
Redundancy in Spatial Databases

Jack A. Orenstein
Object Design, Inc.*

One New England Executive Park
Burlington, MA 01803

odi!jack@talcott.harvard.edu

Abstract
Spatial objects other than points and boxes can be stored in
spatial indexes, but the techniques usually require the use of
approximations that can be arbitrarily bad. This leads to poor
performance and highly inaccurate responses to spatial
queries. The situation can be improved by storing some
objects in the index redundantly. Most spatial indexes permit
no flexibility in adjusting the amount of redundancy. Spatial
indexes based on z-order permit this flexibility. Accuracy of
the query response increases with redundancy, (there is a
“diminishing return” effect). Search time, as measured by disk
accesses first decreases and then increases with redundancy.
There is, therefore, an optimal amount of redundancy (for a
given data set). The optimal use of redundancy for z-order is
explored through analysis of the z-order starch algorithm and
through experiments.

1 Introduction

A spatial database must be able to store spatial objects
and retrieve those objects by specifying queries involving
spatial predicates such as overlap, containment, and
proximity. There has been much progress on spatial searching
in the past fifteen years. There is a wide variety of structures
for use in both main memory (e.g. kd trees [BENT751 and
quadtrees [SAME84]) and on secondary storage [GUlT84,
LOME87, MERR78, MERR82, NIEV84, OREN84. ROB181,
SELl.871. However, most of this work has addressed only range
queries, in which the data objects are points and the goal is to
locate all points that fall within a query box. (Each edge of the
box is parallel to one axis of the space.)

Applications such as geographic information systems and
CAD require the ability to deal with spatial objects other than
points and boxes. This motivates consideration of the overlap
query. The overlap query takes as input two sets of spatial
objects, R and S. and returns a set of pairs (r, s) such that r is a
member of R. s is a member of S, and r and s overlap spatially
[OREN88]. The range query is a special case in which one set
contains points and the other set contains a single box.

* The work reported here was performed on equipment
owned by the author, and does not relate to anticipated Object
Design products.

Permission to copy without fee all or part of this material is granted provided that

the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is

given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1989 ACM o-89791-317-5/89/ooO5/0294 $1.50

Spatial objects, other than points and boxes, often have
to be approximated before any of the spatial indexes listed
above can be used. The basic techniques involve placing the
objects in containers, yielding a conservative approximation,
and parameterization. These techniques are described below.
However, because the approximations are conservative, query
processing strategies based on spatial indexes must use the
following two-step strategy:

Filter step: The spatial index is used to rapidly
eliminate objects that could not possibly satisfy
the query. The result of this step is a set of
candidates which includes all the results and
possibly some false hits.

Refinement step: Each candidate is examined. False
hits are detected and eliminated.

One technique for dealing with non-point objects is
parameterization. Some simple spatial objects can be
described by a small number of parameters and represented by a
point in parameter space (e.g., see [FAL087, HJNR851). For
example, a circle can be represented by three parameters
(center coordinates and radius). Similarly, a box in k
dimensions is represented by a point in 2k dimensions.
Objects with more complicated structure, e.g. arbitrary
polygons, have to be approximated by a bounding object with
a simple shape. The container can then be parameterized

The use of parameterized containers is not entirely
satisfactory. For a disjoint object or an object with holes, the
volume of the container may far exceed that of the object. As a
result, the object will be involved in many false hits. A poor
approximation can also occur when the object is continuous
and has no holes, but because of its shape, is not capable of
filling the container, e.g., a line segment inside a containing
circle. This can be dealt with by using containers with more
parameters, (e.g., an ellipse instead of a circle), but this
increases the number of parameters which leads to decreased
performance as discussed below.

Another problem with parameterization is that the number
of dimensions in the parameter space is greater than the
number of dimensions in the original space. This is a problem
because the performance of all spatial search structures for
point data degenerates as the number of dimensions increase.

These problems suggest that spatial searches based on
the parameterization of containers will yield increasingly
inaccurate answers as the complexity of the data objects
increases. In the extreme case, the filter step would return the
entire set of data objects, all of which would then have to be
considered by the refinement step.

Complexity of spatial data need not destroy the accuracy
of the filter step. An alternative is to introduce redundancy into
the spatial index. The goal is to trade space for accuracy, while
retaining the speed of the filter step. Several researchers have
used redundancy to deal with non-point spatial objects.

294

Quadtree-like structures, the grid-file, the R+-tree. and the
cell tree partition objects at cell, grid or page boundaries
[GUNT89, HORN87, SELL87, TAMM82]. A copy of the object
is created for each partition induced by boundaries.

The goal of this paper is to explore the use of redundancy
in connection with the spatial search structures based on z-
order [OREN84,OREN86a, OREN88]. Quadtrees, grid files (and
variants of each), and the R+-tree do not permit any flexibility
on redundancy. In each case, the amount of redundancy in the
index is fixed, determined by the size and shape of the data
objects and by aggregate properties such as density and
distribution. Objects are replicated more in densely-filled
regions of the space than in sparsely-filled regions. (This
phenomenon is discussed in section 3.2.)

On the other hand, in a z-order based spatial index, the
redundancy of the index can be controlled. This is due to the
fact that replication can be decided on a per-object basis, and
that the density of the space near the object does not affect the
decision. Because redundancy can be controlled, it is possible
to fme-tune the trade-off between the time required for the filter
step and for the refinement step. The optimal balance,
according to a cost model, can be selected, but only if the
spatial index provides control over redundancy. Z-order based
spatial indexes provide this control.

Section 2 provides a summary of z-order based spatial
search structures. Section 3 discusses the ways in which
redundancy can be introduced into spatial search structures, and
identifies a collection of four query processing strategies that
use different approaches to redundancy. Section 4 shows how
redundancy can be controlled in z-order based structures, and
identifies the perils of having too much or too little
redundancy. Section 5 establishes that there is an optimal
amount of redundancy for a given data set. Section 6 presents
experimental results that support the reasoning in sections 4
and 5, and show that the results hold for one example of real-
world data. Concluding remarks are in section 7.

2 Overview of z order-based search structures

In [OREN84] a solution to the range query problem is
given. The technique used is to transform the problem of
finding all the points in a k-dimensional (k-d) box into an
equivalent search problem in l-d. Each data point is
transformed into a l-d interval of size 1, and the query box is
transformed into a set of intervals of varying size. A data point
is contained by the box iff the corresponding interval falls in
one of the query’s intervals. This approach yields a family of
data structures for evaluating range queries. A member of this
family is derived by providing a data structure that supports
random and sequential access, e.g. a sorted array, an AVL tree,
or a b-tree. The search algorithm is expressed in terms of
random and sequential accesses to the underlying data structure.
In spite of the generality of this approach, performance is
comparable to that of more specialized structures. Furthermore,
this approach permits all the theory, techniques, and even
software, that has been developed for ordinary (one
dimensional) searching problems, to be applied to spatial
searching. For example, the experiments reported in section 6
were carried out using the zkd b-tree, an ordinary b-tree loaded
with 2-d boxes transformed to l-d intervals.

This approach can be generalized to deal with arbitrary
spatial objects involved in overlap queries [OREN86a,
OREN86bl. Each spatial object in each input set is transformed
to a set of l-d intervals. An algorithm called spatial join

implements the filter step. Each resulting candidate is a pair of
objects, one from each input file. that are likely to overlap.
The ourput from spatial join has to go through a refinement
step as described above. Spatial join and filtering algorithms
for other spatial problems appear in [OREN88]. These
algorithms comprise the geometry jilter (GF).

2.1 Decomposition: generating the geometry
filter’s representation

As discussed above, the geometry filter works by
transforming a k-d spatial object into a set of l-d intervals.
There are many ways to do thii. Many of the modularity and
performance benefits of the geometry filter derive from the
particular way in which the geometry filter does this
transformation.

The “conceptual” representation used by the geometry
filter is a grid of fixed resolution. The representation for an
object is obtained by noting which cells are completely or
partially occupied by the object. This representation is a
conservative approximation. Partially occupied cells are
included so that the filtering property is retained. If such cells
were omitted, then the approximation would not be
conservative, and some positive results would be lost in the
output of the filter step.

The grid representation can easily be transformed to l-d,
e.g., by listing the occupied cells in row-major order.
However, the number of occupied cells depends on the volume
of the object. As a result, the space and time requirements for
algorithms based on this representation will be very high.
Instead, an encoding of the grid is used. The space is
recursively partitioned until the resolution of the grid is
reached. Regions that are entirely contained in the object do
not have to be split further. The space requirement for this
encoding is proportional to the surface area of the object, not
the volume, so the space and time requirements are much
better. However, further improvements can be obtained, as
described in section 4.1.

By constraining the partitioning process as in [OREN84.
OREN881. a highly compact representation of the spatial
object can be obtained. A region created by partitioning under
these constraints is called an element. Together, these
constraints lead to a very concise description. Typically, each
element can be described by one 32-bit word. Each partition is
represented by one bit, and the relationship of the element to
the partition is described by the value of the bit. (In 2-d space,
a 0 means to the left of or below. A 1 bit means to the right of
or above.) The bit-sequence corresponding to an element is
called a z value. Given a z value. the size, shape and position
of an element can be reconstructed.

Figure 1 shows the encoding of a spatial object achieved
by elements. This is a more compact representation than the
explicit listing of each grid cell, since the space requirement
for each element is the same, regardless of its size.

295

Figure 1. Decomposition of a spatial object
The decompose algorithm is responsible for generating

the elements corresponding to a spatial object. In spite of the
constraints on the partitioning process, there are actually a
variety of decomposition strategies. It will be shown that
these strategies provide the key to controlling redundancy and,
as a result, the performsnce of z-order based search structures.

The geometry filter’s representation for a set of spatial
objects is obtained by decomposing each object, associating
each z value with the object, and then merging all the (z value,
object) pairs into a single l-d search structure, keyed by z
value. Redundancy occurs when the same object is associated
with multiple z values. This structure will be referred to as the
GF representation, GF file, or GF sequence.

The geometry filter algorithms operate by generating
random and sequential accesses against GF sequences.

2.2 Spatial join: generating candidates

The spatial join algorithm performs a merge of two GF
sequences, searching for situations where an element in one
sequence, as represented by its z value, contains an element
from the other input. (This can be determined by checking
whether one z value is a prefix of the other.) When such a pair
is found, a candidate, comprising the objects associated with
the elements, is generated. If the sizes of the input sequences
are n and m, then the time for the merge is O(n + m), However,
it is often possible to do much better. For example, consider a
range query. The n data points yield a GF sequence of size n.
The other input set will contain some small number of
elements for the query box. The merge can be optimized by
taking advantage of the fact that the elements of the query box
usually occur in clusters. For example, all the data points
whose z values are less than that of the first query element can
be skipped. Similarly, the data points between elements of the
query box and those data points following the last element of
the query can be skipped (see figure 5). The ability to “skip
over” elements that are clearly not of interest is the source of
the random access requirement.

This optimization has been built into the spatial join
algorithm. The details are in [OREN88]. With this
optimization, and assuming a certain distribution of data
(which is more regular than uniform), it can be shown that the
expected performance for range queries is O(fN) where f is the
fraction of the space covered by the query, and N is the number
of data objects [OREN83]. This is comparable to the
performance of other, special-purpose structures. Experiments
have shown the robustness of this result for a variety of data

distributions, query sizes and query shapes [OREN86b].

3 Redundancy

The traditional goal of clustering is to place objects that
will be retrieved together, near one another on disk (i.e., the
same page). For spatial search predicates, objects that are
retrieved together are usually near one another in the space
being modeled. That is, proximity in space must translate into
proximity in secondary storage in order to obtain the best
possible performance for spatial queries. Redundancy within a
spatial index can be used to obtain good clustering when the
topology, shape, or size of a spatial object are such that no
single placement within the file makes sense.

Redundancy can be introduced by decomposing a spatial
object into smaller, simpler objects. The spatial index would
contain an entry for each component. There are two ways to do
this. One way is to take advantage of “natural” object structure,
e.g. the line segments that approximate a section of a road, or
the convex polygons whose union comprises an arbitrary
polygon [GUNT89]. This approach is described in section 3.1.
The alternative, described in section 3.2, is to partition the
data objects along boundaries that are natural for the spatial
index.

3.1 Redundancy induced by obJect structure

In some applications, the spatial objects being stored
will have some structure that can be easily exploited to
partition the object. For example, in mechanical CAD
applications, solids are often described constructively - in
terms of set operations on some fundamental shapes. If a
disjunctive normal form can be obtained, then there is a simple
decomposition (not a partitioning). Each term of the
disjunctive normal form expression can be indexed separately.

In geographical applications, the basic spatial object is
usually a polygon. These polygons may be disjoint and may
have holes, but they can always be partitioned into a
collection of convex polygons. Convex polygons can be
approximated more accurately than arbitrary polygons, so the
filter step will be more accurate. Furthermore, the refinement
step will spend less time on each candidate since operations on
convex polygons are faster than operations on arbitrary
polygons.

3.2 Redundancy induced by region boundaries

In a spatial index, each data page can be thought of as
covering some region of the space. For example, in the grid
cell these regions are rectangular but not necessarily uniform
in size. Region boundaries induce a partitioning of the data
objects, resulting in redundancy. A spatial object is replicated
on every page whose space it occupies. The structure used in
Geo-kernel actually materializes and stores the object
partitions, instead of just replicating the object for each page
[HORN87]. In the R-tree, index pages may cover overlapping
regions of space, leading to ambiguity during searching
[GU’lT84]. The R+-tree addresses this problem by introducing
redundancy [SELL87]. Index uaees no longer cover

1 Y

overlapping regions of space, but this requires that some
objects be represented redundautlv. The R-tree would have
avoided the redundancy, but the ambiguity has an impact on
the search cost.

Z-order based structures are unique in their ability to use

296

arbitrary amounts of redundancy. To understand why, first
consider what happens in a grid file. In the grid file, a
boundary between data pages induces replication of an object
that spans the regions covered by those pages. That is,
redundancy depends on the size and shape of the object and on
the density of objects in the same vicinity. If an object is
inserted in a sparse region of the space, it is possible that no
redundancy will be required (see the right side of the space in
figure 2). However, if the same object is inserted into a dense
region of the space, where there are many page boundaries,
then redundancy will be required (see the left side).
Furthermore, as shown in the diagram below, insertions into
such a region may drive up the redundancy required by several
objects in that region, since. as more splits are formed, more
redundancy is introduced.

The situation is different for the zkd b-tree. A spatial
object is partitioned into elements according to a
decomposition strategy. Three of these strategies are described
in section 4.1. Two of the decomposition strategies have
parameters that control the amount of redundancy on a per-
object basis. Because of this level of control, redundancy for
the entire index can be controlled in a distribution- and
density-independent way.
Insertion into a zkd b-tree may result in a page split, as in an
ordinary b-tree. The resulting pages together cover the same
space as the page that was split. That is, the split of a page
results in the partitioning of the region represented by the
page into sub-regions. The boundary between the sub-regions
is shaped like a stair-case, and the regions are, in general, not
boxes. Element boundaries are unaffected by these splits. The
space covered by an element may actually span the boundary
between the newly created sub-regions.

A 4 copies A 5 copies

Figure 2

Grid file, before and after insertion of an object
(the square). Page capacity is two objects. The
insertion causes six data pages to be added, which
in turn, increases the replication of several
objects in the vicinity.

Small element - Page boundary

III $$$$ Large element

Figure 3
2-d and l-d view of a zkd b-tree with two data
pages. Page capacity is three elements. The first
page has a large element and two small elements.
The large element extends into the next page
which has three small elements.

This occurs because an element is ordered according to the
start, not the end, of its interval in l-d space. It is important
for the existence of the element to be known on all covered
pages, not just the page containing (the origin of) the
element. Thii information is encoded very compactly as
descrilxxl in section 4.2.2.

3.3 When is each approach to redundancy
appropriate?

Each approach to redundancy requires some outside help in
the form of subroutines that are specific to the spatial objects
being stored. Structure-based partitioning requires a subroutine
to identify the components of an object. A spatial database
system would call this subroutine when spatial objects are
being added to the database. Partitioning along region
boundaries requires subroutines to determine the relationship
between the object and a (usually rectangular) region of space,
as in the PROBE spatial query processor [OREN88]. The Geo-
kernel spatial query processor requires compose and join
functions that partition and reconstitute spatial objects; i.e.
replication involves copying only part of the object
[HORN87].

These two approaches to redundancy are not mutually
exclusive. Following the structure-based partitioning of a
spatial object, the resulting components have to be indexed.
Partitioning by region boundaries is then useful. (Structure-
based partitioning doesn’t make sense as a second step - the
first step should yield partitions or components simple
enough not to require further structure-based partitioning, no

297

matter which approach is used.) However, it is also possible to
use each technique in isolation or to proceed without
introducing any redundancy. Thus there are four general
strategies to spatial query processing:

1 No redundancy: Each spatial object is placed
in a container which is then represented by a
point in a parameter space.

2 Redundancy induced by object structure:
The spatial objects are partitioned into natural
components. Each component is placed in a
container and represented by a point in a
parameter space.

3 Redundancy Induced by region
boundaries: The spatial objects are partitioned
along region boundaries. The resulting
partitions. which describe pieces of the object in
the original space, are placed into a spatial index.

4 Redundancy induced by object structure,
then by region boundaries: Partition the
spatial objects into their natural components and
then partition each component along region
boundaries. Each piece resulting from this two-
step partitioning is placed into an index which
describes the original space.

There has been no systematic study of these alternatives.
Experience on the PROBE project provides only anecdotal
information [DAYA87]: A sample application involved a road
network. The basic spatial object were road segments (line
segments) and gas stations (points). One of the sample queries
asked for all gas stations within five miles of a given road. In
this case, strategy 3 performed better than strategy 4 on
several criteria - space requirements, preprocessing time, and
speed of the filter step, although the result of this step was less
accurate.

The work reported here is primarily concerned with
strategy 3.

4 Controlling redundancy in z-order search
structures

For point data, there is only one possible GF
representation in which there is one element for each point.
The size of each element is determined by the resolution of the
space, i.e., the GF representation of a point is a single cell in
the “conceptoal” grid of the GF.

4.1 Decomposition strategies

For spatial objects other than points, a variety of
representations can be derived. For example, the object shown
in figure 1 can also be decomposed as shown in figure 4.

(a) SIZE-BOUND(G) (b) ERROR-BOUND(G)
decomposition decompostion

Figure 4
The decomposition shown in figure 1 uses the PRECISE
strategy. The algorithm appeared in [OREN86a, OREN88]. The
remainder of this paper will be primarily concerned with two
other decomposition strategies, to be known as SIZE-BOUND
and ERROR-BOUND, shown in figures 4s and 4b respectively.

SIZE-BOUND(n) permits no more than n elements to be
generated during the decomposition of a single spatial
objectl. The “exploration” of the object being decomposed is
breadth-first. As regions are split, the sub-regions are
processed FIFO. A depth-first exploration would reach the
upper bound on elements before some very large regions
(covering l/2 of the space, l/4 of the space, . ..) had a chance
to be split.

A split of a region yields either one or two non-empty
regions, so a split can be described as being one-way or two-
way. SIZE-BOUND(n) permits two-way splits until n elements
have been formed. Once the bound is reached, only one-way
splits are permitted. Each one-way split improves the accuracy
of the representation without increasing the number of
elements.

The result of a SIZE-BOUND(n) decomposition of an
object may actually have fewer than n elements. This occurs
because the elements resulting from terminal sequences of two-
way splits can be merged to re-form a single element. This
reduces redundancy without decreasing accuracy.

ERROR-BOUND decomposition is similar to SIZE-
BOUND, but the decomposition process is terminated in a
different way. The goal of ERROR-BOUND is to keep a bound
on the accuracy of the representation rather than its size. This
is done by placing a bound on the distance between the border
of an object and the border of a containing element. In
practical terms, this means that a two-way split is permitted if
the resulting elements are above a threshold size. The
threshold is controlled by a parameter, g. ERROR-BOUND(g)
requires a two-way split of an element that covers more than

2-g of the space. Equivalently. the number of two-way splits
forming an element must not exceed g. The final result of an
ERROR-BOUND(g) decomposition may have elements that

cover more than 2-g of the space. This is due to merging of
elements resulting from terminal sequences of two-way splits,
as above.

There are some relationships among these strategies.

1 “SIZE” refers to the size of the output from the
decomposition step, not the amount of space covered by the
elements.

298

PRECISE is the limiting case of both SIZE-BOUND and

ERROR-BOUND. Consider a space with resolution 2d (i.e., the

conceptual grid has 2d pixels). PRECISE is equivalent to SIZE-

BOUND(2d) aud to ERROR-BOUND(d). Also, SIZE-BOUND(1)
is equivalent to ERROR-BOUND(O). Except for these
relationships, SIZE-BOUND and ERROR-BOUND camtot be
compared directly because their parameters control different
qualities - size of the decomposition, and accuracy of the
decomposition respectively. However. the parameter of each
strategy controls redundancy. The approach pursued in section
6 is to observe how the performance and accuracy of the filter
step vary with redundancy for each algorithm.

4.2 The cost of an inaccurate decomposition Figure 5

Analytical results [OREN83] and experimental results
[OREN86b] indicate that the number of data page accesses
needed to evaluate a range query on point data is O(fN) where f
is the fraction of the space covered by the query, and N is the
number of data pages. (N is proportional to the number of
elements since a point always decomposes to yield one
element.) The exact number of pages read will be higher or
lower than fN depending on the distribution of the data, the
aspect ratio of the query box, the load factor of the data file,
and other factors.

The logic of the optimization is fairly intricate. Details can be
found in [OREN88]. For our purposes, what is important is that
the random access performed during optimization is sometimes
too “optimistic”. The random access locates the element that
starts at or following the z value used in the access.
Containing elements are ordered before contained elements, so
it is possible that a random access will land inside a
containing element. The origin of the containing element is
behind the point of access. When this happens, it is necessary
to move back to the largest containing element that has not
been visited yetl.

4.2.1 Why redundancy is bad
For data objects other than points, the number of pages

retrieved for a single box-shaped query object will still be
O(fN), although the value of N will be larger due to redundancy.
The reasoning is as follows. As far as the filter step is
concerned, the identities of the objects associated with the
elements are irrelevant. It does not matter if every element
comes from a different object, as is the case with point data, or
if some objects gave rise to multiple elements, as would
happen for non-point data with redundancy. So there is a clear
advantage to minimizing redundancy: N is minimized and
therefore the number of page accesses is minimized, at least
according to this very non-rigorous argument.

4.2.2 Why redundancy is good
A more careful analysis of the spatial join algorithm

shows that low redundancy is not a clear win. Specifically, the
effectiveness of the algorithm used to optimize the merge is
adversely affected by low redundancy. The explanation is
somewhat involved, and it requires a discussion of how the
merge is optimized.

Consider two GF files, X and Y. The spatial join of X and
Y is, essentially, a merge, so if an element of X has just been
processed, then it is correct to simply advance to the next item
in X. However, it is often possible to do better. Under certain
conditions, it is correct to skip over some consecutive
elements of X starting with the one following the element just
processed. The next relevant X element can be located by
doing a random access in X with the current element of Y. The
elements that are skipped would not have contributed anything
to the filter output.

Current X
element

Next relevant
X element

Y Current Y element

1 Containing elements appear before, not after, contained
elements because the elements within a GF file are ordered by
the lowest z value of the interval, not the highest. If the
highest z value in an interval were used for ordering then the
merge logic would fail.

For a given element in a GF file, the z values of
containing elements can be recorded extremely concisely. One
bit is sufficient to record the presence of a containing element
of a given size, due to the constraints placed on the
partitioning process. Therefore, the total “context” of an
element can be recorded in a single word (assuming that the z
value itself is a single word). The value of this word for each
element can be derived in a single pass of a GF file once it is
built. Insertions and deletions require maintenance of these
words of context.

299

Can skip ahead to
this elementbut random access

I locates this one.

Current X I

X

Y
Current Y

Figure 6
This sequence of events, a random access followed by another
random access with a smaller key value. is a backup.

Large elements are more likely to result in backup than
small ones since they are more likely to contain other
elements. Since low redundancy results in large elements
(since less accuracy is possible), the frequency of backup
during a query is increased as redundancy is decreased. The cost
to process a backup is one page read which may result in a page
fault. The fault occurs if the origin of the element that caused
the backup - the containing one - is not on the page that was
read due to the original random access. Thus, large elements are
not only more likely to cause backup, but when a backup
occurs, they are more likely to result in a page fault.

5 Comparison of the decomposition strategies

The discussion of sections 4.2.1 and 4.2.2 establishes
that, for a given data set and query, there is a non-trivial
optimal amount of redundancy, Rapt. To summarize, as

redundancy increases, so does file size - the value of N in O(fN)
- so the number of pages accessed during the filter step will
increase also. On the other hand, as redundancy is decreased, fN
approaches its minimal value, but the probability of fault-
causing backups increases. These tendencies balance one
another to minimize page accesses at Rapt. This section and

section 6 are concerned with the problem of determining which
strategy attains the lowest Ropr and comparing other criteria -

filter execution time and accuracy - at Rapt

The PRECISE strategy is not considered further, for two
reasons. First, it is an extreme case of both SIZE-BOUND and
ERROR-BOUND. Second, it appears to be a clear loser. While
the strategy camrot be beat in terms of accuracy (as discussed
in section 4.1). its performance, as measured by page accesses
during the filter step, can be made arbitrarily bad by increasing
the resolution of the space. As resolution increases,
redundancy is likely to increase. past R opt, because the number
of elements near the border increases (while their size
decreases). The other strategies yield less accurate
representations, but the size of their representations are
bounded by factors having nothing to do with resolution.

By placing an upper bound on the number of elements, the
SIZE-BOUND strategy addresses the most serious problem of

the PRECISE strategy - redundancy gone wild in an attempt to
minimize the work to be carried out in the refinement step.
Section 6.3 argues that the extra precision is negligible, and
not worth the greatly increased redundancy. However, SIZE-
BOUND introduces redundancy where it may not be helpful.
Elements that are small and close to one another can be merged
into a single larger elementl. The new element is still small
since the original elements were close together. The net result
is a reduction in the size of the representation, (i.e.,
redundancy), with only a small decrease in the accuracy of the
representation. This phenomenon can be seen by comparing
figures 1 and 4.

However, reasoning as in section 4.2.2, it could be argued
that this replacement creates an opportunity for backup, and
that this might cancel the benefit gained from the decrease in
redundancy. This is certainly true if the newly-created element
is large. But, according to the scenario outlined, the element
created is small, and it is likely that the backup would not
generate a page fault. Of course, the terms “smallll and “large”
are relative, but there is an objective measurement that can be
used: an element can be considered to be small if it is likely to
fit within one page (and therefore not cause a backup).

The rationale for the ERROR-BOUND strategy is now
clear. For an element smaller than the ERROR-BOUND
threshold, redundancy (i.e., more splitting) is considered to be
harmful because space requirements are increased while
precision is not significantly increased and the likelihood of a
fault-causing backup is small. Above this threshold, the added
redundancy is outweighed by increased precision and decreased
likelihood of a fault-causing backup. (Note that backup affects
the filter step, while precision only affects the speed of the
refinement step.)

6 Experimental results and analysis

Experiments were conducted for the following reasons:

1. To verify the reasoning of section 5, the
existence of R

opt
in particular.

2. To determine which strategy, SIZE-BOUND or
ERROR-BOUND makes best use of redundancy. In
other words, at their respective Rapt values,
which strategy performs best?

3. To determine which strategy is best in terms of
filter speed and accuracy at Rapt

It is doubtful that there is any single answer to (2) and (3).
More likely, the optimal strategy and optimal amount of
redundancy will depend on the size, shape and topology of the
data and query objects, the distributions of size, shape and
location, the denseness with which the space is covered, the
amount of overlap among objects, and other factors.

The experiments reported here are preliminary, in that
they ignore several of these factors. The design of the
experiments is as follows:

1 The elements must be close in the l-d representation.
proximity in space translates to proximity in the l-d
representation with high probability. but this is not
guaranteed.

300

. The space in which the experiments were
conducted had a resolution of 1000 by 1000.

. In each experiment there were 5000 data objects
and 1 query object.

. In each experiment, the data objects were squares
of some uniform size, uniformly distributed. Four
different edge lengths were used, 5, lo,20 and 30
pixels, corresponding to objects covering 25,
100. 400 and 900 objects, respectively.

. In each experiment, the query objects were squares
with edge lengths ranging from 20 to 200 pixels.
Each query was run at five randomly selected
locations.

l Data objects were decomposed according to the
SIZE-BOUND strategy with upper bounds on size
of 1, 2, 3 and 4, and according to the ERROR-
BOUND strategy with error bounds set to 0, 4. 8
and 12. Note that SIZE-BOUND(l) is equivalent to
ERROR-BOUND(O).

. Query objects were always decomposed according
to the ERROR-BOUND(8) strategy.

The data and queries were loaded into zkd b-trees (b+-trees
to be precise), with a data node capacity of 20 boxes. The
software for the experiments was written in C and executed on a
Commodore Amiga 2000, (a 68000-based system).

In each experiment, the number of data page faults was
measured. Separate counts were kept for each level of the trees.
but the graphs below show faults at the leaf level only.

LRU buffer management was used with 15 buffers. These
buffers were dedicated to the data tree; the query tree used a
separate set of buffers.

Of all the design decisions, the most dubious are those
having to do with the distribution of object size, shape and
especially placement. The effect of non-uniform distributions
for these parameters will be reported in future papers. The
effect of some highly non-uniform distributions on the
performance of the zkd b+-tree for range queries on point data
was reported in [ORENSBb]. Also, section 6.4 reports on a
second set of experiments with the same design as above, but
with data obtained from a real-world application - VLSI design.

6.1 Space requirements

The space requirement of a spatial search structure is
determined by several factors, including storage utilization of
the structure and by redundancy. Most spatial search structures
cannot guarantee lower bounds on storage utilization for non-
uniform distributions of point data, for the data pages or the
index pages, or both. Only the hB-tree [LOME87], the R-tree
[GUTIW], and the zkd b-tree provide any guarantees. Since a
zkd b-tree is an ordinary b-tree, the results for b-trees apply - a
lower bound of 50% and an expected load factor of In 2 = 70%.
For all zkd b-trees created, for all decomposition strategies and
data object sizes, the load factor was between 67% and 72%. As
explained in section 3.2, redundancy in a zkd b-tree is a
property of the objects themselves, not of the search structure

or of data distribution. Also, as discussed earlier, only z-order
based search structures, of which the zkd b-tree is one, can
control redundancy.

The graphs show in figures 7 and 8 show how redundancy
varies with object size and decomposition strategy.
Redundancy is measured by (number of elements) / (number of
data objects).

figure 7

5-
*
z
; 4-

s 3-

2-

l-

* ERROR-BOUND(O)
4 ERROR-BOUND(4)
+ ERROR-BOUND(8)
+ ERROR-BOUND(12)

figure 8

5-

6

j 4-

‘E 3-

2-

l-

5 10 20 30
edge length

* SIZE-BOUND(l)
-m SIZE-BOUND(2)
+ SIZE-BOUND(3)
-t SIZE-BOUND(4)

A d

I n

0 q

v

; lb ;0 i0

edge length

With the ERROR-BOUND(g) strategy, redundancy increases
with object size. This occurs because, as objects get larger,
more elements are needed to accurately represent the object at
its boundary, (the interior is usually covered by a few large
elements). As g increases, a larger number of smaller elements
are needed to represent the data object with the required
accuracy, resulting in increased redundancy. (Recall that g is
the number of splits forming each partition that represents the
permissible error. Each additional split halves the size of the

301

resulting partition.)
The redundancy of SIZE-BOUND(n) is independent of

object size, because the factor controlling redundancy is the
number of elements generated by the decomposition,
regardless of precision. The redundancy observed is always
less than n due to the merging of adjacent elements. formed by
two way splits, (see section 4.2.2).

6.2 Page faults

Figure 9 shows how page faults vary with redundancy. The
graph shows the results for data objects of size 20 x 20. queries
of size 20 x 20 and 200 x 200. and for the SIZE-BOUND(n) and
ERROR-BOUND(g) strategies. Here, and in all graphs, “edge
length” refers to the size of the query. For each strategy, a
range of parameter values (n and g) are examined to obtain the
redundancy values. The n values used are (1.2.3.4). and the g
values are (0. 2. 4. 6, 8, 10). The full set of results obtained
(for other data and query sizes), camrot be presented due to
space limitations. The results presented are typical, and the
trends discussed below were observed in all experiments.
(Complete results can be obtained from the author.)

figure 9 +

+
*
+

~~ 9

ERROR-BOUND, edge length 20
SIZE-BOUND, edge length 20
ERROR-BOUND, edge length 200
SIZE-BOUND, edge length 200

60

I
I

01
I I I

2 3 4

redundancy

The shape of the curves suggest that the reasoning of
sections 4 and 5 is valid. The existence of Rapt is apparent in
the graph shown (and in all graphs obtained). Performance, as
measured by page faults, improves rapidly as redundancy is
increased from its minimal value of 1. reaching a minimum at
Rapt which, for the experiments conducted, varied from about
1.3 to 1.7, for both the SIZE-BOUND and ERROR-BOUND
strategies. After Rapt, the degeneration of performance is
more gradual and almost non-existent for the smaller data
sizes. It is interesting to note that, as far as page faults go,
optimal performance is obtained with a modest amount of
redundancy.

ERROR-BOUND appears to be the superior strategy. It
almost always beats SIZE-BOUND for a given amount of

redundancy. ERROR-BOUND is also more amenable to fine-
tuning. This can be seen by noting that small values of g, (the
ERROR-BOUND parameter), result in redundancy values that
are close together. This is especially important since it
provides fine control where it is needed most, near Rapt. SIZE-
BOUND provides less control near Rapt. It might be possible
to obtain finer control by permitting the SIZE-BOUND
parameter to vary, e.g. based on the volume of the object, or
even randomly. For example, an overall redundancy of 1.5
could be obtained by setting the SIZE-BOUND parameter to be
1 or 2 with equal probability.

6.3 Accuracy

Figure 10 shows how accuracy of the filter step varies
with redundancy, using the same experiment parameters as in
section 6.2. As with the results on page faults, the results
presented here are typical of all experimental results.

figure 10
* ERROR-BOUND, edge length 20
4 SIZE-BOUND, edge length 20
+ ERROR-BOUND, edge length 200
* 1.01 SIZE-BOUND, 200 edge length

g 0.9

= 0.8
8 Q 0.7

0.0 T I I I

1 2 3 4

redundancy

Accuracy increases rapidly with redundancy, levelling off
rapidly at low redundancy. This is fortunate - at low values of
redundancy, not only are page faults minimized (at Rapt), but
accuracy is almost always very close to its maximum.

ERROR-BOUND shows a small but consistent advantage
in accuracy over the SIZE-BOUND strategy. In some
experiments, SIZE-BOUND was very slightly better.

6.4 Results for VLSI data

In the experiments described above, the data objects in
each experiment were all of the same size, and the locations
were uniformly distributed. These assumptions are highly
unrealistic, so nothing can be claimed about the robustness of
the results. Another set of experiments was carried out to see
how well the results of sections 6.1 - 6.3 apply in one
application. A set of 4741 boxes was obtained from a VLSI
circuit design. The data was loaded into zkd b-trees as described

302

above. X and Y coordinates ranged from 0 to 361, and 0 to
368, respectively. All coordinates were doubled, to better fill
the 1000 x 1000 space. (This is fair since it is reasonable to
expect the bounds of the space to be known in a VLSI
application.) Query positions were randomly generated as
before, but the region of x > 800 and y > 800 was avoided, as
queries in these empty areas would artificially lower the search
times.

The data objects were all rectangles. About 70% of the
boxes were approximately square (ratio of side lengths < 2).
Most of the remaining boxes were 2-4 times as tall as they
were wide. The average box size was 165 pixels
(corresponding to an edge length of approximately 13). but
this was severely skewed by a single very large box of
285.621 pixels (edge length 534). Without this datum, the
average box size was about 100 pixels, corresponding to edge
length 10. For this reason, the results from the VLSI data set
are compared to results obtained for the uniformly generated 10
x 10 boxes.

The box sizes were distributed as follows: 14% of the
boxes covered 90-99 pixels, 21% covered 30-39 pixels, and
another 25% fell between these two ranges. Ignoring the one
very large datum. the remaining 40% ranged up to 1180 pixels
in size.

To examine the distribution of object locations, the space
containing the data was divided into a 16 x 16 grid, and the
number of object mid-points per cell was counted. The
distribution was fairly uniform except for a large number of
relatively sparse cells (14% had less than 7 object mid-
points). These sparsely fiied cells, most of which were empty,
occurred near the edges of the space.

Time requirements for the filter step followed the trends
discussed in section 6.2, (see figure 11). Rapt is in the range
reported earlier. Results for accuracy are similar to what was
observed in section 6.3, (see figure 12).

figure 11 Q ERROR-BOUND, edge length 20
+ SIZE-BOUND, edge length 20
+ ERROR-BOUND, edge length 200
* SIZE-BOUND, edge length 200

60
1

4oi

2ob----
01

1
I
2

I 1
3 4
redundancy

figure 12 d

+

4

t

1 .o
0.9
0.8

ERROR-BOUND, edge length 20
SIZE-BOUND, edge length 20
ERROR-BOUND, edge length 200
SIZE-BOUND, edge length 200

1

1 2 3 4

redundancy

The results for VLSI data and the generated boxes with
edge size 10 compared as follows. The page faults for VLSI data
are higher, possibly due to the fact that the objects are not
square, but, for the most part, taller than wider. However, the
accuracy obtained for the VLSI data is higher. (See figures 13
and 14. Due to space limitations, only ERROR-BOUND results
are shown.) Space requirements for the two data sets were very
similar.

figure 13 +

4

4
+

120 1

VLSI data, edge length 200
artificial data, edge length 200
VLSI data, edge length 20
artificial data, edge length 20

2 2 100

I E 80

5 60

b
2

40

g 20
2.

I I 1
1 2 3 4

redundancy

303

figure 14

1.0

g 0.9
2 0.8

4 VLSI data, edge length 200
-C artificial data, edge length 200
-b VLSI data, edge length 20
* 20 artificial data, edge length

g 0.7

g 0.6

5 0.5

1 2 3 4
redundancy

7 Conclusion and future work

For the data sets studied. it appears that small amounts of
redundancy (between 30% and 70% depending on the data set),
provide the best overall results. The page faults required by the
filter step drop rapidly as redundancy is increased from 1 to its
optimal value. Page faults increase more slowly as redundancy
is increased further. Accuracy increases rapidly to near-optimal
values. At the point where page faults are minimized, accuracy
is almost always very close to optimal. For both criteria,
(page faults and accuracy) ERROR-BOUND is almost always
superior to SIZE-BOUND, although the difference is sometimes
very small. However, the differences are most pronounced at
the critical low redundancy values.

These results can be tied to specific ERROR-BOUND and
SIZE-BOUND parameter values - ERROR-BOUND(8) and
SIZE-BOUND(l) or SIZE-BOUND(2) provide the best results
overall.

The results obtained with VLSI data are highly consistent
with the results obtained for generated data of comparable size.
The main difference was a more costly but more accurate filter
step.

Much more work is needed to see what happens in
situations not explored by these experiments. In particular,
with larger, or more irregularly-shaped data objects, how well
will the results reported here hold up?

In all experiments, there was a single query object. The
more general case of the overlap query, in which both inputs
have many objects has to be examined. Finally, of the four
query processing strategies outlined in section 3.3, only one
has been examined, strategy 3 in which partitioning is only
along element boundaries. Nothing is yet known about the
benefits of decomposition based on object structure, or the
performance trade-offs in working in (higher-dimension)
parameter spaces.

Acknowledgements

I am grateful to Prof. Tiios Sellis of the University of
Maryland for providing the VLSI data used in section 6.4.
Thanks also to Audrey Hart for assistance in debugging the
software and proof-reading the paper.

References

BENT75 I. L. Bentley.

DAYA

FAL087

GU’IT84

Multidimensional binary search trees used for
associative searching.
Coma ACM 18, 9 (1975). 509-517.

U. Dayal, M. Dewitt, D. Goldhirsch, J. Orenstein.
PROBE fii report.
Technical report CCA-87-02. Xerox Advanced
Information Technology Division (formerly
Computer Corporation of America).

C. Faloutsos. W. Rego.
A grid file for spatial objects.
Technical report CS-TR-1829, Department of
Computer Science, University of Maryland,
College Park (1987).
A. Gumnan.

R-trees: a dynamic index structure for spatial
searching.

HINR85
Proc. ACM SIGMOD, (1984).
K. H. Hinrichs.

HORN87

LOME

The grid file system: implementation and case
studies of applications.
Doctoral dissertation, ETH Nr. 7734, Swiss
Federal Institute of Technology, Zurich,
Switzerland, (1985).

D. Horn H.-J. S&k, W. Waterfeld, A. Wolf.
Spatial access paths and physical clustering in a
low-level geo-database system.
Technical report, Technical University of
Darmstadt, West Germany (1987).

D. B. Lomet. B. Salzberg.
The hB-tree: a robust multi-attribute indexing
method.

MERR78

Technical report TR-87-05, Wang Institute of
Graduate Studies, (1987). (The Wang Institute is
defunct. Contact Lomet at DEC. Spitbrook or
Salzberg at Northeastern University.)
T. H. Merrett.

MERR82

NIEV84

Multidimensional paging for efficient database
querying.
Proc. Int’l Conference on Management of Data,
Milan (1978), 277-290.
T. H. Merrett, E. J. Otoo.

Dynamic multipaging: a storage structure for
large shared databases.
Proc. 2nd Int’l Conference on Databases:
Improving usability and responsiveness,
Jerusalem (1982).

J. Nievergelt, H. Hmterberger. K. C. Sevcik.
The grid file: an adaptable, symmetric multi-key
file structure.

OREN
ACM TODS 9, 1 (1984). 38-71.
J. A. Orenstein.

Algorithms and data structures for the

304

OREN

OREN86a

OREN86b

ORENSS

ROB18 1

SAME84

SELL87

TAMM82

implementation of a relational database system.
Ph. D. thesis, McGill University, School of
Computer Science (1983).
J. A. Orenstein, T. H. Merrett.

A class of data structures for associative
searching.
Proc. 3rd ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems (1984), 181-190.
J. A. Orenstein.

Spatial query processing in an object-oriented
database system.
Proc. ACM SIGMOD. (1986).

J. A. Orenstein. F. A. Manola.
Spatial data modeling and query processing in
PROBE.
Technical report CCA-86-05, Xerox Advanced
Information Technology Division (formerly
Computer Corporation of America).

J. A. Orenstein, F. A. Manola.
PROBE spatial data modeling and query
processing in an image database application.
IEEE Trans. on Software Eng. 14, 5 (May, 1988)
61 l-629.

J. T. Robinson.
The K-D-B tree: a search structure for large
multidimensional dynamic indexes. Proc. ACM
SIGMOD (1981).
H. Samet.

The quadtree and related hierarchical data
structures.
ACM Comp. SW-V. 16. 2 (1984).

T. Sellis, N. Roussopoulos. C. Faloutsos.
The R+-tree: a dynamic index for multi-
dimensional objects.
Proc. VLDB, (1987).
M. Tamminen, R. Sulonen.

The EXCELL method for efficient geometric
access to data.
Proc. 19th ACM Design Automation Conf.
(1982). 345-351.

305

