THE PERFORMANCE OF A MULTIVERSION ACCESS
METHOD

David Lomet
Digital Equipment Corporation
Cambridge Research Laboratory
One Kendall Square, Bldg 700
Cambridge, Massachusetts 02139

ABSTRACT

The Time-Split B-tree 13 an integrated index struc-
ture for a versioned timestamped database It gradually
migrates data from a current database to an historical
database, records migrating when nodes spbt Records
valid at the sphit time are placed in both an historical node
and a current node This implies some redundancy Using
both analysis and simulation, we characterize the amount
of redundancy, the space utilization, and the record ad-
dition (insert or update) performance for a spectrum of
different rates of insertion versus update Three split-
ting policies are studied which alter the conditions under
which either time splits or key space splits are performed

1. INTRODUCTION

A growing area of interest 1n the database community 1s
1n the support of multiversioned data [LoSa, AhSn, JeMR,
Ston] Multiversioned data, when updated, results in a
new version of the data being created Because the old
version 1s retained, several versions of a record can exist,
each appropniate to some particular time

There are many applications where multiversioned data
15 of interest{McKe, SnAh, SeSh] These include finan-
cal transactions, umversity transcripts, engineering de-
sign, legal and medical records, etc One usually wants
faster access to the current records while tolerating slower
access to the historical records It 1s thus useful to keep
the current database small and keep 1t on a high perfor-
mance medium The historical part can then be stored in
a separate area, possibly on a slower medium In [LoSa],
we developed the Time-Split B-treefor these applications

A Time-Sphit B-tree (TSB-tree) has a single umfied 1n-
dex for retrieval from both the historical and the current
database Data 1s wntten to the histonical database by
appending at 1ts end Thus, while a non-volatile write
many/read many (WMRM) medium 1s required for the
current database, e g magnetic disk, 1t 1s possible to effi-
ciently exploit a write-once/read-many (WORM) medium
for the historical database, e g optical disk

Permission to copy without fee all or part of this material 18 granted provided
that the copies are not made or distributed for direct commercial advantage the
ACM copyright notice and the title of the publication and its date appear and
notice is given that copying 1s by permussion of the Association for Computing
Machinery To copy otherwise, or to republish requires a fee and/or specific
permission

© 1990 ACM 089791 365 5/90/0005/0353 $150

353

Betty Salzberg*
College of Computer Science

Northeastern University
Boston, Massachusetts 02115

There are two types of node sphtting In both cases,
an index term describing the spht 18 posted to the parent
index node

Key Splitting: As with BT -trees, records with keys
greater than or equal to the spht key go to a new current
node, records with keys less than the spht key remain 1n
the oniginal node

Time Splitting: Records valid before the split time
go to a new historical node, records vahd at or after the
split time remain 1n the onginal current node Records
valid both before and after the sphit time have copies in
both historical and current nodes

Different policies can be adopted for choosing splhit
times and for choosing whether to splhit by time or by
key or by key and time simultaneously These policy
choices affect the performance charactenstics of the struc-
ture This 1s explained 1n the next section

Time sphtting introduces redundancy Records that
exist across the split time need to appear in both resulting
nodes The benefit of the redundancy 1s that a snapshot
of the database as of some time has locality, 1 e, a node
1n the database contains all records 1n a given key range
valid in a given time range Each node forms a rectangular
partition of the key-time space as i1llustrated in Figure 1
The disadvantage 1s that long-hved records have many
copies

In this paper, we both analyze and simulate the per-
formance of the TSB-tree We provide asymptotic per-
formance results under two assumptions

Uniform Growth Assumption: A new record 1s
equally likely to be between anv two existing records
Hence, the probability that a record 1s inserted into a node
1s proportional to the number of records with unique keys
in the node

Equal Probability Assumption: Each record
with a unique key 1s equally likely to be updated

The two assumptions above do not mmply that our
results apply only to umiformly distributed keys, even

"This research was partially supported by NSF Research
Grant IRI-88-15707

Keys

........... oy e o SRS
, b e~ owonwon oo e
now
time e o
most recent version
——easn oider version same key
S—— stili older same key

Figure 1 Historical and current nodes form a rectan-
gular partition of the key-and-time space The shaded
rectangles represent nodes 1n the historical database

though our simulation employed uniformly distributed
keys When analyzing index-based access methods, the
purpose of a uniform distribution 1s to realize the uniform
growth assumption

We use a form of fringe analysis [EZGMW, BYLa)
This computes a closure on node probabihities and pro-
duces asymptotic performance results directly The sim-
ulation entails multiple trials, each tnal adding 50,000
records Node probabilities are determined by actual
count of each type of node The simulation confirms the
analysis and extends our results to nodes whose sizes are
too large to analyze and to a spht policy that did not
succumb to analysis

Our base case sphit policy for multiversioned data 1s
the write-once B-tree (WOB-tree) of Easton [East] The
additional split policies of the TSB-tree exploit the fact
that current data 1s stored on a WMRM medium, unlke
the WOB-tree’s WORM medium The immpact of this dif-
ference, and of the additional split policies 1s shown to be
substantial

Both the analysis and the sumulation are parametenzed
in terms of the percentage of updates versus insertions
The results that are presented graphically characterize the
performance of the multiversioned index methods under
a wide spectrum of 1nsertion versus update rates Three
spht policies are studied and compared

The next section reviews the design of the TSB-tree In
section 3, we introduce the fringe analysis model Section
4 describes our simulation model Performance results
are presented in section 5 Finally, in section 6, we briefly
discuss additional 1ssues, e g splitting policy for index
nodes, and draw some conclusions

2. THE TIME-SPLIT B-TREE

2.1 Description of TSB-tree Nodes

The leaves of the TSB-tree, like the B -tree, contain all
the data records Each record contains a key, some data,
and the commt time of the transaction that inserted 1t

354

There may be many versions of the same record in the
same leaf node That 1s, an update of a record is treated
as an insertion of a new version with the same key but
different timestamp Simularly, an index term of the TSB-
tree contains a key, a timestamp and a pointer to a node
on a lower level of the tree

2.2 Record Addition in the TSB-tree

To add a record (insert or update) to a TSB-tree, a
search process 1s followed to find the correct leaf If there
18 room, the new record 1s placed in that leaf If thereis no
room, a “split” takes place, a new leaf node 1s allocated,
and a new index term 1s posted to the parent Similarly,:f
index nodes are full, they too are split We discuss index
node splitting briefly 1n section 6 What follows apples
to data nodes.

There are key splits, time splits, and combinations of
the two A key spht 1s hikea split in a B*.tree The middle
key of the node is used as the split key The considerations
involved in performing a time split are more complicated

2.3 Time Splitting

Time sphitting 1n a TSB-tree 1s derived from the time-
sphtting used 1n the WOB-tree [East] The WOB-tree
does not have separate historical and current databases
and has a more ngd sphtting policy forced by non-
erasability In particular, whenever a WOB-tree node
needs sphtting, a time split must be performed Some-
times a key sphit also occurs For the time spht, the
split time 15 always the current time A time split oc-
curs whether or not the splitting reduces the number of
records 1n the resulting current nodes

When we spht by time in the TSB-tree, we may sphit
by any convenient time AFTER the last time sphit In
this case, the “older” versions of records are written into
a node 1n the historical database while the newer versions
are kept in the current database The versions of records
that are valid across the split time must be present in
both historical and current data bases

This redundancy makes 1t possible for records vahid at a
common time to be clustered in a small number of nodes
Without such redundancy, regardless of what strategy 1s
chosen for storing a long-lived record, some time based
quertes will be inefficient as the long-lived record cannot
be stored near all records whose hifetimes overlap with it
We give some examples of time splitting in Figure 2

2.4 Splitting Criteria

Current data being on a WMRM medium permits us
to vary the split policy in the TSB-tree so as to improve
1ts performance, 1 e reduce 115 cost A number of factors
contribute to the cost of the method Two umportant ones
are

Space Cost: the cost of space for current and his-

torical databases

Expansion Cost* the cost per (version of) record
added, 1n disk accesses, to expand the file

The kind of split chosen will depend on node contents
If a node contains only current data, all of 1t must remain

A

leo oo T-1 [60 Pote T=2 | 60 Mary Ta s |

50 T=1 h
Y

Now insert 90 Alice
Choose T = 4 as the spiit time

[50 T-1 [} 50 T4 Il i
¢ | S
[so Joo Tw1 | 60 Pete T-2 |

histoncal node
l 60 Mary T = 4]90 Alice T-sl J

current node

If T = 5 is chosen as the spit time the new nodes are

F,o Tat Ill 50 Tu5 m J

[0 Joo T-1 [60 Pote T2 |60 Mary T4 |

histoncal node

l

[60 Mary T = 4 !90 Alice T-ﬂ

current node

Figure 2 Time-Sphit B-tree time sphts

in the current database Time sphtting will be useless
Key space splitting must be done (With the WOB-tree,
time splitting always occurs, even when no current space
15 saved) If a node contains only repeated updates of
a single record, all data 1s associated with the same key
value and so cannot be key sphit Time splitting must be
done

These boundary conditions suggest that the more his-
torical data 1s 1n a node, the more likely 1t 1s that time
sphtting will be most effective The time splitting sweeps
historical data out of the current database The more cur-
rent data there 1s, the more likely key space splitting will
be most effective The key splitting grows the index to
the current database and does not introduce redundancy

2.5 Splitting Policies

This paper explores the consequences of the different
forms of splitting, and the conditions under which they
are employed We start with the sphitting policy used
for the WOB-tree, then 1ntroduce two additional policies
with the intention of improving the performance or stor-
age utilization

2.5.1 Write-Once B-tree Policy
The WOB-tree policy (WOB) 1s the policy used 1n the

WOB-tree A TSB-tree using WOB policy when a data
node overflows

1. always performs a time split, and uses the CUR-
RENT time as the splitting time (The splitting node can-
not be re-written in the WOB-tree, so this 1s done regard-

355

less of 1ts effectiveness 1n reducing the current database
size)

2. performs a kev spht whenever two thirds or more
of the overflowing node consists of current data (Tls
two thirds threshold 138 one of any number that might be
employed We use 1t consistently with all our sphtting
polictes See the discussion in section 6)

The WOB-tree 1s constrained to use tlhis sphitting pol-
1cy because of its write-once medium The write-many
medium of the current database in the TSB-tree permits
a more flexible choice In particular, it permits us to re-
duce the amount of redundancy and hence the size of the
historical database The WOB-tree uses the current split-
ting node as the historical node, 1n effect migrating 1t to
the historical database Since 1t cannot be shrunk, there
18 no way for the WOB-tree exploit more flexible splitting
pohicies

2.5.2 Time-of-Last-Update Policy

Suppose a number of insertions are done after the last
update Choosing the splhit time to be the time of the
last update (not the last insertion) avoids carrying these
trailing insertions in the historical node because they do
not live across the spht time The contents of the resulting
current node are not changed by this choice of split time,
and remain at the mimimum, 1 e 1t contains only current
data, and no historical data

The TSB-tree using the time-of-last-update (TLU) pol-
1cy

1. always performs a time spht unless there 18 no
historical data, and uses the time of last update as the
splitting time

2. performs a key split whenever two thirds or more
of the overflowing node consists of current data

Some of the current data may still persist across the
spht time But a wise choice of split time reduces the
number of records that cross the split time boundary

If the split time 1s pushed back past updates as well
as 1nsertions, some historical data will end up 1n the cur-
rent database This may still result 1n a smaller amount
of redundant data overall as more data may be removed
from the historical node than may be added to the cur-
rent node But now, we are making a trade-off between
amount of redundant data, and current database size We
do not pursue this extension here

2.5.3 Isolated-Key-Split Policy

The preceding sphitting policies always require that a
time split be performed whenever a node overflows, un-
less there 1s NO historical data that can be removed from
the node Sometimes, there 1s very hittle historical data
that can be removed from an overflowing current node
Expansion cost can be reduced 1f we do not force the cre-
ation of another historical node 1n these cases Further,
redundancy 1s reduced as there are fewer spht times for
versions to live across Hence, fewer redundant copies of
the data are generated

If we do only a key split under the same circumstances
that we did a key split plus a time spht previously, we
do not increase the space for the current database ini-
tially, and only modestly eventually However, we dra-
matically reduce the number of time splits We call this
the 1solated-key-split policy (IKS) A TSB-tree following
the IKS policy

1. performs a time split only when not doing a key
split, and uses the time of last update as the sphtting
time

2. performs a key split whenever two thirds or more
of the splitting node consists of current data

The number of key sphts 1s slightly greater with IKS
than with the other policies When current nodes also
contain historical data, some key splits will occur at an
earlier time than if that historical data had been swept
into the historical database during prior sphts Thus,
while 2 node does not key split unless 2/3 of its records
are current, 1t may be prevented from filling up with as
much current data because of the presence of historical
data

2.6 Notation

In the remainder of the paper, we make use of the fol-
lowing notation to denote the quantities of interest in our
performance study

R total non-redundant records

R. total current records

R, | lustorical records (including redundant)
red | total redundant records

total distinct keys

total number of nodes

number of current nodes

number of historical nodes

number of distinct keys 1n a data node
number of records in a data node
insertions after last update in data node
current data node capacity (records)
probability of update

probability of insertion (¢ =1 — p)

3. FRINGE ANALYSIS

We give an analysis of the TSB-tree for TLU and WOB
pohicies like that made for B-trees in [BYLa, EZGMW]
We characterize (or type) data nodes by their number of
records, number of old versions (equivalently, the number
of updates) and number of insertions since the last update
Since there 1s a finite record capacity in each data node,
the number of types of data nodes 1s finite

We model a TSB-tree with a vector indexed by the
node types The sequence of random (vector) vanables

L] zm(R))

Ry o~ o~ 2 a-?zgzx

X(R) = (z1(R),z2(R),

where z,(R) 1s the random variable representing the num-
ber of distinct keys 1n all current data nodes of type z after
R records have been added to the database, 1s a Markov
chain That 18, X(R) depends only on X{R — 1), not on

356

222)

)
(320) (333)
/\ y\
(420) (431) (4 30) (444)

o
}
Rl
Ee]
-
>

ecords

current 2)13{3| 2| 32l2{3|3]22 [3{2{3]| 3|3
2 2|2 2 212 {21212 2}3

T

historical | § { 41 5315|415 2|5 j4(5 [3]|5 |4]5

redundant | 1 | 1] 2| 121213 112 |23 2|13 |1 {4

WOB

redundant] 1 | 2] 2|3 [2{3{3 |4 |2]|3|3|4|3]|4]4 |5

Figure 3 Node transition diagram

the previous history of the process The study of trees
by this Markov chain model of the (keys in the) leavess
called fringe analysis, where the leaves are the “fringe” of
the tree

3.1 Transition Diagram

Figure 3 1s a diagram of the transitions for the TLU
and the WOB policies when b = 5 The current node
types are indicated by three-tuples (r,k,1) The smallest
number of records and keys at stable state in this case 1s
r=k=1[5/3]=2

When a record is added to the database, 1t is an update
with probability p and an insertion with probability g
Figure 3 indicates this with arrows labeled by p for update
and g for insertion For example, a node (3,2,0), with
r =3,k =2and | =0 has 3 records, 2 distinct keys (that
1s, one of the records 1s an old version of another record in
the same node), and the last record added was the update
(the number of insertions since the last update is zero)
If a record in a node of type (3,2,0) is updated, a node
of type (4,2,0) results If a record 1s inserted (with a new
key), a node of type (4,3,1) results

When a split occurs, because a record 18 added to a
full node (of type (b, k,1)), the following occurs One new
current node 1s created if k 13 2 or 3 and the new record 1s
an update, or if k is 2 and the new record is an insertion
This 1s a “pure” time split Otherwise (when there are at
least 4 = 2[b/3] distinct keys including the new record),
two new current nodes are created Tlis involves a key
spiit Except when there are no historical versions 1n a
full node with the TLU policy, an hustorical node 1s always
created 1n node sphitting

For TLU and WOB, this characterizes the sphitting pro-
cess For IKS, the number of updates for each record 1s
needed—this causes an explosion of node types Thus,
IKS 1s studied only via ssmulation

3.2 Transition Equations

Transitions from one type of node to another occur
whenever a record 1s added With uniform growth, 1t

15 equally hkely that keys of new records will fall in anv
interval between existing keys FEach current data node
owns a number of intervals equal to the number of keys
in the node, & We let fr(r,k,l) be the probability that
an interval lies 1n a node of type (r,k,!) when R new
records have been added to the database This 1s also the
probability that an insertion or an update (that 1s, any
new record) will hit a node of this type

3.2.1 Non-Split Transitions

First, we treat transitions to node types that cannot be
created by a spht

Non-Split Transition Equation

(K + 1) fr(r k1) = pl[(K + 1) fr-1(r,k,1)
—kfroa(r, kD) + 6tk froi(r — 1,k, +)]
+q[K fr_1(r, k1) — kfr_1(7,k, 1)
48k froa(r — 1,k - 1,1 1)]

The left hand side of this transition equation 18 the
number of intervals in nodes of type (r,k,l) after R
records have been added to the database This 1s the
total number of intervals, (K + 1), one more than the to-
tal number of distinct keys, multiplied by the probability
that an mterval 18 in nodes of this type

The nght hand side of the equation has two major
terms The first major term, with factor p, computes the
change when the last record added 1s an update In this
case, the total number of intervals before the last record
18 added does not change Thus the expected number of
mtervals 1n nodes of type (r,k,1) 1s (K + 1)fn_1(r, k,1)
before the transition

If the last record updated 1s 1n a node of type (r,k,1),
then kfn_1(r,k,1) intervals of this type are lost because
one node of that type 1s ehminated

If the last record updated 1s in a node with one less
record and the same number of keys, then a gain in inter-
vals of type (r,k,I) occurs The factor &, indicates that
this subterm 1s present only when ! 15 zero (Note that
1 will be zero when the last record added 1s an update)
The * 1n this term indicates a wild card designating any
number of insertions since the last update, since a new
update changes ! to zero Thus

fR—l(T - 11ka*) = an—l("' - l,k,‘l.)

The second major term, with factor g, computes the
change when the last record added 1s an insertion (2 new
key) In this case, there was one less interval in the
database before the new record was added The loss if
the insertion hits a node of type (r,k,!) 1s the same as 1n
the case of an update

When the last record 1s an insertion into a node with
one less record, one less key and one less insertion after
the last update, a gain will occur The factor é; indicates
that this subterm is absent when ! 1s zero because [1s zero
only when the last addition 1s an update

Assume that a steady state probability vector 18 at-
tained, 1 e, that

Ir(r ke, 1) = froa(r, k,1)

At steady state, therefore, if I 1s zero, we drop the sub-
script for f and obtain

— pkf(r—-l,k,*)
f(r k1) = 1 p+k

At steady state for non-zero I, we have

gkf(r —1,k—-1,1-1)

frkl) = T-p+Fk

3.2.2 Transitions Involving Splits

We now turn to the more complicated case, where the
node type can also be created from a spht of an overfull
node This case only occurs for nodes where

[6/3] < v =k =1< 2[b/3]

This 1s so because all splits sweep historical data from
the current database We let 6uin 1ndicate that a term 1s
zero when r = [b/3], the mimmum number of records n
a current node at steady state Then, a record addition
will result 1n a transition as described below

Split Transition Equation

(K + 1)fr(r,7,7) = (non_spht equation terms)

+p{rfr-1(b,7,%) + Snunt fro1(b, 27 — 1,+)
+7fr-1(8,27 + 1,%) + 2r fr_1(b, 27, +))
+ql{rfa—1(b,r — 1,4) + a7 fr-1(b, 27 — 2, %)
+rfro1(b2r,v) + 2r fr_1(b, 27 — 1,+)]

Nodes that can be generated by sphtting can also be
generated as a result of normal record addition where the
node does not split Hence the non-sphtting equation
terms are also present here

A record update or insertion to a full node with less
than 2[b/3] —1 keys splits into one historical node and one
new current node An update to a full node with ezactly
2[b/3] — 1 keys has the same effect Otherwise two new
current nodes and one historical node are created at spht
time

Briefly, let us consider sphitting in the update case Up-
dates occur with probabilitv p, and hence the term pre-
fixed with the factor p describes the update case

First, if the new record lands 1n a full node where the
full node has the same number of keys as the resulting
node, this represents a time split The expected gain 1n
intervals of type (r,7,7), where r = k, 18 rfr_y(b,7,+)

For a full node with 2r — 1 distinct keys, a key spht
results This creates two new current nodes for updates,
as long as 2r — 1 > 2[b/3] (That 1s, except when r =
[b/3]) One of the new nodes will have r keys and the
other will have r —1 So the expected gain in the number

357

of intervals will be rfr_1(b,2r — 1,+) The reasoning for
2r + 1 keys1s stmular If there 1s a full node with 2r keys,
an update will cause two new current nodes of this type
to be created, with an expected gain of 27 fr_1(b, 27, %)
We omut the sumilar arguments for the insert case
To obtain the steady state transifion equations, we
again ehminate the subscript and assume fr(r,k,l) =
frn_i(r,k,1) The result 1s quite complicated and we do
not display 1t here We use these transition equations to
create a matrix whose eigenvector for the largest eigen-
value1s the vector of probabilities f(r, k, 1) at steady state
Multiple applications of the transition matrnx to an arbi-
trary vector (non-zero) vieids a sequence of vectors which

converge (experimentally) to the eigenvector

3 3 Using the steady state solution to estimate
space utilization

The steady state solution depends on the value of p,
the percent of updates From the steady state solution,
we can derive the number of current records, the number
of historical records, the number of redundant records,
and the number of nodes of each type, for a given number
of records R added to the database

The number of total keys 18 K = ¢R The number of
keys in nodes of type (r,k,l) 18 K f(r,k,1) or the total
number of keys times the probability that a key (or an
interval) 18 1n a node of this type To find the number of
nodes of a type, we divide by k To find the total number
of nodes 1n the current database, we sum these numbers
over all current node types That 1s,

N.- K Z f(r,kk,l)

(k1)

Similarly, to find the number of current records, we use

Rc = K Z ————rf(rl;k,l)

(r.k\0)

These results apply for both TLU and WOB policies
and are used to derive current space utihzation

To derive the number of historical nodes for TLU, note
that one historical node 1s created at each spht of a full
node except when 1t 1s an insertion into a node of type
(b,b,b) That 15, the number of historical nodes 1s

>

(b D)#(b b b)

NA[TLU] = R(pf(b, b b) + (b, k,z))

The formula for the WOB policy 1s sumpler

Na[WOB] = R(3 fbik, z))

(b,k 1)

This 1s the expectation of landing 1n a node which will
cause a split when R records have been added to the
database

When a record in a full node 15 updated, b records
migrate to the historical node Only the new update

358

1s stored non-redundantly, only in the current database
This 1s true for both TLU and WOB policies

For TLU, the number of records migrating to the his-
torical node after an insertion to a full node1s b—{~1 For
WOB, there are still b records when there is an 1nsertion
Th‘lg

Ru[TLU] = R (p (5, b,b)b

>

(b,k,1)£(b,b,b)

(b, k, Db + a6 1~ 1))

and

Ru[WOB] = Rb(3 A(bk, z)) = b x Nx[WOB]

(b.k,1)

Last, we derive the number of redundant records If the
new record added to a full node 1s an update, we expect
k — 1 redundant records in the new historical node If
this record 1s an 1nsertion, we expect k — [— 1 redundant
records 1n the historical node for TLU and k redundant
records for WOB The total number of redundant records
for the TLU policy 18

red[TLU) = R(pf(b, b, b)(b - 1)

>
(bR D) Z(b,.0)

and the number of redundant records for the WOB policy
18

(b b D(p(k = 1) + a(k — 1 - 1)))

redWOB) = R('3" f(b,k, Dp(k ~ 1) + (k)

(b,k,1)

Numbers of historical and redundant records 1n a spht
when b = 5 are given 1n the bottom of the diagram in
Figure 3 We use ratios of the expressions in this section
to obtain historical space utilization, percent of records
which are redundant and so forth Note that the factor
of R will cancel out 1n these ratios, that 1s, space utiliza-
tion at steady state 1s independent of the total number of
records

4. SIMULATION

4.1 Simulation Goals

Our intent 1n sumulating the TSB-tree 1s to

1. confirm the steady state analytic results of the
fringe analysis for the cases that were susceptible to anal-
ysis,

2. provide extrapolations of the analytic results to

node sizes that could not be readily handled by the anal-
ysis sumply because of a size explosion,

3 explore interesting splitting policies that proved
difficult or impossible to analyze effectively In particu-
lar, fringe analysis was not employed with the IKS policy
because of the explosion 1n node types and transitions

4.2 The Simulation Program

The detailed simulation effort resulted in a parameter-
1zed skeletal implementation of the TSB-tree Nodes are
represented by vectors of records or index entries, times-
tamped appropriately All the logic to support the split-
ting poiicies described in section 2 5 1s inciuded Statisti-
cal information 18 accumulated during the execution trials
of the TSB-tree model implementation

The skeletal implementation 1s driven by a program
that generates random keys to be inserted or updated
Insertions are drawn from a uniform distribution of keys
The updates are, with equal probability to any one of the
already existing keys The probability p that a record
18 being updated can be varied between zero and almost
100%,1 e from all inserts to almost all updates Whether
a particular record addition 1s an insert or an update 1s
determined by whether another random number between
zero and one 15 less than p or greater than p

A tnial execution of the TSB-tree model implement
tion 1nvolves choosing the (1) split policy (one of WOB,
TLU, or IKS), (11) update probability p, (11) total number
of record additions R, (1v) key sphit threshold Ti = k/b
at which key splitting 1s to occur, and (v) node size b

The performance information reported for each run in-
cludes several forms of utilization, redundancy, record ad-
dition cost, and frequency of node types These are de-
scribed 1n the next section

5. PERFORMANCE RESULTS

S
a-

5 1 Introduction

We report asymptotic results Fringe analysis produces
this directly The fringe analysis algonthm 13 executed
until closure for each of its tnal runs The detailed sim-
ulation confirms and extends the fringe analysis Each
stmulation trial made 50,000 record additions in an effort
to provide a reasonable fit with the analyus

Both the analysis and simulations had difficulties reach-
ing steady state behavior for very high update fractions,
1e greater than 90% Except for these values, the results
for ssmulation and analysis are the same to within 01 for
all quantities

5.2 Single version current utilization

Single version utilization utihzation tells us how effec-
tive our split policy 1s in minimizing the space for the
current database The current database 1s stored on a
write-many medium with cost per byte that 1s a factor of
about ten times more expensive than space for the his-
torical database on the write-once medium The single
version current utilization U, is given by

Uswe = K/(N. x b)

The graph 1n Figure 4 plots U,y for the full range of up-
date probabilities, for nodes of size 11, and for the three
sphit polictes The results for multiple node sizes are tab-
ulated 1n Table 1 1n the appendix

What the figure and table both show for the three dif-
ferent split policies 1s that, as p increases, U,,. declines
The end ponts for U,,. are explained as follows

359

o8
079%‘\
0s ‘\‘E-?:hbk
05 “‘B‘M
04

b = 11 records per node wos
03 and o
02 TwJ

IKS =]

01
00

01 02 03 04 05 06 07 08 09 10

p = percent updates

Figure 4 Single version current utilization

All Insertions [p = 0]: All policies behave as a
regular B-tree behaves with respect to U,,. Generally,
this utihization falls somewhat as node size bincreases In
the limit, as b increases, we expect U,ye =In2 =0 693

Almost All Updates [p = 99]: The maximum
utihzation, U,se—maz, Decomes the key splitting thresh-
old For most of our results, this threshold was set to
666 Hence, we expect U,s., at high update rates, to be
near Uype—mazln2 =0666In2 = 0 46, and indeed that 1s
what we see We experimented with thresholds of 0 5 and
0 833, and these cases yielded the anticipated results, 1 ¢
0 346 and 0 577

U,sc declines somewhat with increasing node size This
18 a well known phenomenorn When a full node splits, 1ts
contents, PLUS the one additional record being added,
are divided between the two resulting nodes The effect
of this one extra record is significant at small node sizes
but vanishes as nodes become large

WOB and TLU produce identical results for U,y Both
perform key splitting under 1dentical situations The re-
sults for JKS are comparable at the extremes of p’s range,
but are up to about five percent less in the mid-range
p Ths five percent utilization decline for IKS makes as
much as a2 10% difference 1n the space required for the
current database This 1s the penalty for not sweeping
historical data from the current database when a node is
key spht

5.3 Redundancy

The TSB-tree must copy versions of records that persist
across the times used for time splitting We are interested
in the fraction of records in the database that are duph-
cates This fraction redundant F, 415 given by

F,.ia=red/R

The supertority of the IKS policy in reducing redundancy,
and hence hmiting the size of the historical database, 1s
clearly demonstrated in Figure 5 Only at very high up-
date fractions do the three policies converge to produce

b = 11 records per node

01 02 03 04 05 08 07 08 09 10

p = percent updates

Figure 5 Fraction redundant

the same redundancy The redundancy for lower update
fractions 13 dramatically lower with the IKS policy The
WOB policy 1s by far the worst, demonstrating the him-
iting effect of the write-once medium At high update
fractions, the time of last update optimization does not
help much, since the last record addition to a node 1s al-
most surely an update

We can explain the results at the end points of the
update fraction range, and hence understand the overall
trends

All Insertions: F,.4 1s zero for TLU and IKS as
no time sphts are done For WOB, F,.q 13 about 14 In
WOB, all current nodes were generated by a combined
time and key-split Hence, each current node, on average,
has left a half a node of historical data in 1ts predecessor
That predecessor has hikewise left behind a half a node of
data 1n its predecessor Hence, behind every current node
there1s 1/24+1/4+ =1 node of lustorical data Each
current node contains, on average, U,,. of current data
Hence the fraction of redundant data 18 1/U,,c This s
independent of node size except as node size affects Usec
shghtly (U,sc drops to 693 as node size increases)

Almost All Updates: All methods converge when
pislarge The kind of sphtting performed by all the poh-
cles 18 largely pure time sphts at these p values Further,
the lack of insertions makes time-of-last-update the cur-
rent time Hence, the policies produce approximately the
same number of redundant records At each time spht,
no more than U,ye—maz of data 18 current and hence be-
comes redundant The records added between time sphts
18 not less than 1 — U,pyc—mar Thus, Fr.q 1s bounded
by Usye—mar/(1 = Uspc—maz) In fact, Frea was close to
Une/(1 = Usor) except for very hugh key split thresholds
Redundancy can increase without bound as the key spht
threshold approaches 100% Trials with higher thresholds

360

06

05

04

03

02

b = 11 records per node
01

0o

0t 02 03 04 05 06 07 08 09 10

p = percent updates

Figure 6 Single version total utilization

confirmed this

Table 2 provides data for a variety of node sizes and
split polictes The notable thing 13 the impact of increas-
ing node size on redundancy We do not fully understand
this However, the most important factor for redundancy
1n nodes with large numbers of records is the split thresh-
old, not the node size

The TLU policy approaches the redundancy of the
WOB policy as node size increases The number of
records represented by trailing inserts remains approxi-
mately constant per node as b increases, and hence be-
comes an increasingly smaller fraction of the records of
the node These are the records that do not need to be
stored redundantly across a time spitt

5.4 Single version total utilization

Single version total utihization relates the cost of car-
rying multiple versions, in terms of total space consumed
by these retained versions, to the storage needs for sin-
gle version data This quantity 1s affected by the fraction
of updates, well as how effectively the method utilizes
storage and avoids redundancy The single version total
utilization 18

Usee = K/(N x b)

We graph our results for the three split policies for node
size of 11 1n Figure 6, with the results for other node sizes
tabulated 1n Table 3 What we see 18 that U,,: tends to
zero as the update fraction increases because the current
data becomes an ever smaller part of the total database
At low update factors (mostly inserts), the ability to per-
form 1solated key splits clearly shows an advantage in
holding down the size of the lustorical data base The
dramatic difference between WOB and TLU policies re-
sults from time splitting frequently being ineffective TLU
avoids the time sphit With WOB, the time split occurs
regardless

Single version total utihzation declines as node size in-
creases due to the increase in redundancy as node size
increases The change 1s dramatic only for small node
sizes Larger nodes with the same split threshold have
similar total utihizations

o8
076
06
05

04

03 b = 11 records per node WB @&
02 w o
01 IKS o]
00
01 02 03 04 05 06 07 08 09 10

p = percent updates

Figure 7 Multiple version utilization

5.5 Multiple Version Utilization

Multiple version utilization, Uny, measures how effec-
tively the TSB-tree, together with the particular split pol-
1cy, support multiversion data This can be used to com-
pare TSB-trees with other multiversion approaches It
reflects the cost of maintaining the integrated index to
the entire collection of versions, and the cost of storing
redundant copies of the versions so as to support “as-of”
queries Multiversion utilization 1s given by

Unms = R/(N x b)

Once again, we use node size of 11 as the case that we
graph 1in Figure 7, with the remainder of the results tab-
ulated 1n Table 4

The results here are consistent with our expectations
in companng the three split policies The WOB policy
results in very substantial redundancy in the low update
fraction cases, more than doubling the number of copies
for these cases Note how well the IKS policy did At low
update fractions, the utilization was comparable to having
stored all the versions in a B+tree, without storing any
versions redundantly That 1s, the redundant copies are
being stored without compromising the storage utihza-
tion of the TSB-iree At higher update fractions, there
18 too much redundancy for this to happen Hence, the
multiversion utilization trails off

This quantity 13 also sensitive to node size (especially
for small nodes) because redundancy increases with node
size Hence, Un, decreases with increasing node size

5.6 File Expansion Cost

Storage 18 not the only cost for supporting access to
data The performance of the record addition process 1s
also important Here we treate the cost, in disk accesses
per record addition, of the effect of the different policies
on file expansion This expansion cost 1s derived from the
frequency of the various kinds of node sphtting that the
three policies entail

361

We assume that an updated node needs to be written
to disk as a result of record addition Hence, we exclude
the cost of writing one node Further, we neglect the cost
of non-leaf splits, which i1s very smaill What 1s included 1s
the cost of writing the new nodes plus updating the index
node that refers to these nodes

WOB: A splhit does not require re-writing the fuil
node Rather, a new node (1n the case of a pure time split)
or two new nodes (in the case of a key and time split) are
written, along with the parent index node Thus

expand{WOB] = (timesplits + 2 x time&keysplits)/R

TLU: This policy requires a separate medium for
historical data, and hence the current node cannot become
the historical node The onginal full node must be re-

written Tlus policy can have three kinds of node splits
Thus

expand{TLU] = (2 x timesplits + 2 x keysphts

+3 x time&keysplits)/R

IKS: Like TLU, this policy requires two media and
hence pays the larger node splitting cost Here, however,
combined time and keysplits do not occur Hence

expand(IKS] = (2 x timesphts + 2 x keysphits)/R

The above expansion costs all decline with increasing node
size since the frequency of node splitting varies inversely
with node size

All policies have equal expansion costs when the update
factor 18 zero, 1 ¢ only insertions are performed This 1s
so because all splits are pure key sphits (with WOB, the
splits are ineffective time and key splits), the number of
sphits 1s the same and the cost of the splits are equal

As the update factor increases, the cost for the WOB
policy declines with its decline in redundancy For TLU
and IKS, expansion costs increase modestly with increas-
ing update factor This1s related to increased redundancy
as update factor increases, resulting in a larger number of
splits being required The TLU and IKS policies have
higher expansion costs than WOB because the historical
node never needs writing with WOB Expansion costs for
nodes of size 11 are plotted in Figure 8, with selected
values for a number of node sizes tabulated in Table 5

6. DISCUSSION

There are a number of points worth discussing that
have not fit convemently into the results that we have
reported above

6.1 Index Node Time-Sphitting

Our farthful simulation of the TSB-tree access method
revealed an unexpected attnibute of the method We did
not believe that performing time splitting of index nodes
would be necessary We knew 1t would be difficult for
the TSB-tree as index terms in an historical node cannot

b = 11 records per node

010 ws e
005 Tw o

IKS a
000

01 02 03 04

p = percent updates

05 06 07 08 09 10

Figure 8 Expansion cost in disk access

refer to nodes 1n the current database since those nodes
can move

We discovered the need for index node time sphtting
dunng trnals with a node size of five The problem 1s
that small nodes soon degenerate to having only a single
current entry and 1ts updates, all other entries having
been removed by key splhitting This makes further key
sphits impossible

There are basic two approaches to index node sphitting

1 Find a sphit time at which historical index terms
can mugrate to an hstorical node without any current
index terms ending up there as well This involves finding
the oldest current index term and using 1ts time as the
spht time This approach was adopted for the simulation,
though not without having to deal with several subtle
bugs 1n the splitting process

2. Force the descendent nodes of the index terms to
sphit as of some time so that that time can be used as
a sphit time This introduces additional redundancy, but
might be useful for migrating/archiving the TSB-tree data
as of the time chosen We did not pursue this approach

8.2 Other Key Split Thresholds

Only the 2/3 threshold value was used for purposes
of deciding whether to time split or key sphit An -
teresting question 1s what happens when the threshold
is varied The obvious happens, 1n terms of direction of
effect Increasing the threshold makes key sphitting less
likely, hence increasing U,,. Because time splitting fre-
quency 1s increased, redundancy 1s increased, and hence
Umy and U,ys are decreased File expansion cost also
increases modestly Decreasing the threshold has the op-
posite effect

What threshold to use depends on what cost function
one 1s attempting to minirmze We discuss this below
the context of choosing a sphitting policy Similar consid-
erations apply to the threshold value The 2/3 threshold
appears to be a decent compromise with tolerable perfor-.
mance over the spectrum of update factors

362

6.3 Some Conclusions

The purpose of a performance study 1s to assist in
choosing design parameters so that users can optinnze
their application, with 1ts particular characteristics One
would like for this task to be simple, by finding techniques
that are universally good regardless of application Un-
fortunately, the sphitting policies studied here do not lend
themselves to universal interpretations

Obviously, 1f the entire TSB-tree must reside on a
WORM medium, then one must use the WOB policy
The other policies are impossible 1n their vamlla form
since they require that the full splitting node be reused
for current data The beauty of the WOB policy 1s that 1t
exploits the full node by transforming 1t into the historical
node This makes a virtue of the necessity of the WORM
medium However, on a WORM medium, it 18 clumsy to
manage the current data and its representation tends to
be very wasteful of space

If WMRM storage 1s available and should per byte
WORM cost be more than a factor of ten less than
WMRM storage cost, then using TLU may be interest-
mg U,y 1s always equal to the WOB policy’s result,
and always better than IKS by a modest, but potentially
significant amount

If WORM storage 1s less than a factor of ten cheaper
than WMRM storage cost, then the IKS policy 18 a good
choice It gives up a modest amount of current utihization
to gain a substantial reduction in redundancy, and hence
in the size of the historical database Its record addition
cost 1s modestly higher than WOB, but as good or better
than TLU (or WOB when data must be migrated to the
WORM medium) When the cost differential is less than
ten, there 13 no update factor at which the TLU (WOB)
storage cost 18 less than the IKS storage cost

Currently, 1t would appear that WORM devices are
about a factor of ten less costly than magnetic disk Thus,
the choice of policy 1s not clear

References

[AhSn] Ahn, I and Snodgrass, R, “Partitioned Storage
for Temporal Databases,” Information Systems, 13, 4,
1988 pp 369-391

{BYLa] Baeza-Yates, R and Larson, P A, “Performance
of B*.trees with Partial Expansions,” IEEE Trans on
Knowledge and Data Engineering, 113, June 1989, pp
258-257

[East] Easton, M , “Key-Sequence Data Sets on Indehble
Storage,” IBM J Res Develop ,30:3, May 1986, pp 230-
241

(EZGMW] Eisenbarth, B, Ziviam, N, Gonnet, G,
Mehlhorn, K and Wood, D, “The Theory of Fringe Anal-
ysis and Its Application to 2-3 Trees and B-Trees,” In-
form Contr, 55, 1982, pp 125-174

[JeMR] Jensen, CS, Mark, L, and Roussopoulos,
N, “Incremental Implementation Model for Relational
Databases with Transaction Time,” Umversity of Mary-
land UMIACS-TR-89-63 CS-TR-2275 July, 1989

[LoSa] Lomet, D and Salzberg, B, “Access Methods
for Multiversion Data,” Proc ACM SIGMOD, Portland,
1989, pp 315-324

[McKe}] McKenzie, E, “Bibliography Temporal
Databases,” SIGMOD Record, 15 2, Dec 1986, pp 40-
52

(SeSh} Segev, A and Shoshani, A, “Logical Modeling of
Temporal Data,” Proc ACM SIGMOD, May 1987, pp
454-466

[SnAh] Snodgrass, R , and Ahn, I, “A Taxonomy of Time
in Databases,” Proc ACM SIGMOD, March 1985, pp
236-246

[Ston] Stonebraker, M, “The Design of the POST-
GRES Storage System,” Proc 13th VLDB Conference,

NnR7 w~n 220_200
Joi, PP «0v-ovv

Appendix: Tables of Results

Table 1 Single Version Current Utihzation

Uodate Probabihty

Policy Node
Siza 0t 10 30 50 70 90 99
woB s 74 70 61 55 51 48 47

11 71 67 59 53 50 48 46
17 70 67 58 52 49 48 47
35 69 66 57 52 51 43 48

TLU S 74 69 §1 55 50 48 48
11 7 67 59 53 50 48 47
17 70 66 59 52 49 47 46
35 69 66 57 52 49 48 50

IKS 5 73 65 57 53 50 48 47
1 70 64 55 52 50 47 46
17 69 63 54 52 49 47 45
35 69 63 53 52 50 47 45

Table 2 Fraction of Records Redundant

te Probabi
Policy Node Update Probability

Size 01 10 30 50 70 90 99

wos S 137 t22 96 76 61 49 43
11 139 127 100 85 79 73 7
17 141 1286 100 87 86 81 79
35 142 128 100 80O 93 90 a8

TLU 5 o2 20 44 51 50 46 42
1 06 43 71 73 73 71 67
17 08 61 82 80 82 81 80
35 17 89 92 87 92 90 92

IKS 5 00 00 06 15 26 37 43
1" 00 00 09 27 44 81 68
17 00 00 10 32 5t 70 77
35 00 00 10 39 60 79 as

363

Table 5 Expansion Cost per Record

Update Probabdity

Policy Node
Sze N 10 30 50 70 90 99
WOB 5 54 52 47 41 36 31 29
11 25 24 22 20 18 16 15
17 17 1 14 13 12 1" 11
35 08 08 07 06 06 06 05
TLU 5 55 59 83 52 80 58 57
1 26 30 32 31 31 31 30
17 17 21 21 21 21 21 21
35 09 11 10 10 10 11 "
IKS 5 54 55 568 57 58 57 58
1" 26 28 27 28 30 3t 31
17 17 17 17 19 20 21 21
35 08 08 09 10 10 11 1
Table 3 Singie Version Total Utilization
Policy Node Update Probabiirty
Size 01 10 30 50 70 30 99
woB 5 a7 35 30 24 17 06 01
1 35 3 29 23 15 08 ot
17 35 34 29 23 14 0s 01
35 35 33 29 22 14 0§ 01
TLU 5 72 55 38 26 17 06 ot
11 67 46 30 23 15 08 a1
17 64 41 29 23 15 05 01
35 60 36 29 22 14 05 01
KS 5 73 65 50 35 21 07 01
11 70 84 48 32 19 06 01
17 69 63 47 3t 18 08 o1
35 69 83 47 30 17 05 o1
Table 4 Multiple Version Utilization
Pollcy Node Update Probability
Size 01 10 30 50 70 90 99
wos 5 37 39 43 48 56 84 70
i3 35 37 42 48 50 56 59
17 35 a7 4 48 48 53 58
35 35 37 a1 44 47 51 53
TLU 5 72 61 51 51 56 85 70
1 87 51 43 46 51 56 60
17 65 45 42 45 49 53 55
35 80 40 41 44 47 51 52
IKS 5 74 72 7 70 69 70 69
1" 71 7 68 64 61 80 59
17 70 70 68 62 59 57 56
35 70 70 67 60 57 54 54

