB-Trees is the 
concept of Z-Regions to create a disjunctive partitioning 
of the multidimensional space. This allows for very 
efficient processing of multidimensional range queries 
[Mar99]. A Z-Region [α : β ] is the space covered by an 
interval on the Z-Curve and is defined by two Z-
Addresses α and β. We call β the region address of [α : 
β ].Each Z-Region maps exactly onto one page on 
secondary storage, i.e., to one leaf page of the B-Tree. 
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Figure 1: Z-ordering 

For an 8×8 universe, i.e., s = 3 and d = 2, Figure 2 
shows the corresponding Z-addresses. Figure 1c shows 
the Z-region [4: 20] and Figure 1d shows a partitioning 
with five Z-regions [0 : 3], [4 : 20], [21: 35], [36 : 47] and 
[48 : 63]. Assuming a page capacity of 2 points, Figure 1e 
shows ten points, which create the partitioning of Figure 
1d. The details of the UB-Tree algorithms are described in 
[Bay97, Mar99]. 

(a) (b) (c)  
Figure 2: Z-regions 

Definition 1: The number of steps for attribute Ai of a 
domain with cardinality ri is determined by its resolution: 

steps(i) = log2ri 

Definition 2: The length of step k in bits (i.e., the num-
ber of dimensions in step k) is: 

steplength(k) = |i | steps(i) ≥ k and i ∈ D}| 

Input:  x : tuple  
Output: Z-address α 
 
for step = 1 to max({steps(r

j
) | j ∈ D}) 

 for i = 1 to steplength(step) 
  copy bit step of x

i
 to bit i of α

step 

 end for 
end for 

Algorithm 1: Bit-Interleaving 



With r = max({steps(rj) | j ∈ D}) bit interleaving has a 
CPU-complexity of O(d⋅r) bit operations  The same holds 
for the inverse algorithm Z-1 that calculates the Cartesian 
coordinates of a tuple from its address. 

4. The Cost of UB-Tree Range Queries 

For a cost analysis of the UB-Tree range query 
performance it is necessary to have a cost function for the 
retrieved pages, i.e., the regions overlapped by a query 
box. This enables the prediction of the run time of a range 
query and yields a base for query optimization. In 
addition, a cost function permits to produce a statistical 
relevant number of measures by simulating range queries 
with varying table sizes and dimensionalities. This is 
especially useful, when practical measurements with our 
prototype implementation cannot be performed due to 
their memory requirements or their long run time. The 
cost function also allows a theoretical analysis of the 
range query performance and provides an excellent 
insight in the impact of the attribute order on a 
multidimensional index based on bit-interleaving. 

To be useful for a broad range of applications, a cost 
function should not require too much knowledge about 
the queried database. The minimum requirements for 
input parameters of a cost function are the database size 
and the query restriction. For multi-dimensional index 
structures the dimensionality of the index is also 
necessary, i.e., the number of attributes contributing to the 
index. These parameters are in general easy to obtain and 
maintain. 

To derive a cost function using only these input 
parameters is not achievable in general, since the data 
distribution is another decisive factor for the query 
performance. Yet it is possible to develop such a cost 
function for a certain case of space partitioning, the so-
called idealized uniform partitioning, consisting of 
uniformly distributed and independent attributes. 

4.1 A Cost-Function for Perfect Idealized 
Uniform Partitioning 

In the following we use P for the number of data pages 
of a table. For a multidimensional partitioning we assume 
that the data has been partitioned over a total of d 
dimensions. A multidimensional interval (or query box) is 
specified by the lower bounds vector y and the upper 
bounds vector z. yi and zi denote the lower and upper limit 
of the restriction in dimension i. For two points (or tuples) 
y, z the multidimensional interval [[y, z]] is denoted by:  

[[y, z]] = [y1, z1] × ... × [yd, zd] = 
= {(x1,...,xd) | yi ≤ xi ≤ zi for all i ∈ D}. 

The volume of a multidimensional interval [[y, z]] is 
calculated by multiplying the lengths of each of the one-

dimensional intervals [yi, zi]. Without loss of generality 
we assume the multidimensional space in each dimension 
to be normalized to the interval [0,1]. 

Definition 3 (perfect idealized uniform 
partitioning): A perfect idealized uniform partitioning 
splits the multidimensional space in P hypercubes 
(subcubes) with volume 2-d⋅k, i.e., P = 2d⋅k for some k > 0, 
k ∈ 1 (cf. to Figure 3 for a two-dimensional example). 
Otherwise we call an idealized uniform partitioning 
imperfect. 

 

Figure 3: Perfect idealized uniform partitioning 

Thus for perfect idealized uniform partitioning each 
dimension j of the universe has been partitioned by 
recursively dividing the universe lj(d, P) = log2 P / d = k 
times. We call lj(d, P) the number of split levels in 
dimension j. For perfect idealized uniform partitioning the 
number of Z-regions intersected by a query box [[y, z]] is 
identical to the number of subcubes overlapped by [[y, z]] 
(cf. Figure 4). 

Q=[[y,z]]Q=[[y,z]]

 

Figure 4: A Range Query on a Perfect idealized 
uniform partitioning 

For an easy mathematical treatment we therefore 
define ^, a normalization operation of each domain to a 



value of the interval [0, 1]. If a is a value in a domain  = 
[amin, amax] ⊂ R, then we normalize in the following 
way: 
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If we have lj completed split levels in dimension j, the 
number of slices of the multi-dimensional space that are 
overlapped by the query box [[y, z]] in dimension j can be 
determined by calculating the number of the slices, that 
are contained in interval [0, jẑ ], but not in interval [0, 

jŷ ], i e., the number of slices in [0, jẑ ] minus the 
number of slices in [0, jŷ ]. Since the slice containing jŷ  
is also a slice overlapped by the query box, we must 
increment the above number by one to get the correct 
number of slices. If the number of slices for the interval 
[0, ĉ ] is calculated as  ĉ ⋅ jl2 , a non-existing slice 

jl2 +1 is added for jẑ =1 by the formula derived above. 
We must correct this error for the case jŷ < 1 and jẑ  = 1. 
This is achieved by decrementing the number of slices by 
one. For jŷ  = jẑ  = 1 the subtraction removes the error, 
therefore no correction is necessary here. 

Thus the number of slices n(yj, zj ,lj) in dimension j 
overlapped by the query interval [yj, zj] for lj  completed 
splits in dimension j can be calculated by the following 
formula: 
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The number of subcubes intersected by the query box 
c(y, z, P, d) then is the product of n(yj, zj, lj(d, P)) over all 
dimensions: 
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4.2 A Cost-Function for Semi-Perfect Idealized 
Uniform Partitioning 

We call a partitioning an imperfect idealized uniform 
partitioning, if it produces rectangular regions, where 
each region has either the shape of a subspace with 

volume  P2log2−  or consists of two of these subspaces. In 
this case the multidimensional space has been partitioned 
recursively log2 P mod d times for some dimensions and 
log2 P mod d + 1 times for some other dimensions. One 
dimension may exist, where some parts of the space 
already have been partitioned log2 P mod d + 1 times, 
while other parts of the space only have been partitioned 
log2 P mod d times. 

Because of the above considerations we distinguish 
two cases of imperfect partitioning: 

Definition 4 (semi-perfect and probabilistic 
idealized uniform partitioning): If P = 2k for some k > 

0, k ∈ 1, we call an imperfect idealized uniform 
partitioning semi-perfect. Otherwise we call it 
probabilistic. 

Definition 5 (probabilistic dimension): For a 
probabilistic idealized uniform partitioning we call a 
dimension probabilistic, if with respect to this dimension 
some parts of the space have been partitioned log2 P 
mod d + 1 times, while other parts of the space only have 
been partitioned log2 P mod d times. 

Lemma 1: Each probabilistic idealized uniform 
partitioning has exactly one probabilistic dimension. 

Proof: 
Bit interleaving takes place in a fixed order of 

dimensions. Our implementation of bit interleaving starts 
with the rightmost dimension. 2l splits need to take place 
to completely split the space with respect to split level l 
(i.e., bit l of the binary representation of the Z-address). 
After these 2l splits have taken place (i.e., enough data has 
been inserted into the UB-Tree), the next split takes place 
at split level l + 1 (i.e., bit l + 1 of the binary 
representation of the standard address). This split level 
corresponds to the next bit in the binary representation of 
standard addresses as obtained by bit interleaving. 
Therefore it splits the next dimension in the order of 
dimensions as used by bit interleaving. 

Since splits complete one split level before moving to 
the next split level, only one dimension may have both 
subspaces with split level l and subspaces with split level 
l + 1.   

As a consequence of the proof of Lemma 1 the index 
of the probabilistic dimension in the order of dimension 
as used by bit interleaving [OM84] is calculated as: 

 ( )dPdPd mod log -  ) ,tic(probabilis 2=  

Example: 
Split levels for perfect and imperfect uniform 

partitioning are illustrated in Figure 5 for a 6-dimensional 
space: For a table size of 64 pages the space is perfectly 
partitioned  (k = 1, d = 6) with one split level for each 
dimension. With 512 (k = 9) pages this space is 
partitioned semi-perfectly with one split level in the first 
three dimensions and two split levels for the last three 
dimensions. With a page number of 700, the partitioning 
is probabilistic with dimension 3 as probabilistic 
dimension. 



 

Split Levels per Dimension  
Pages Dim 

1 
Dim 

2 
Dim 

3 
Dim 

4 
Dim 

5 
Dim 

6 
64 

(perfect) 1 1 1 1 1 1 

512 
(semi-perfect) 1 1 1 2 2 2 

700 
(probabilistic) 1 1 >1 2 2 2 

Figure 5: Split levels 

For a semi-perfect idealized uniform partitioning the 
number of completed splits lj(d,P) with respect to 
dimension j is calculated as 
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With lj(d,P) as defined above the c(y, z, P, d) is 
calculated in the same way as for perfect idealized 
uniform partitioning: 
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The key attributes are independent and the query box 
[[x, y]] is iso-oriented with respect to each dimension. 
Therefore the total number of pages is obtained by 
multiplication of the slices in each dimension: 
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4.3 A Cost-Function for Probabilistic Idealized 
Uniform Partitioning 

If an idealized uniform partitioning is probabilistic  (cf. 
Figure 6 for an example), the formula n(yj, zj, lj(d, P)) 
needs to be modified for the probabilistic dimension to 
take the probability of an incomplete split into account. 

 

Figure 6: Probabilistic uniform partitioning 

The complete split levels produce only  P2log2  pages, 
thus P -  P2log2  additional regions are needed to obtain 
the given number of pages, i.e., the table size. These 
regions are created from the  P2log2  pages by splitting 
these pages with respect to attribute j. Therefore the 
probability of an additional split in an attribute j is: 
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If the probability of an incomplete split is taken into 
account, the number of slices overlapped by a query range 
in a certain dimension can be derived from the value for 
the completed splits. By subtraction we calculate, how 
many slices would be overlapped additionally, if another 
completed split were existing. For each of these splits the 
probability of its existence is probabilityj(d, P). The 
average number of additional splits may then be 
calculated by multiplication. 

Thus, the average number of slices in dimension j 
overlapped by the range [yj, zj] is: 

nj(d, P, yj, zj) = n(yj, zj, lj(d, P)) + (n(yj, zj , lj(d, P) + 1) 
- n(yj, zj , lj(d, P))) ⋅ probabilityj(d, P) 

The key attributes are independent and the query box 
[[x, y]] is iso-oriented with respect to each dimension. 
Thus the total number of pages is obtained by 
multiplication of the slices in each dimension as in the 
previous sections. 



Q=[[y,z]]Q=[[y,z]]

 

Figure 7: Range Queries and Probabilistic 
uniform partitioning 

4.4 Cost-Functions and Selectivity 

For independently uniformly distributed data the 
restriction of each attribute in percent of space also 
defines the selectivity of that attribute. Thus the 
restriction [yj, zj] in attribute Aj has a selectivity of sj = 

jj yz ˆˆ − . 

∏ nj(d, P, yj, zj) can be considered to be ∏ js
) ⋅P with 

js
)

 as a special ceiling function rounding the selectivity sj 
of dimension j to the next partitioning grid point. Then the 
cost function can also be represented as: 
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Note that by using 0 and sj instead of zj and yj some 
information for the accuracy of the cost function is lost, 
since the position of the query box influences the number 
of Z-regions overlapped by a query box. Thus c(d, P, y, z) 
should be used instead of c(d, P, s), if not only the 
selectivity, but also start and endpoint of the query in 
space are known. 

5. Conclusion and Future Work 

We have derived a cost model for range queries for 
UB-Trees storing uniformly distributed data with 
independent dimensions. Next to analyzing and predicting 
the results of range queries, our results may also be used 
in conjunction with the Tetris algorithm and thus also take 
sort operations into account. Due to a lack of space the 
conclusion, a more detailed elaboration of the cost model 
as well as the conclusions for the Tetris paper can be 
found in [Mar99]. There the interested reader may also 
find performance comparisons using the cost model as 
well as comparisons of the cost model with the actual 
query performance. 

We found out that our cost model is a sufficient 
decision basis for query optimization under the 
assumption of uniformly distributed, independent 
attributes. However, our cost model may also be 
generalized to arbitrary data distributions by taking the 
selectivity of each dimension into account. In this case the 
major importance comes to the application of techniques 
like multidimensional histograms for storing and 
maintaining the multidimensional data distribution. A 
very accurate estimate here might be to use the actual UB-
Tree nodes and levels as a histogram in the same way as 
B-Trees can be considered to be histograms. 

The cost model can also be applied to access methods 
that specifically deal with the data distribution, like VUB-
Trees [MBB99]. The cost model is applicable for all 
databases that store multidimensional point data, e.g, data 
warehousing applications, in particular for the TPC-D 
benchmark (cf. [MZB99] for an evaluation), archiving 
systems, life-cycle management, data mining and the like. 

Since any relation can be considered to store 
multidimensional points, it even generalizes to multi-
attribute access methods for relational database systems. 
Our cost models can be used for cost-based query 
optimization as well as for simulation, theoretical 
comparison and analysis of access methods. In addition, it 
is useful for run-time prediction of algorithm, e.g., when 
informing a user about the expected response time to his 
query or when balancing system load. 

Our future work includes deriving a set of cost based 
decision rules for how to – possibly multidimensionally - 
index a relation for a given set of queries. We also intend 
to apply our model to cost based query optimization and 
combine the model with multidimensional histograms in 
order to take dependencies and correlations between the 
attributes into account. 
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