
Redundancy in Spatial Databases 

Jack A. Orenstein 
Object Design, Inc.* 

One New England Executive Park 
Burlington, MA 01803 

odi!jack@talcott.harvard.edu 

Abstract 
Spatial objects other than points and boxes can be stored in 
spatial indexes, but the techniques usually require the use of 
approximations that can be arbitrarily bad. This leads to poor 
performance and highly inaccurate responses to spatial 
queries. The situation can be improved by storing some 
objects in the index redundantly. Most spatial indexes permit 
no flexibility in adjusting the amount of redundancy. Spatial 
indexes based on z-order permit this flexibility. Accuracy of 
the query response increases with redundancy, (there is a 
“diminishing return” effect). Search time, as measured by disk 
accesses first decreases and then increases with redundancy. 
There is, therefore, an optimal amount of redundancy (for a 
given data set). The optimal use of redundancy for z-order is 
explored through analysis of the z-order starch algorithm and 
through experiments. 

1 Introduction 

A spatial database must be able to store spatial objects 
and retrieve those objects by specifying queries involving 
spatial predicates such as overlap, containment, and 
proximity. There has been much progress on spatial searching 
in the past fifteen years. There is a wide variety of structures 
for use in both main memory (e.g. kd trees [BENT751 and 
quadtrees [SAME84]) and on secondary storage [GUlT84, 
LOME87, MERR78, MERR82, NIEV84, OREN84. ROB181, 
SELl.871. However, most of this work has addressed only range 
queries, in which the data objects are points and the goal is to 
locate all points that fall within a query box. (Each edge of the 
box is parallel to one axis of the space.) 

Applications such as geographic information systems and 
CAD require the ability to deal with spatial objects other than 
points and boxes. This motivates consideration of the overlap 
query. The overlap query takes as input two sets of spatial 
objects, R and S. and returns a set of pairs (r, s) such that r is a 
member of R. s is a member of S, and r and s overlap spatially 
[OREN88]. The range query is a special case in which one set 
contains points and the other set contains a single box. 
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Spatial objects, other than points and boxes, often have 
to be approximated before any of the spatial indexes listed 
above can be used. The basic techniques involve placing the 
objects in containers, yielding a conservative approximation, 
and parameterization. These techniques are described below. 
However, because the approximations are conservative, query 
processing strategies based on spatial indexes must use the 
following two-step strategy: 

Filter step: The spatial index is used to rapidly 
eliminate objects that could not possibly satisfy 
the query. The result of this step is a set of 
candidates which includes all the results and 
possibly some false hits. 

Refinement step: Each candidate is examined. False 
hits are detected and eliminated. 

One technique for dealing with non-point objects is 
parameterization. Some simple spatial objects can be 
described by a small number of parameters and represented by a 
point in parameter space (e.g., see [FAL087, HJNR851). For 
example, a circle can be represented by three parameters 
(center coordinates and radius). Similarly, a box in k 
dimensions is represented by a point in 2k dimensions. 
Objects with more complicated structure, e.g. arbitrary 
polygons, have to be approximated by a bounding object with 
a simple shape. The container can then be parameterized 

The use of parameterized containers is not entirely 
satisfactory. For a disjoint object or an object with holes, the 
volume of the container may far exceed that of the object. As a 
result, the object will be involved in many false hits. A poor 
approximation can also occur when the object is continuous 
and has no holes, but because of its shape, is not capable of 
filling the container, e.g., a line segment inside a containing 
circle. This can be dealt with by using containers with more 
parameters, (e.g., an ellipse instead of a circle), but this 
increases the number of parameters which leads to decreased 
performance as discussed below. 

Another problem with parameterization is that the number 
of dimensions in the parameter space is greater than the 
number of dimensions in the original space. This is a problem 
because the performance of all spatial search structures for 
point data degenerates as the number of dimensions increase. 

These problems suggest that spatial searches based on 
the parameterization of containers will yield increasingly 
inaccurate answers as the complexity of the data objects 
increases. In the extreme case, the filter step would return the 
entire set of data objects, all of which would then have to be 
considered by the refinement step. 

Complexity of spatial data need not destroy the accuracy 
of the filter step. An alternative is to introduce redundancy into 
the spatial index. The goal is to trade space for accuracy, while 
retaining the speed of the filter step. Several researchers have 
used redundancy to deal with non-point spatial objects. 
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Quadtree-like structures, the grid-file, the R+-tree. and the 
cell tree partition objects at cell, grid or page boundaries 
[GUNT89, HORN87, SELL87, TAMM82]. A copy of the object 
is created for each partition induced by boundaries. 

The goal of this paper is to explore the use of redundancy 
in connection with the spatial search structures based on z- 
order [OREN84,OREN86a, OREN88]. Quadtrees, grid files (and 
variants of each), and the R+-tree do not permit any flexibility 
on redundancy. In each case, the amount of redundancy in the 
index is fixed, determined by the size and shape of the data 
objects and by aggregate properties such as density and 
distribution. Objects are replicated more in densely-filled 
regions of the space than in sparsely-filled regions. (This 
phenomenon is discussed in section 3.2.) 

On the other hand, in a z-order based spatial index, the 
redundancy of the index can be controlled. This is due to the 
fact that replication can be decided on a per-object basis, and 
that the density of the space near the object does not affect the 
decision. Because redundancy can be controlled, it is possible 
to fme-tune the trade-off between the time required for the filter 
step and for the refinement step. The optimal balance, 
according to a cost model, can be selected, but only if the 
spatial index provides control over redundancy. Z-order based 
spatial indexes provide this control. 

Section 2 provides a summary of z-order based spatial 
search structures. Section 3 discusses the ways in which 
redundancy can be introduced into spatial search structures, and 
identifies a collection of four query processing strategies that 
use different approaches to redundancy. Section 4 shows how 
redundancy can be controlled in z-order based structures, and 
identifies the perils of having too much or too little 
redundancy. Section 5 establishes that there is an optimal 
amount of redundancy for a given data set. Section 6 presents 
experimental results that support the reasoning in sections 4 
and 5, and show that the results hold for one example of real- 
world data. Concluding remarks are in section 7. 

2 Overview of z order-based search structures 

In [OREN84] a solution to the range query problem is 
given. The technique used is to transform the problem of 
finding all the points in a k-dimensional (k-d) box into an 
equivalent search problem in l-d. Each data point is 
transformed into a l-d interval of size 1, and the query box is 
transformed into a set of intervals of varying size. A data point 
is contained by the box iff the corresponding interval falls in 
one of the query’s intervals. This approach yields a family of 
data structures for evaluating range queries. A member of this 
family is derived by providing a data structure that supports 
random and sequential access, e.g. a sorted array, an AVL tree, 
or a b-tree. The search algorithm is expressed in terms of 
random and sequential accesses to the underlying data structure. 
In spite of the generality of this approach, performance is 
comparable to that of more specialized structures. Furthermore, 
this approach permits all the theory, techniques, and even 
software, that has been developed for ordinary (one 
dimensional) searching problems, to be applied to spatial 
searching. For example, the experiments reported in section 6 
were carried out using the zkd b-tree, an ordinary b-tree loaded 
with 2-d boxes transformed to l-d intervals. 

This approach can be generalized to deal with arbitrary 
spatial objects involved in overlap queries [OREN86a, 
OREN86bl. Each spatial object in each input set is transformed 
to a set of l-d intervals. An algorithm called spatial join 

implements the filter step. Each resulting candidate is a pair of 
objects, one from each input file. that are likely to overlap. 
The ourput from spatial join has to go through a refinement 
step as described above. Spatial join and filtering algorithms 
for other spatial problems appear in [OREN88]. These 
algorithms comprise the geometry jilter (GF). 

2.1 Decomposition: generating the geometry 
filter’s representation 

As discussed above, the geometry filter works by 
transforming a k-d spatial object into a set of l-d intervals. 
There are many ways to do thii. Many of the modularity and 
performance benefits of the geometry filter derive from the 
particular way in which the geometry filter does this 
transformation. 

The “conceptual” representation used by the geometry 
filter is a grid of fixed resolution. The representation for an 
object is obtained by noting which cells are completely or 
partially occupied by the object. This representation is a 
conservative approximation. Partially occupied cells are 
included so that the filtering property is retained. If such cells 
were omitted, then the approximation would not be 
conservative, and some positive results would be lost in the 
output of the filter step. 

The grid representation can easily be transformed to l-d, 
e.g., by listing the occupied cells in row-major order. 
However, the number of occupied cells depends on the volume 
of the object. As a result, the space and time requirements for 
algorithms based on this representation will be very high. 
Instead, an encoding of the grid is used. The space is 
recursively partitioned until the resolution of the grid is 
reached. Regions that are entirely contained in the object do 
not have to be split further. The space requirement for this 
encoding is proportional to the surface area of the object, not 
the volume, so the space and time requirements are much 
better. However, further improvements can be obtained, as 
described in section 4.1. 

By constraining the partitioning process as in [OREN84. 
OREN881. a highly compact representation of the spatial 
object can be obtained. A region created by partitioning under 
these constraints is called an element. Together, these 
constraints lead to a very concise description. Typically, each 
element can be described by one 32-bit word. Each partition is 
represented by one bit, and the relationship of the element to 
the partition is described by the value of the bit. (In 2-d space, 
a 0 means to the left of or below. A 1 bit means to the right of 
or above.) The bit-sequence corresponding to an element is 
called a z value. Given a z value. the size, shape and position 
of an element can be reconstructed. 

Figure 1 shows the encoding of a spatial object achieved 
by elements. This is a more compact representation than the 
explicit listing of each grid cell, since the space requirement 
for each element is the same, regardless of its size. 
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Figure 1. Decomposition of a spatial object 
The decompose algorithm is responsible for generating 

the elements corresponding to a spatial object. In spite of the 
constraints on the partitioning process, there are actually a 
variety of decomposition strategies. It will be shown that 
these strategies provide the key to controlling redundancy and, 
as a result, the performsnce of z-order based search structures. 

The geometry filter’s representation for a set of spatial 
objects is obtained by decomposing each object, associating 
each z value with the object, and then merging all the (z value, 
object) pairs into a single l-d search structure, keyed by z 
value. Redundancy occurs when the same object is associated 
with multiple z values. This structure will be referred to as the 
GF representation, GF file, or GF sequence. 

The geometry filter algorithms operate by generating 
random and sequential accesses against GF sequences. 

2.2 Spatial join: generating candidates 

The spatial join algorithm performs a merge of two GF 
sequences, searching for situations where an element in one 
sequence, as represented by its z value, contains an element 
from the other input. (This can be determined by checking 
whether one z value is a prefix of the other.) When such a pair 
is found, a candidate, comprising the objects associated with 
the elements, is generated. If the sizes of the input sequences 
are n and m, then the time for the merge is O(n + m), However, 
it is often possible to do much better. For example, consider a 
range query. The n data points yield a GF sequence of size n. 
The other input set will contain some small number of 
elements for the query box. The merge can be optimized by 
taking advantage of the fact that the elements of the query box 
usually occur in clusters. For example, all the data points 
whose z values are less than that of the first query element can 
be skipped. Similarly, the data points between elements of the 
query box and those data points following the last element of 
the query can be skipped (see figure 5). The ability to “skip 
over” elements that are clearly not of interest is the source of 
the random access requirement. 

This optimization has been built into the spatial join 
algorithm. The details are in [OREN88]. With this 
optimization, and assuming a certain distribution of data 
(which is more regular than uniform), it can be shown that the 
expected performance for range queries is O(fN) where f is the 
fraction of the space covered by the query, and N is the number 
of data objects [OREN83]. This is comparable to the 
performance of other, special-purpose structures. Experiments 
have shown the robustness of this result for a variety of data 

distributions, query sizes and query shapes [OREN86b]. 

3 Redundancy 

The traditional goal of clustering is to place objects that 
will be retrieved together, near one another on disk (i.e., the 
same page). For spatial search predicates, objects that are 
retrieved together are usually near one another in the space 
being modeled. That is, proximity in space must translate into 
proximity in secondary storage in order to obtain the best 
possible performance for spatial queries. Redundancy within a 
spatial index can be used to obtain good clustering when the 
topology, shape, or size of a spatial object are such that no 
single placement within the file makes sense. 

Redundancy can be introduced by decomposing a spatial 
object into smaller, simpler objects. The spatial index would 
contain an entry for each component. There are two ways to do 
this. One way is to take advantage of “natural” object structure, 
e.g. the line segments that approximate a section of a road, or 
the convex polygons whose union comprises an arbitrary 
polygon [GUNT89]. This approach is described in section 3.1. 
The alternative, described in section 3.2, is to partition the 
data objects along boundaries that are natural for the spatial 
index. 

3.1 Redundancy induced by obJect structure 

In some applications, the spatial objects being stored 
will have some structure that can be easily exploited to 
partition the object. For example, in mechanical CAD 
applications, solids are often described constructively - in 
terms of set operations on some fundamental shapes. If a 
disjunctive normal form can be obtained, then there is a simple 
decomposition (not a partitioning). Each term of the 
disjunctive normal form expression can be indexed separately. 

In geographical applications, the basic spatial object is 
usually a polygon. These polygons may be disjoint and may 
have holes, but they can always be partitioned into a 
collection of convex polygons. Convex polygons can be 
approximated more accurately than arbitrary polygons, so the 
filter step will be more accurate. Furthermore, the refinement 
step will spend less time on each candidate since operations on 
convex polygons are faster than operations on arbitrary 
polygons. 

3.2 Redundancy induced by region boundaries 

In a spatial index, each data page can be thought of as 
covering some region of the space. For example, in the grid 
cell these regions are rectangular but not necessarily uniform 
in size. Region boundaries induce a partitioning of the data 
objects, resulting in redundancy. A spatial object is replicated 
on every page whose space it occupies. The structure used in 
Geo-kernel actually materializes and stores the object 
partitions, instead of just replicating the object for each page 
[HORN87]. In the R-tree, index pages may cover overlapping 
regions of space, leading to ambiguity during searching 
[GU’lT84]. The R+-tree addresses this problem by introducing 
redundancy [SELL87]. Index uaees no longer cover 

1 Y 

overlapping regions of space, but this requires that some 
objects be represented redundautlv. The R-tree would have 
avoided the redundancy, but the ambiguity has an impact on 
the search cost. 

Z-order based structures are unique in their ability to use 
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arbitrary amounts of redundancy. To understand why, first 
consider what happens in a grid file. In the grid file, a 
boundary between data pages induces replication of an object 
that spans the regions covered by those pages. That is, 
redundancy depends on the size and shape of the object and on 
the density of objects in the same vicinity. If an object is 
inserted in a sparse region of the space, it is possible that no 
redundancy will be required (see the right side of the space in 
figure 2). However, if the same object is inserted into a dense 
region of the space, where there are many page boundaries, 
then redundancy will be required (see the left side). 
Furthermore, as shown in the diagram below, insertions into 
such a region may drive up the redundancy required by several 
objects in that region, since. as more splits are formed, more 
redundancy is introduced. 

The situation is different for the zkd b-tree. A spatial 
object is partitioned into elements according to a 
decomposition strategy. Three of these strategies are described 
in section 4.1. Two of the decomposition strategies have 
parameters that control the amount of redundancy on a per- 
object basis. Because of this level of control, redundancy for 
the entire index can be controlled in a distribution- and 
density-independent way. 
Insertion into a zkd b-tree may result in a page split, as in an 
ordinary b-tree. The resulting pages together cover the same 
space as the page that was split. That is, the split of a page 
results in the partitioning of the region represented by the 
page into sub-regions. The boundary between the sub-regions 
is shaped like a stair-case, and the regions are, in general, not 
boxes. Element boundaries are unaffected by these splits. The 
space covered by an element may actually span the boundary 
between the newly created sub-regions. 

A 4 copies A 5 copies 

Figure 2 

Grid file, before and after insertion of an object 
(the square). Page capacity is two objects. The 
insertion causes six data pages to be added, which 
in turn, increases the replication of several 
objects in the vicinity. 

Small element - Page boundary 

III $$$$ Large element 

Figure 3 
2-d and l-d view of a zkd b-tree with two data 
pages. Page capacity is three elements. The first 
page has a large element and two small elements. 
The large element extends into the next page 
which has three small elements. 

This occurs because an element is ordered according to the 
start, not the end, of its interval in l-d space. It is important 
for the existence of the element to be known on all covered 
pages, not just the page containing (the origin of) the 
element. Thii information is encoded very compactly as 
descrilxxl in section 4.2.2. 

3.3 When is each approach to redundancy 
appropriate? 

Each approach to redundancy requires some outside help in 
the form of subroutines that are specific to the spatial objects 
being stored. Structure-based partitioning requires a subroutine 
to identify the components of an object. A spatial database 
system would call this subroutine when spatial objects are 
being added to the database. Partitioning along region 
boundaries requires subroutines to determine the relationship 
between the object and a (usually rectangular) region of space, 
as in the PROBE spatial query processor [OREN88]. The Geo- 
kernel spatial query processor requires compose and join 
functions that partition and reconstitute spatial objects; i.e. 
replication involves copying only part of the object 
[HORN87]. 

These two approaches to redundancy are not mutually 
exclusive. Following the structure-based partitioning of a 
spatial object, the resulting components have to be indexed. 
Partitioning by region boundaries is then useful. (Structure- 
based partitioning doesn’t make sense as a second step - the 
first step should yield partitions or components simple 
enough not to require further structure-based partitioning, no 
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matter which approach is used.) However, it is also possible to 
use each technique in isolation or to proceed without 
introducing any redundancy. Thus there are four general 
strategies to spatial query processing: 

1 No redundancy: Each spatial object is placed 
in a container which is then represented by a 
point in a parameter space. 

2 Redundancy induced by object structure: 
The spatial objects are partitioned into natural 
components. Each component is placed in a 
container and represented by a point in a 
parameter space. 

3 Redundancy Induced by region 
boundaries: The spatial objects are partitioned 
along region boundaries. The resulting 
partitions. which describe pieces of the object in 
the original space, are placed into a spatial index. 

4 Redundancy induced by object structure, 
then by region boundaries: Partition the 
spatial objects into their natural components and 
then partition each component along region 
boundaries. Each piece resulting from this two- 
step partitioning is placed into an index which 
describes the original space. 

There has been no systematic study of these alternatives. 
Experience on the PROBE project provides only anecdotal 
information [DAYA87]: A sample application involved a road 
network. The basic spatial object were road segments (line 
segments) and gas stations (points). One of the sample queries 
asked for all gas stations within five miles of a given road. In 
this case, strategy 3 performed better than strategy 4 on 
several criteria - space requirements, preprocessing time, and 
speed of the filter step, although the result of this step was less 
accurate. 

The work reported here is primarily concerned with 
strategy 3. 

4 Controlling redundancy in z-order search 
structures 

For point data, there is only one possible GF 
representation in which there is one element for each point. 
The size of each element is determined by the resolution of the 
space, i.e., the GF representation of a point is a single cell in 
the “conceptoal” grid of the GF. 

4.1 Decomposition strategies 

For spatial objects other than points, a variety of 
representations can be derived. For example, the object shown 
in figure 1 can also be decomposed as shown in figure 4. 

(a) SIZE-BOUND(G) (b) ERROR-BOUND(G) 
decomposition decompostion 

Figure 4 
The decomposition shown in figure 1 uses the PRECISE 
strategy. The algorithm appeared in [OREN86a, OREN88]. The 
remainder of this paper will be primarily concerned with two 
other decomposition strategies, to be known as SIZE-BOUND 
and ERROR-BOUND, shown in figures 4s and 4b respectively. 

SIZE-BOUND(n) permits no more than n elements to be 
generated during the decomposition of a single spatial 
objectl. The “exploration” of the object being decomposed is 
breadth-first. As regions are split, the sub-regions are 
processed FIFO. A depth-first exploration would reach the 
upper bound on elements before some very large regions 
(covering l/2 of the space, l/4 of the space, . ..) had a chance 
to be split. 

A split of a region yields either one or two non-empty 
regions, so a split can be described as being one-way or two- 
way. SIZE-BOUND(n) permits two-way splits until n elements 
have been formed. Once the bound is reached, only one-way 
splits are permitted. Each one-way split improves the accuracy 
of the representation without increasing the number of 
elements. 

The result of a SIZE-BOUND(n) decomposition of an 
object may actually have fewer than n elements. This occurs 
because the elements resulting from terminal sequences of two- 
way splits can be merged to re-form a single element. This 
reduces redundancy without decreasing accuracy. 

ERROR-BOUND decomposition is similar to SIZE- 
BOUND, but the decomposition process is terminated in a 
different way. The goal of ERROR-BOUND is to keep a bound 
on the accuracy of the representation rather than its size. This 
is done by placing a bound on the distance between the border 
of an object and the border of a containing element. In 
practical terms, this means that a two-way split is permitted if 
the resulting elements are above a threshold size. The 
threshold is controlled by a parameter, g. ERROR-BOUND(g) 
requires a two-way split of an element that covers more than 

2-g of the space. Equivalently. the number of two-way splits 
forming an element must not exceed g. The final result of an 
ERROR-BOUND(g) decomposition may have elements that 

cover more than 2-g of the space. This is due to merging of 
elements resulting from terminal sequences of two-way splits, 
as above. 

There are some relationships among these strategies. 

1 “SIZE” refers to the size of the output from the 
decomposition step, not the amount of space covered by the 
elements. 
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PRECISE is the limiting case of both SIZE-BOUND and 

ERROR-BOUND. Consider a space with resolution 2d (i.e., the 

conceptual grid has 2d pixels). PRECISE is equivalent to SIZE- 

BOUND(2d) aud to ERROR-BOUND(d). Also, SIZE-BOUND( 1) 
is equivalent to ERROR-BOUND(O). Except for these 
relationships, SIZE-BOUND and ERROR-BOUND camtot be 
compared directly because their parameters control different 
qualities - size of the decomposition, and accuracy of the 
decomposition respectively. However. the parameter of each 
strategy controls redundancy. The approach pursued in section 
6 is to observe how the performance and accuracy of the filter 
step vary with redundancy for each algorithm. 

4.2 The cost of an inaccurate decomposition Figure 5 

Analytical results [OREN83] and experimental results 
[OREN86b] indicate that the number of data page accesses 
needed to evaluate a range query on point data is O(fN) where f 
is the fraction of the space covered by the query, and N is the 
number of data pages. (N is proportional to the number of 
elements since a point always decomposes to yield one 
element.) The exact number of pages read will be higher or 
lower than fN depending on the distribution of the data, the 
aspect ratio of the query box, the load factor of the data file, 
and other factors. 

The logic of the optimization is fairly intricate. Details can be 
found in [OREN88]. For our purposes, what is important is that 
the random access performed during optimization is sometimes 
too “optimistic”. The random access locates the element that 
starts at or following the z value used in the access. 
Containing elements are ordered before contained elements, so 
it is possible that a random access will land inside a 
containing element. The origin of the containing element is 
behind the point of access. When this happens, it is necessary 
to move back to the largest containing element that has not 
been visited yetl. 

4.2.1 Why redundancy is bad 
For data objects other than points, the number of pages 

retrieved for a single box-shaped query object will still be 
O(fN), although the value of N will be larger due to redundancy. 
The reasoning is as follows. As far as the filter step is 
concerned, the identities of the objects associated with the 
elements are irrelevant. It does not matter if every element 
comes from a different object, as is the case with point data, or 
if some objects gave rise to multiple elements, as would 
happen for non-point data with redundancy. So there is a clear 
advantage to minimizing redundancy: N is minimized and 
therefore the number of page accesses is minimized, at least 
according to this very non-rigorous argument. 

4.2.2 Why redundancy is good 
A more careful analysis of the spatial join algorithm 

shows that low redundancy is not a clear win. Specifically, the 
effectiveness of the algorithm used to optimize the merge is 
adversely affected by low redundancy. The explanation is 
somewhat involved, and it requires a discussion of how the 
merge is optimized. 

Consider two GF files, X and Y. The spatial join of X and 
Y is, essentially, a merge, so if an element of X has just been 
processed, then it is correct to simply advance to the next item 
in X. However, it is often possible to do better. Under certain 
conditions, it is correct to skip over some consecutive 
elements of X starting with the one following the element just 
processed. The next relevant X element can be located by 
doing a random access in X with the current element of Y. The 
elements that are skipped would not have contributed anything 
to the filter output. 

Current X 
element 

Next relevant 
X element 

Y Current Y element 

1 Containing elements appear before, not after, contained 
elements because the elements within a GF file are ordered by 
the lowest z value of the interval, not the highest. If the 
highest z value in an interval were used for ordering then the 
merge logic would fail. 

For a given element in a GF file, the z values of 
containing elements can be recorded extremely concisely. One 
bit is sufficient to record the presence of a containing element 
of a given size, due to the constraints placed on the 
partitioning process. Therefore, the total “context” of an 
element can be recorded in a single word (assuming that the z 
value itself is a single word). The value of this word for each 
element can be derived in a single pass of a GF file once it is 
built. Insertions and deletions require maintenance of these 
words of context. 
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Can skip ahead to 
this element . . . . ..but random access 

I locates this one. 

Current X I 

X 

Y 
Current Y 

Figure 6 
This sequence of events, a random access followed by another 
random access with a smaller key value. is a backup. 

Large elements are more likely to result in backup than 
small ones since they are more likely to contain other 
elements. Since low redundancy results in large elements 
(since less accuracy is possible), the frequency of backup 
during a query is increased as redundancy is decreased. The cost 
to process a backup is one page read which may result in a page 
fault. The fault occurs if the origin of the element that caused 
the backup - the containing one - is not on the page that was 
read due to the original random access. Thus, large elements are 
not only more likely to cause backup, but when a backup 
occurs, they are more likely to result in a page fault. 

5 Comparison of the decomposition strategies 

The discussion of sections 4.2.1 and 4.2.2 establishes 
that, for a given data set and query, there is a non-trivial 
optimal amount of redundancy, Rapt. To summarize, as 

redundancy increases, so does file size - the value of N in O(fN) 
- so the number of pages accessed during the filter step will 
increase also. On the other hand, as redundancy is decreased, fN 
approaches its minimal value, but the probability of fault- 
causing backups increases. These tendencies balance one 
another to minimize page accesses at Rapt. This section and 

section 6 are concerned with the problem of determining which 
strategy attains the lowest Ropr and comparing other criteria - 

filter execution time and accuracy - at Rapt 

The PRECISE strategy is not considered further, for two 
reasons. First, it is an extreme case of both SIZE-BOUND and 
ERROR-BOUND. Second, it appears to be a clear loser. While 
the strategy camrot be beat in terms of accuracy (as discussed 
in section 4.1). its performance, as measured by page accesses 
during the filter step, can be made arbitrarily bad by increasing 
the resolution of the space. As resolution increases, 
redundancy is likely to increase. past R opt, because the number 
of elements near the border increases (while their size 
decreases). The other strategies yield less accurate 
representations, but the size of their representations are 
bounded by factors having nothing to do with resolution. 

By placing an upper bound on the number of elements, the 
SIZE-BOUND strategy addresses the most serious problem of 

the PRECISE strategy - redundancy gone wild in an attempt to 
minimize the work to be carried out in the refinement step. 
Section 6.3 argues that the extra precision is negligible, and 
not worth the greatly increased redundancy. However, SIZE- 
BOUND introduces redundancy where it may not be helpful. 
Elements that are small and close to one another can be merged 
into a single larger elementl. The new element is still small 
since the original elements were close together. The net result 
is a reduction in the size of the representation, (i.e., 
redundancy), with only a small decrease in the accuracy of the 
representation. This phenomenon can be seen by comparing 
figures 1 and 4. 

However, reasoning as in section 4.2.2, it could be argued 
that this replacement creates an opportunity for backup, and 
that this might cancel the benefit gained from the decrease in 
redundancy. This is certainly true if the newly-created element 
is large. But, according to the scenario outlined, the element 
created is small, and it is likely that the backup would not 
generate a page fault. Of course, the terms “smallll and “large” 
are relative, but there is an objective measurement that can be 
used: an element can be considered to be small if it is likely to 
fit within one page (and therefore not cause a backup). 

The rationale for the ERROR-BOUND strategy is now 
clear. For an element smaller than the ERROR-BOUND 
threshold, redundancy (i.e., more splitting) is considered to be 
harmful because space requirements are increased while 
precision is not significantly increased and the likelihood of a 
fault-causing backup is small. Above this threshold, the added 
redundancy is outweighed by increased precision and decreased 
likelihood of a fault-causing backup. (Note that backup affects 
the filter step, while precision only affects the speed of the 
refinement step.) 

6 Experimental results and analysis 

Experiments were conducted for the following reasons: 

1. To verify the reasoning of section 5, the 
existence of R 

opt 
in particular. 

2. To determine which strategy, SIZE-BOUND or 
ERROR-BOUND makes best use of redundancy. In 
other words, at their respective Rapt values, 
which strategy performs best? 

3. To determine which strategy is best in terms of 
filter speed and accuracy at Rapt 

It is doubtful that there is any single answer to (2) and (3). 
More likely, the optimal strategy and optimal amount of 
redundancy will depend on the size, shape and topology of the 
data and query objects, the distributions of size, shape and 
location, the denseness with which the space is covered, the 
amount of overlap among objects, and other factors. 

The experiments reported here are preliminary, in that 
they ignore several of these factors. The design of the 
experiments is as follows: 

1 The elements must be close in the l-d representation. 
proximity in space translates to proximity in the l-d 
representation with high probability. but this is not 
guaranteed. 
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. The space in which the experiments were 
conducted had a resolution of 1000 by 1000. 

. In each experiment there were 5000 data objects 
and 1 query object. 

. In each experiment, the data objects were squares 
of some uniform size, uniformly distributed. Four 
different edge lengths were used, 5, lo,20 and 30 
pixels, corresponding to objects covering 25, 
100. 400 and 900 objects, respectively. 

. In each experiment, the query objects were squares 
with edge lengths ranging from 20 to 200 pixels. 
Each query was run at five randomly selected 
locations. 

l Data objects were decomposed according to the 
SIZE-BOUND strategy with upper bounds on size 
of 1, 2, 3 and 4, and according to the ERROR- 
BOUND strategy with error bounds set to 0, 4. 8 
and 12. Note that SIZE-BOUND(l) is equivalent to 
ERROR-BOUND(O). 

. Query objects were always decomposed according 
to the ERROR-BOUND(8) strategy. 

The data and queries were loaded into zkd b-trees (b+-trees 
to be precise), with a data node capacity of 20 boxes. The 
software for the experiments was written in C and executed on a 
Commodore Amiga 2000, (a 68000-based system). 

In each experiment, the number of data page faults was 
measured. Separate counts were kept for each level of the trees. 
but the graphs below show faults at the leaf level only. 

LRU buffer management was used with 15 buffers. These 
buffers were dedicated to the data tree; the query tree used a 
separate set of buffers. 

Of all the design decisions, the most dubious are those 
having to do with the distribution of object size, shape and 
especially placement. The effect of non-uniform distributions 
for these parameters will be reported in future papers. The 
effect of some highly non-uniform distributions on the 
performance of the zkd b+-tree for range queries on point data 
was reported in [ORENSBb]. Also, section 6.4 reports on a 
second set of experiments with the same design as above, but 
with data obtained from a real-world application - VLSI design. 

6.1 Space requirements 

The space requirement of a spatial search structure is 
determined by several factors, including storage utilization of 
the structure and by redundancy. Most spatial search structures 
cannot guarantee lower bounds on storage utilization for non- 
uniform distributions of point data, for the data pages or the 
index pages, or both. Only the hB-tree [LOME87], the R-tree 
[GUTIW], and the zkd b-tree provide any guarantees. Since a 
zkd b-tree is an ordinary b-tree, the results for b-trees apply - a 
lower bound of 50% and an expected load factor of In 2 = 70%. 
For all zkd b-trees created, for all decomposition strategies and 
data object sizes, the load factor was between 67% and 72%. As 
explained in section 3.2, redundancy in a zkd b-tree is a 
property of the objects themselves, not of the search structure 

or of data distribution. Also, as discussed earlier, only z-order 
based search structures, of which the zkd b-tree is one, can 
control redundancy. 

The graphs show in figures 7 and 8 show how redundancy 
varies with object size and decomposition strategy. 
Redundancy is measured by (number of elements) / (number of 
data objects). 
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With the ERROR-BOUND(g) strategy, redundancy increases 
with object size. This occurs because, as objects get larger, 
more elements are needed to accurately represent the object at 
its boundary, (the interior is usually covered by a few large 
elements). As g increases, a larger number of smaller elements 
are needed to represent the data object with the required 
accuracy, resulting in increased redundancy. (Recall that g is 
the number of splits forming each partition that represents the 
permissible error. Each additional split halves the size of the 
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resulting partition.) 
The redundancy of SIZE-BOUND(n) is independent of 

object size, because the factor controlling redundancy is the 
number of elements generated by the decomposition, 
regardless of precision. The redundancy observed is always 
less than n due to the merging of adjacent elements. formed by 
two way splits, (see section 4.2.2). 

6.2 Page faults 

Figure 9 shows how page faults vary with redundancy. The 
graph shows the results for data objects of size 20 x 20. queries 
of size 20 x 20 and 200 x 200. and for the SIZE-BOUND(n) and 
ERROR-BOUND(g) strategies. Here, and in all graphs, “edge 
length” refers to the size of the query. For each strategy, a 
range of parameter values (n and g) are examined to obtain the 
redundancy values. The n values used are (1.2.3.4). and the g 
values are (0. 2. 4. 6, 8, 10). The full set of results obtained 
(for other data and query sizes), camrot be presented due to 
space limitations. The results presented are typical, and the 
trends discussed below were observed in all experiments. 
(Complete results can be obtained from the author.) 
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The shape of the curves suggest that the reasoning of 
sections 4 and 5 is valid. The existence of Rapt is apparent in 
the graph shown (and in all graphs obtained). Performance, as 
measured by page faults, improves rapidly as redundancy is 
increased from its minimal value of 1. reaching a minimum at 
Rapt which, for the experiments conducted, varied from about 
1.3 to 1.7, for both the SIZE-BOUND and ERROR-BOUND 
strategies. After Rapt, the degeneration of performance is 
more gradual and almost non-existent for the smaller data 
sizes. It is interesting to note that, as far as page faults go, 
optimal performance is obtained with a modest amount of 
redundancy. 

ERROR-BOUND appears to be the superior strategy. It 
almost always beats SIZE-BOUND for a given amount of 

redundancy. ERROR-BOUND is also more amenable to fine- 
tuning. This can be seen by noting that small values of g, (the 
ERROR-BOUND parameter), result in redundancy values that 
are close together. This is especially important since it 
provides fine control where it is needed most, near Rapt. SIZE- 
BOUND provides less control near Rapt. It might be possible 
to obtain finer control by permitting the SIZE-BOUND 
parameter to vary, e.g. based on the volume of the object, or 
even randomly. For example, an overall redundancy of 1.5 
could be obtained by setting the SIZE-BOUND parameter to be 
1 or 2 with equal probability. 

6.3 Accuracy 

Figure 10 shows how accuracy of the filter step varies 
with redundancy, using the same experiment parameters as in 
section 6.2. As with the results on page faults, the results 
presented here are typical of all experimental results. 
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Accuracy increases rapidly with redundancy, levelling off 
rapidly at low redundancy. This is fortunate - at low values of 
redundancy, not only are page faults minimized (at Rapt), but 
accuracy is almost always very close to its maximum. 

ERROR-BOUND shows a small but consistent advantage 
in accuracy over the SIZE-BOUND strategy. In some 
experiments, SIZE-BOUND was very slightly better. 

6.4 Results for VLSI data 

In the experiments described above, the data objects in 
each experiment were all of the same size, and the locations 
were uniformly distributed. These assumptions are highly 
unrealistic, so nothing can be claimed about the robustness of 
the results. Another set of experiments was carried out to see 
how well the results of sections 6.1 - 6.3 apply in one 
application. A set of 4741 boxes was obtained from a VLSI 
circuit design. The data was loaded into zkd b-trees as described 
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above. X and Y coordinates ranged from 0 to 361, and 0 to 
368, respectively. All coordinates were doubled, to better fill 
the 1000 x 1000 space. (This is fair since it is reasonable to 
expect the bounds of the space to be known in a VLSI 
application.) Query positions were randomly generated as 
before, but the region of x > 800 and y > 800 was avoided, as 
queries in these empty areas would artificially lower the search 
times. 

The data objects were all rectangles. About 70% of the 
boxes were approximately square (ratio of side lengths < 2). 
Most of the remaining boxes were 2-4 times as tall as they 
were wide. The average box size was 165 pixels 
(corresponding to an edge length of approximately 13). but 
this was severely skewed by a single very large box of 
285.621 pixels (edge length 534). Without this datum, the 
average box size was about 100 pixels, corresponding to edge 
length 10. For this reason, the results from the VLSI data set 
are compared to results obtained for the uniformly generated 10 
x 10 boxes. 

The box sizes were distributed as follows: 14% of the 
boxes covered 90-99 pixels, 21% covered 30-39 pixels, and 
another 25% fell between these two ranges. Ignoring the one 
very large datum. the remaining 40% ranged up to 1180 pixels 
in size. 

To examine the distribution of object locations, the space 
containing the data was divided into a 16 x 16 grid, and the 
number of object mid-points per cell was counted. The 
distribution was fairly uniform except for a large number of 
relatively sparse cells (14% had less than 7 object mid- 
points). These sparsely fiied cells, most of which were empty, 
occurred near the edges of the space. 

Time requirements for the filter step followed the trends 
discussed in section 6.2, (see figure 11). Rapt is in the range 
reported earlier. Results for accuracy are similar to what was 
observed in section 6.3, (see figure 12). 
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The results for VLSI data and the generated boxes with 
edge size 10 compared as follows. The page faults for VLSI data 
are higher, possibly due to the fact that the objects are not 
square, but, for the most part, taller than wider. However, the 
accuracy obtained for the VLSI data is higher. (See figures 13 
and 14. Due to space limitations, only ERROR-BOUND results 
are shown.) Space requirements for the two data sets were very 
similar. 
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figure 14 
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7 Conclusion and future work 

For the data sets studied. it appears that small amounts of 
redundancy (between 30% and 70% depending on the data set), 
provide the best overall results. The page faults required by the 
filter step drop rapidly as redundancy is increased from 1 to its 
optimal value. Page faults increase more slowly as redundancy 
is increased further. Accuracy increases rapidly to near-optimal 
values. At the point where page faults are minimized, accuracy 
is almost always very close to optimal. For both criteria, 
(page faults and accuracy) ERROR-BOUND is almost always 
superior to SIZE-BOUND, although the difference is sometimes 
very small. However, the differences are most pronounced at 
the critical low redundancy values. 

These results can be tied to specific ERROR-BOUND and 
SIZE-BOUND parameter values - ERROR-BOUND(8) and 
SIZE-BOUND(l) or SIZE-BOUND(2) provide the best results 
overall. 

The results obtained with VLSI data are highly consistent 
with the results obtained for generated data of comparable size. 
The main difference was a more costly but more accurate filter 
step. 

Much more work is needed to see what happens in 
situations not explored by these experiments. In particular, 
with larger, or more irregularly-shaped data objects, how well 
will the results reported here hold up? 

In all experiments, there was a single query object. The 
more general case of the overlap query, in which both inputs 
have many objects has to be examined. Finally, of the four 
query processing strategies outlined in section 3.3, only one 
has been examined, strategy 3 in which partitioning is only 
along element boundaries. Nothing is yet known about the 
benefits of decomposition based on object structure, or the 
performance trade-offs in working in (higher-dimension) 
parameter spaces. 

Acknowledgements 

I am grateful to Prof. Tiios Sellis of the University of 
Maryland for providing the VLSI data used in section 6.4. 
Thanks also to Audrey Hart for assistance in debugging the 
software and proof-reading the paper. 

References 

BENT75 I. L. Bentley. 

DAYA 

FAL087 

GU’IT84 

Multidimensional binary search trees used for 
associative searching. 
Coma ACM 18, 9 (1975). 509-517. 

U. Dayal, M. Dewitt, D. Goldhirsch, J. Orenstein. 
PROBE fii report. 
Technical report CCA-87-02. Xerox Advanced 
Information Technology Division (formerly 
Computer Corporation of America). 

C. Faloutsos. W. Rego. 
A grid file for spatial objects. 
Technical report CS-TR-1829, Department of 
Computer Science, University of Maryland, 
College Park (1987). 
A. Gumnan. 

R-trees: a dynamic index structure for spatial 
searching. 

HINR85 
Proc. ACM SIGMOD, (1984). 
K. H. Hinrichs. 

HORN87 

LOME 

The grid file system: implementation and case 
studies of applications. 
Doctoral dissertation, ETH Nr. 7734, Swiss 
Federal Institute of Technology, Zurich, 
Switzerland, (1985). 

D. Horn H.-J. S&k, W. Waterfeld, A. Wolf. 
Spatial access paths and physical clustering in a 
low-level geo-database system. 
Technical report, Technical University of 
Darmstadt, West Germany (1987). 

D. B. Lomet. B. Salzberg. 
The hB-tree: a robust multi-attribute indexing 
method. 

MERR78 

Technical report TR-87-05, Wang Institute of 
Graduate Studies, (1987). (The Wang Institute is 
defunct. Contact Lomet at DEC. Spitbrook or 
Salzberg at Northeastern University.) 
T. H. Merrett. 

MERR82 

NIEV84 

Multidimensional paging for efficient database 
querying. 
Proc. Int’l Conference on Management of Data, 
Milan (1978), 277-290. 
T. H. Merrett, E. J. Otoo. 

Dynamic multipaging: a storage structure for 
large shared databases. 
Proc. 2nd Int’l Conference on Databases: 
Improving usability and responsiveness, 
Jerusalem (1982). 

J. Nievergelt, H. Hmterberger. K. C. Sevcik. 
The grid file: an adaptable, symmetric multi-key 
file structure. 

OREN 
ACM TODS 9, 1 (1984). 38-71. 
J. A. Orenstein. 

Algorithms and data structures for the 

304 



OREN 

OREN86a 

OREN86b 

ORENSS 

ROB18 1 

SAME84 

SELL87 

TAMM82 

implementation of a relational database system. 
Ph. D. thesis, McGill University, School of 
Computer Science (1983). 
J. A. Orenstein, T. H. Merrett. 

A class of data structures for associative 
searching. 
Proc. 3rd ACM SIGACT-SIGMOD Symposium on 
Principles of Database Systems (1984), 181-190. 
J. A. Orenstein. 

Spatial query processing in an object-oriented 
database system. 
Proc. ACM SIGMOD. (1986). 

J. A. Orenstein. F. A. Manola. 
Spatial data modeling and query processing in 
PROBE. 
Technical report CCA-86-05, Xerox Advanced 
Information Technology Division (formerly 
Computer Corporation of America). 

J. A. Orenstein, F. A. Manola. 
PROBE spatial data modeling and query 
processing in an image database application. 
IEEE Trans. on Software Eng. 14, 5 (May, 1988) 
61 l-629. 

J. T. Robinson. 
The K-D-B tree: a search structure for large 
multidimensional dynamic indexes. Proc. ACM 
SIGMOD (1981). 
H. Samet. 

The quadtree and related hierarchical data 
structures. 
ACM Comp. SW-V. 16. 2 (1984). 

T. Sellis, N. Roussopoulos. C. Faloutsos. 
The R+-tree: a dynamic index for multi- 
dimensional objects. 
Proc. VLDB, (1987). 
M. Tamminen, R. Sulonen. 

The EXCELL method for efficient geometric 
access to data. 
Proc. 19th ACM Design Automation Conf. 
(1982). 345-351. 

305 


