
THEPERFORMANCEOFAMULTIVERSIONACCESS
METHOD

David Lomet
Digital Equipment Corporation
Cambridge Research Laboratory
One Kendall Square, Bldg 700

Cambndge, Massachusetts 02139

ABSTRACT
The Tzme-Splrt B-tree IS an Integrated index struc-

ture for a versroned trmestamped database It gradually
migrates data from a current database to an hrstorrcal
database, records mrgratmg when nodes spbt Records
valrd at the splrt trme are placed rn both an hrstorrcal node
aud a current node This rmphes some redundancy Usmg
both analysrs and srmulatron, we characterme the amount
of redundancy, the space utrlreatron, and the record ad-
drtron (insert or update) performance for a spectrum of
different rates of msertron versus update Three splrt-
tmg polrcres are studred whmh alter the condrtrons under
whmh either trme splrts or key space splits are performed

1. INTRODUCTION

A growing area of mterest m the database community IS
m the support of multrversroned data [LoSa, AhSn, JeMR,
Ston] Multrversroned data, when updated, results m a
new version of the data bemg created Because the old
versron IS retained, several versrons of a record can exrst,
each approprrate to some partmular trme

There are many applmatrons where multrversroned data
1s of mterest[McKe, SnAh, SeSh] These include finan-
cral transactrons, umversrty transcrrpts, engmeermg de-
srgn, legal and medmal records, etc One usually wants
faster access to the current records while toleratmg slower
access to the hrstormal records It 1s thus useful to keep
the current database small and keep rt on a hrgh perfor-
mance medrum The hrstor~calpart can then be stored m
a separate area, possrbly on a slower medium In [LoSa],
we developed the Tzme-Splrt B-tree for these applrcatrons

A Trme-Splrt B-tree (TSB-tree) has a single unified m-
dex for retrreval from both the lustormal and the current
database Data 1s wrrtten to the hrstorrcal database by
appendmg at Its end Thus, while a non-volatile write
many/read many (WMRM) medrum 1s reqmred for the
current database, e g magnetrc drsk, rt 1s possrble to effi-
ciently exploit a write-once/read-many (WORM) medrum
for the lustorrcal database, e g optical drsk

Permission to cow wthout fee all or part of this matenal IS granted provided
that the coplea are not made or dlatnbuted for dwect commercial advantage the
ACM cqynght nobce and the title of the pubkatmn and ,ta date appear and
notw IS gtven that cqymg II by permw~on of the Assoclatmn for Computmg
Machmety To qy otherwe, or to repubbsh requres a fee and/or specdic
pel7lllSSlO”
0 1990 ACM 089791365 S/90/0005/0353 $150

Betty Salzberg*
College of Computer Science

Northeastern Umverslty
Boston, Massachusetts 02115

There are two types of node sphttmg In both cases,
an index term descrrbmg the split 1s posted to the parent
index node

Key Splitting: As wrth Bt-trees, records with keys
greater than or equal to the split key go to a new current
node, records wrth keys less than the spbt key remam m
the orrgmal node

Time Splitting: Records valid before the split trme
go to a new hrstormal node, records valid at or after the
split time remam m the orrgmal current node Records
valid both before and after the split trme have copies m
both hrstormal and current nodes

Different pohcres can be adopted for choosmg splrt
times and for choosmg whether to split by trme or by
key or by key and time simultaneously These polmy
chomes affect the performance characterrstms of the struc-
ture This IS explamed m the next section

Time splrttmg introduces redundancy Records that
exist across the split trme need to appear m both resultrng
nodes The benefit of the redundancy IS that a snapshot
of the database as of some tnne has locality, 1 e , a node
m the database contains all records m a given kev range
valid m a grven trme range Each node forms a rectangular
partrtron of the key-trme space as illustrated m Frgure 1
The disadvantage IS that long-lived records have many
copres

In this paper, we both analyze and srmulote the per-
formance of the TSB-tree We provide asymptotm per-
formance results under two assumptrons

Uniform Growth Assumption: A new record IS
equally likely to be between anv two exrstmg records
Hence, the probabrlrty that a record 1s Inserted into a node
IS proportronal to the number of records with unique keys
111 the node

Equal Probability Assumption. Each record
with a unrque key 1s eqnall~ hkcly to be updated

The two n~sumptrons above do not rmplv that our
results apply only to umformly dlstrrbuted keys, even

“Thrs research was partrally supported by NSF Research
Grant IRI-88.15707

353

lceys

I
c 4

“OW
time ____3

most recenr verblon
older vsrsK)n sums key
still older ssme key

Figure 1 Hlstorlcal and current nodes form a rectan-
gular partltlon of the key-and-time space The shaded
rectangles represent nodes In the hlstorlcal database

though our simulation employed umformly distributed
keys When analysmg index-based access methods, the
purpose of a umform chstributlon IS to reahze the umform
growth assumption

We use a form of frmge analysis [EZGMW, BYLa]
This computes a closure on node probabihties and pro-
duces asymptotic performance results directly The sim-
ulation entwls multiple trials, each trial adding 50,000
records Node probab&ties are determined by actual
count of each type of node The simulation confirms the
analysis and extends our results to nodes whose Sizes are
too large to analyze and to a split pohcy that did not
succumb to analysis

Our base case split pohcy for multiversioned data IS
the write-once B-tree (WOB-tree) of Easton [East] The
additional spht pohcies of the TSB-tree exploit the fact
that current data IS stored on a WMRM medium, unlike
the WOB-tree’s WORM medium The impact of this &f-
ferencc, and of the additional spht pohc~s IS shown to be
substantial

Both the analysis and the simulation are parameterired
m terms of the percentage of updates versus msertions
The results that are presented graphically characterize the
performance of the multiversioned index methods under
a wide spectrum of msertion versus update rates Three
split policies are studed and compared

The next section reviews the design of the TSB-tree In
section 3, we introduce the fringe analysis model Section
4 describes our simulation model Performance results
are presented in section 5 Fmally, in section 6, WC briefly
discuss additional issues, e g sphttmg pohcy for index
nodes, and draw some conclusions

2. THE TIME-SPLIT B-TREE

2.1 Description of TSB-tree Nodes

The leaves of the TSB-tree, like the Bt-tree, contwn all
the data records Each record contains a key, some data,
and the commit time of the transaction that inserted It

There may be many versions of the same record In the
same leaf node That 19, an update of a record is treated

as an insertion of a new version with the same key but
different timestamp Snmlarly, an lndey term of the TSB-
tree contains a key, a timestamp and a pointer to a node

on a lower level of the tree

2.2 Record Addition in the TSB-tree

To add a record (insert or update) to a TSB-tree, a
search process 1s followed to find the correct leaf If there
1s room, the new record 1s placed in that leaf If there 1s uo
room, a “split” takes place, a new leaf node 1s allocated,
and a new index term 1s posted to the parent Similarly, if
index nodes are full, they too are split We discuss index
node splitting briefly in section 6 What follows applies
to data nodes.

There are key splits, time splits, and combmations of
the two A key split IS hke a split m a Bt-tree The middle
key of the node is used as the split key The considerations
mvolved in performing a time split are more comphcated

2.3 Time Splitting

Time splitting m a TSB-tree 1s derived from the time-
splitting used m the WOB-tree [East] The WOB-tree
does not have separate hrstorical and current databases
and has a more rigid splitting pohcy forced by non-
erasabdity h particular, whenever a WOB-tree node
needs sphttmg, a time split must be performed Some-
times a key split also occurs For the time split, the
spilt time IS always the current time A time split oc-
curs whether or not the sphttmg reduces the number of
records m the resulting current nodes

When we split by time m the TSB-tree, we may split
by any convenient time AFTER the last time split In
this case, the “older” versions of records are written into
a node m the lnstoncal database while the newer vcrslons
are kept m the current database The versions of records
that are valid across the split time must be present in
both historical and current data bases

This redundancy makes It possible for records vahd at a
common time to be clustered m a small number of nodes
Without such redundancy, regardless of what strategy 1s
chosen for storing a long-lived record, some time based
queries will be inefficient as the long-hved record cannot
be stored near all records whose lifetimes overlap with it
WC gve some examples of time splitting m Figure 2

2.4 Splitting Criteria

Current data being on a WMRM me&urn permits us
to vary the split policy in the TSB-tree so as to improve
Its performance, 1 e reduce its cost A number of factors
contribute to the cost of the method Two m~portant Ones
are

Space Cost: the cost of space for current and his-
torical databases

Expansion Cost. the cost per (version of) record
added, m disk accesses, to expand the file

The kmd of split chosen ~111 depend on node contents
If a node contams only current data, all of It must remain

354

50 T-l ,

v
l-l

less of Its effectiveness m reducing the current database
size)

60 Joe T- 1 60 Pete T - 2 60 Mary T- 4

Now mserl 90 Alice
Choose T - 4 as the split time

current node

If T . 5 is chosen as the split time the new nodes are

50 T-1 , 50 T-5 ,

1
I

I
I

60 Joe T-l 60 Pete T - 2 60 Mary T-4

hlstorlcai node

60 Mary T - 4 90 Ake T - 6 I

current node

Figure 2 Time-Split B-tree time splits

m the current database Time spllttmg will be useless
Key space splitting must be done (With the WOB-tree,
time splitting always occurs, even when no current space
1s saved) If a node contams only repeated updates of
a single record, all data 1s associated mth the same key
value and so cannot be key spht l’lme splitting must be
done

These boundary condltlons suggest that the more lus-
torical data 1s m a node, the more hkely It 1s that time
splitting will be most effective The time sphttmg sweeps
historical data out of the current database The more cur-
rent data there 15, the more likely key space sphttmg will
be most effective The key splitting grows the index to
the current database and does not Introduce redundancy

2.5 Splitting Policies

This paper explores the consequences of the chfferent
forms of sphttmg, and the condltlons under winch they
are employed We start with the sphttmg pohcy used
for the WOB-tree, then Introduce two addltlonal pohcles
with the intention of Improving the performance or stor-
age utilization

2. performs a kev spht whenever two thirds or mare
of the overflowing node consists of current data (This
two thirds threshold 1s one of any number that might be
employed We use it consistently with all our splitting
pohcies See the discussion in section 6)

The WOB-tree IS constrained to use this spllttmg pol-
icy because of its write-once medium The write-many
medium of the current database in the TSB-tree permits
a more flexible choice In particular, it permits us to re-
duce the amount of redundancy and hence the Size of the
historical database The WOB-tree uses the current spht-
tmg node as the historical node, in effect migrating it to
the historical database Smcc it cannot be shrunk, there
1s no way for the WOB-tree exploit more flexible splitting
policies

2.5.2 Time-of-Last-Update Policy

Suppose a number of msertlons are done after the last
update Choosing the split time to be the time of the
last update (not the last msertion) avoids carrying these
trading msertions In the historical node because they do
not live across the split time The contents of the resulting
current node are not changed by this chcnce of spht time,
and remain at the mlmmum, 1 e it contams only current
data, and no historical data

The TSB-tree using the time-of-last-update (TLU) pol-
ICY

1. always performs a time split unless there 1s no
historical data, and uses the time of last update as the
splitting time

2. performs a key split whenever two thirds or more
of the overflowing node comusts of current data

Some of the current data may still persist across the
split time But a wise choice of spht time reduces the
number of records that cross the split time boundary

If the split time 1s pushed back past updates as well
as msertions, some historical data ~111 end up in the cur-
rent database This may Al result In a smaller amount
of redundant data overall az more data may be removed
from the historical node than may be added to the cur-
rent node But now, we are malung a trade-off between
amount of redundant data, and current database size We
do not pursue this extension here

2.5.3 Isolated-Key-Split Policy

The preceding sphttmg policies always require that a
time split be performed whenever a node overflows, un-
less there IS NO historical data that can be removed from
the node Sometimes, there 1s very httle hlstorlcal data

that cau be removed from an overflowing current node
Expansion cost can be redncrd If we do not force the crc-
atlon of another historical node in these cases Further,
redundancy 1s reduced as there are fewer spht times for
versions to hve across Hence, fewer redundant copies of
the data are generated

2.5.1 Write-Once B-tree Policy

The WOB-tree pohcy (WOB) IS the pohcy used m the
WOB-tree A TSB-tree usmg WOB pohcy when a data
node overflows

1. always performs a time spht, and uses the CUR-
RENT time as the splittmg time (The sphttmg node can-
not be re-written in the WOB-tree, so tlus 1s done regard-

355

If we do only a key split under the same circumstances
that we drd a key split plus a time spht previously, we
do not Increase the space for the current database ml-
tlally, and only modestly eventually However, we dra-
matlcally reduce the number of time splits We call this
the Isolated-key-spht pohcy (IKS) A TSB-tree followmg
the IKS pohcy

1. performs a time split only when not doing a key
split, and uses the time of last update as the spllttlng
time

2. performs a key split whenever two thirds or more
of the splitting node consists of current data

The number of key sphts 1s slightly greater with IKS
than with the other pohcles When current nodes also
contain hlstorlcal data, some key sphts will occur at an
earlier time than if that hlstorlcal data had been swept
into the historical database during prior splits Thus,
while a node does not key split unless 2/3 of its records
are current, it may be prevented from filling up with as
much current data because of the presence of hlstormal
data

2.6 Notation

In the remainder of the paper, we make use of the fol-
lowmg notation to denote the quantities of interest In our
performance study

R total non-redundant records
RR, total current records
Rh lustorrcal records (rncludrng redundant)
red total redundant records
K total drstmct keys
N total number of nodes
NC number of current nodes
Nh number of hlstorrcal nodes
k number of dtstrnct keys rn a data node
T number of records m a data node
1 msertlons after last update In data node
b current data node capacity (records)

P probabrhty of update

L probablllty of lnsertlon (q = 1 - p)

3. FRINGE ANALYSIS

We give an analysrs of the TSB-tree for TLU and WOB
pohcres like that made for B-trees m [BYLa, EZGMW]
We characterize (or type) data nodes by their number of
records, number of old versions (equivalently, the number
of updates) and number of msertrons since the last update
Since there IS a fimte record capacity m each data node,
the number of types of data nodes 1s finite

We model a TSB-tree wrth a vector Indexed by the
node types The sequence of random (vector) variables

-Y(R) = (a(R), a(W, , G.(R))

where z,(R) IS the random varrable representing the num-
ber of distinct keys m all current data nodes of type z after
R records have been added to the database, 1s a Markov
charn That is, X(R) depends only on X(R - l), not on

(42 0) (43 1) (4 3 0) (4 4 4)

29 e “A pA
(5 2 0) (5 3 1) (5 3 0) (5 4 2) (5 3 0) (5 4 1) (5 4 0) (5 5 5)

Jw%wwwwfi

currant 2 3 3 2322 3 3 22 32 3
2 222 22222

TLU
historical 5 4 53545 25 45 35 4
redundant 1 1 2 1223 12 23 23 1
was
redundant i 2232334233434

Figure 3 Node transhon diagram

3 3
2 3 I 5

4

4 5

the previous history of the process The study of trees
by tlus Markov cham model of the (keys rn the) leaves 1s
called frtnge analysts, where the leaves are the “fringe” of
the tree

3.1 Transition Diagram

Figure 3 IS a diagram of the transitions for the TLU
and the WOB pollcles when b = 5 The current node
types are mdrcated by three-tuples (7, k, I) The smallest
number of records and keys at stable state m this case 1s
T = k = [5/31 = 2

When a record is added to the database, rt is an update
wtth probabrlrty p and an rnsertron with probabrlrty q
Figure 3 mdrcates this with arrows labeled by p for update
and 4 for rnsertron For example, a node (3,2,0), with
r = 3, k = 2 and 1 = 0 has 3 records, 2 distinct keys (that
is, one of the records IS an old version of another record rn
the same node), and the last record added was the update
(the number of rnsertrons since the last update is zero)
If a record in a node of type (3,2,0) is updated, a node
of type (4,2,0) results If a record 1s inserted (with a new
key), a node of type (4,3,1) results

When a spht occurs, because a record IS added to a
full node (of type (b, k, 1)), the followrng occurs One new
current node IS created rf k 1s 2 or 3 and the new record 1s
an update, or rf k is 2 and the new record is an insertron
This IS a “pure” time split Otherwise (when there are at
least 4 = 2[b/3j drstrnct keys mclndrng the new record),
two new current nodes are created Thus mvolves a key
sp11t Except when there are no lustorlcal versions 111 a
full node with the TLU pobcy, an hrstorrcal node 1s always
created in node sphttmg

For TLU and WOB, this characterizes the splitting pro-
cess For IKS, the number of updates for each record IS
needed-this causes an explosion of node types Thus,
IKS 1s studied only via srmulatron

3.2 Transition Equations

Transltlons from one type of node to another occur
whenever a record 1s added With umform growth, rt

356

IS equally hkely that keys of new records wrll fall in anv
interval between exrstrng keys Each current data node
owns a number of znteruals equal to the number of keys
rn the node, k We let fn(r,k,l) be the probabdrty that
an interval lies rn a node of type (T, k,l) when R new
records have been added to the database Thts 1s also the
probabrlrty that an znqertxon or an update (that IS, any
new record) will hit a node of thus type

3.2.1 Non-Split Transitions

First, we treat transrtrons to node types that cannot be
created by a split

Non-Split Transition Equation

(K + l)fn(T, k, 1) = p[(K + l)fn-I(“, k, 1)
-kh-.-1(T,k, 1) + d;kju(T - 1, k, *)]

+q[KjR-l(T, k, 1) - kfR--l(T, k, 1)

+&kfu(r - 1, k - 1,l - 1)]

The left hand srde of thus transrtlon equatron IS the
number of intervals rn nodes of type (T, k,l) after R
records have been added to the database This IS the
total number of Intervals, (K + l), one more than the to-
tal number of drstrnct keys, multrplred by the probablhty
that an interval IS rn nodes of thus type

The right hand side of the equation has two muJor
terms The first maJor term, wrth factor p, computes the
change when the last record added 1s an update In thrs
case, the total number of intervals before the last record
1s added does not change Thus the expected number of
rntervals in nodes of type (T, k,l) IS (K + l)fn-~(~, k,l)
before the transitron

If the last record updated IS rn a node of type (T, k, l),
then kfn-l(r, k,l) intervals of thus type are lost because
one node of that type IS elrmrnated

If the last record updated IS rn a node wrth one less
record and the same number of keys, then a gain rn mter-
vnls of type (T, k, 2) occurs The fuctor 6(mdrcates that
this subterm IS present only when 1 IS zero (Note that
1 will be zero when the last record added IS an update)
The * rn this term rndrcates a weld card desrgnatrng any
number of rnsertrons once the last update, since a new
update changes I to zero Thus

f~-I(T - 1, k, *) = c ~R-I(T - 1, k,t)

The second maJor term, wrth factor q, computes the
change when the lust record added 1s an insertron (u new
key) In this case, there was one less interval rn the
database before the new record was added The loss rf
the msertion hits a node of type (T, k, 1) IS the sume as rn
the case of an update

When the lust record rs an lnsertron Into a node with
one less record, one less key and one less insertron after
the last update, a garn ~111 occur The factor 61 indicates
that this subterm is absentwhen 1 IS zero because 11s zero
only when the last addrtron IS an update

Assume that a steady state probabdrty vector 1s at-
tamed, 1 e , thut

jn(T, k, 1) = jn-l(T, k, 1)

At steady state, therefore, If 1 IS zero, we drop the sub-
scrrpt for f and obtain

f(T,k 1) = pkf(’ - ‘, k, ‘) 1
1-p+k

At steady state for non-zero 1, we have

f(T, k, 1) =
qkf(T - 1, k - 1,l - 1)

I-p+k

3.2.2 Transitions Involving Splits

We now turn to the more comphcated case, where the
node type can also be created from a spht of an overfull
node This case only occurs for nodes where

[b/3] 5 T = k = 1 < 2[b/3]

This IS so because all splits sweep hrstorrcal duta from
the current database We let &,,t,, lndrcate that u term 1s
zero when r = [b/3], the mrmmum number of records rn
a current node st steady state Then, u record addrtron
~111 result rn a transitron as described below

Split Transition Equation

(K + l)fn(r, T, T) = (non-split equation terms)

+p[Tfw(b, 7, *) + &unTfn--l(b, 73 - 1, t)

+Tfn-l(b, 2T + 1, *) + 2rfn-l(b, 27, *)]

+q[Tfiu(b,r - 1, *) + 6n,,nTf&t(b, 2T - 2, t)

+rfn-l(b, 2T, +) + 2rfn-l(b, 21’ - 1, *)]

Nodes that can be generated by sphttrng can also be
generated as a result of normal record addrtron where the
node does not splrt Hence the non-sphttrng equatron
terms are also present here

A record update or msertlon to a full node wrth less
than 2 [b/31 - 1 keys splrts into one historrcal node and one
new current node An update to a full node wrth eractly
2[b/31 - 1 keys has the same effect Otherwrse two new
current nodes and one hrstorrcal node are created at splrt
time

Briefly, let us consider sphttlng In the updnte case Up-
dates occur with probabrhtv p, and hence the term pre-
fixed with the factor p describes the update case

First, if the new record lands rn a full node where the
full node has the same number of keys as the resultrng
node, thus represents a trme spht The expected garn 111
intervals of type (T,T,T), where T = k, IS ~fn-l(b,T,+)

For a full node with 2~ - 1 drstrnct keys, a key splrt
results This creates two new current nodes for updates,
as long ds 2~ - 1 2 2[b/31 (That is, except when T =
[b/3]) One of the new nodes will have T keys and the
other will have T - 1 So the expected gain rn the number

357

of Intervals will be rfn-l(b, 27 - 1, t) The reasoning for
2~ + 1 keys IS similar If there IS a full node with 2r keys,
an update will cause two new current nodes of this type
to be creatrd, with an expected gain of 2~f~--l(b, 27, *)

We omit the smlllar arguments for the insert case
To obtnm the steady state transition equations, we

again ehmmate the subscrlpt and assume ~R(T, k,l) =
fn-l(~, k, I) The result IS quite complicated and we do
not display it here We use these transition equations to
create a mntrlx whose eigenvector for the largest eigen-
value IS the vector of probatnhtles f(~, k, I) at steady state
Multiple applications of the transition matrix to an arbi-
trnry vector (non-zero) yields a sequence of vectors which
converge (experimentally) to the elgenvector

3 3 Using the steady state solution to estimate
space utilization

The steady state solution depends on the value of p,
the percent of updates From the steady state solution,
we can derive the number of current records, the number
of lustorlcal records, the number of redundant records,
and the number of nodes of each type, for a given number
of records R added to the database

The number of total keys 1s K = qR The number of
keys m nodes of type (T, k,l) IS Kf(T,k,l) or the total
number of keys times the probablhty that a key (or an
interval) 1s m a node of this type To find the number of
nodes of a type, we divide by k To find the total number
of nodes In the current database, we sum these numbers
over all current node types That IS,

Slrmlarly, to find the number of current records, we use

These results apply for both TLU and WOB pohcles
and are used to derive current space utlhzatlon

To derive the number of hlstorlcal nodes for TLU, note
that one lustorlcal node 1s created at each split of a full
node except when it IS an msertlon into a node of type
(b, b, b) That is, the number of hlstorlcal nodes IS

N$T’LU] = R (pf(h h b) + c f(4 kv 9) \
(b,k t)#(b b b) ’

The formula for the WOB policy 1s simpler

NtJWOBl = R(c f(b, k, 1,)
(0 1)

This 1s the expectation of landmg m a node which wdl
cause a split when R records have been added to the
database

When a record In a full node 13 updated, b records
migrate to the hlstorlcal node Only the new update

IS stored non-redundantly, only m the current database
This 1s true for both TLU and WOB pohcles

For TLU, the number of records migrating to the his-
torlcal node after an Insertion to a full node IS b-l- 1 For
WOB, there are still b records when there is an msertlon
Thus

R,,[TLU] = R (pf(h h b)b

+ c f(b,k,I)(pb+s(b-[-1)))
and

R,,[WOB] = Rb(c f(b, k, 1)) = b x N~[WOB]

(WJ)

Last, we derive the number of redundant records If the
new record added to a full node 1s an update, we expect
k - 1 redundant records m the new historical node If
this record XI an msertion, we expect k - I- 1 redundant
records m the hlstorlcal node for TLU and k redundant
records for WOB The total number of redundant records
for the TLU pohcy IS

red[TLU] = R (pf(h h b)(b - 1)

+ c f(b,k,I)(p(k-l)+q(k-1-l))) (hW#(hhb)
and the number of redundant records for the WOB policy
IS

Te4WOBl = R(c f(4 k, Wk - 1) + e(k)))

Numbers of hlstorlcal and redundant records m a spht
when b = 5 are given In the bottom of the diagram m
Figure 3 We use ratios of the expressions m this section
to obtain hlstorlcal space utillzatlon, percent of records
which are redundant and so forth Note that the factor
of R ~111 cancel out In these ratios, that IS, space utiliza-
tlon at steady state 1s mdependent of the total number of
records

4. SIMULATION

4.1 Simulation Goals

Our intent In simulatmg the TSB-tree 1s to

1. confirm the steady state analytic results of the
fringe analysis for the cases that were susceptible to anal-
VSlS,

2. provide extrapolations of the analytic results to
node Sizes that could not be readdy handled by the anal-
ysls simply because of a Size explosion,

3 explore Interesting sphttlng policies that proved
difficult or impossible to analyze effectively In partlru-
lar, frmge analysis was not employed with the IKS policy
because of the explosion in node types and transltlons

358

4.2 The Simulation Program

The detailed srmulatlon effort resulted m a parameter-
rsed skeletal rmplementatron of the TSB-tree Nodes are
represented by vectors of records or Index entrres, trmes-
tamped approprrately All the logic to support the spht-
tmg pohcres described rn section 2 5 IS mcluded Statrstr-
cal mformatron IS accumulated during the executron trials
of the TSB-tree model rmplementatron

The skeletal rmplementatron IS drrven by a program
that generates random keys to be mserted or updated
Insertrons are drawn from a uniform drstrrbutron of keys
The updates are, with equal probabrlrty to any one of the
already exrstmg keys The probabrhty p that a record
IS bemg updated can be varred between zero and almost
lOO%, I e from all Inserts to almost all updates Whether
a particular record addrtron 1s an insert or an update 1s
determined by whether another random number between
zero and one IS less than p or greater than p

A trial execution of the TSB-tree model rmplementa-
tron mvolves choosrng the (1) split polmy (one of WOB,
TLU, or IKS), (II) update probabrlrty p, (111) total number
of record addrtrons R, (IV) key split threshold Tk = k/b
at whrch key sphttrng IS to occur, and (v) node srze b

The performance mformatron reported for each run In-
cludes several forms of utrlizatron, redundancy, record ad-
drtron cost, and frequency of node types These are de-
scribed m the next section

5. PERFORMANCE RESULTS

5 1 Introduction

We report asymptotrc results Fringe analysrs produces
this drrectly The frrnge analysrs algorrthm 1s executed
until closure for each of Its trral runs The detarled srm-
ulatron confirms and extends the frmge analysis Each
srmulatron trial made 50,000 record addrtrons m an effort
to provrde a reasonable fit wrth the analysrs

Both the analysrs and srmulatrons had drfficultres reach-
mg steady state behavror for very hrgh update fractrons,
1 e greater than 90% Except for these values, the results
for srmulatron and analysrs are the same to wrthm 01 for
all quantrties

5.2 Single version current utilization

Srngle versron utrlrzatron utrlrzatron tells us how effec-
tive our splrt polrcy 1s m mmimrzmg the space for the
current database The current database 1s stored on a
wrote-many medrum wrth cost per byte that IS a factor of
about ten times more expensive than space for the his-
torrcal database on the wrote-once medmm The smgle
versron current utrlrsatron U,,, is grven by

U,,, = K/(Nc x b)

The graph rn Frgure 4 plots U.., for the full range of up-
date probabrlrtres, for nodes of srze 11, and for the three
spht polmres The results for multrple node srzes are tab-
ulated m Table 1 rn the appendrx

What the figure and table both show for the three drf-
ferent split pobcres IS that, as p rncreazes, U,,, declmes
The end pomts for U,,, are explarned as follows

04
b - 11 records per node m

03
and a

02
TLU

I IKS m
01

I
001

01 02 03 04 05 OS 07 08 09 10

p - percent updates

Fgure 4 Smgle version current utdlzatlon

All Insertions [p = 01: All pohcres behave as a
regular B-tree behaves wrth respect to U,., Generally,
this utrhsatron falls somewhat as node srse b increases In
the hmrt, as b Increases, we expect U,,, = In 2 = 0 693

Almost All Updates [p = 991: The maxrmum
utrlizatron, U rre--mnm, becomes the key splrttmg thresh-
old For most of our results, this threshold was set to
666 Hence, we expect U..,, at high update rates, to be

near U rsc--mncln 2 = 0 666ln2 = 0 46, and indeed that IS
what we see We experrmented wrth thresholds of 0 5 and
0 833, and these cases yrelded the antmrpated results, 1 e
0 346 and 0 577

U,., declmes somewhat wrth mcreasrng node size Thus
1s a well known phenomenon When a full node splits, Its
contents, PLUS the one addrtronal record bemg added,
are divided between the two resulting nodes The effect
of this one extra record IS srgmficant at small node sizes
but vamshes as nodes become large

WOB and TLU produce identical results for U,., Both
perform key splrttmg under rdentrcal srtuations The re-
sults for IKS are comparable at the extremes of p’s range,
but are up to about five percent less m the mid-range
p Thus five percent utrlrzatron declrne for IKS makes as
much as a 10% drfference m the space reqmred for the
current database Thus IS the penalty for not sweepmg
hrstorrcal data from the current database when a node is
key split

5.3 Redundancy

The TSB-tree must copy versrons of records that persrst
across the times used for time spbttmg We are mterested
m the fractron of records m the database that are duph-
cates This fraction redundant F,.,A IS given by

F,.,n = red/R

The superrorrty of the IKS pohcy m reducing redundancy,
and hence lrmrtrng the size of the hrstormal database, 1s
clearly demonstrated m Figure 5 Only at very hrgh up-
date fractions do the three polrcres converge to produce

359

14

h

b m 11 records per node
13 VKE-

nu 0

IKS cl

09

06

07

06

05

04

03

02

01

00
01 02 03 04 05 06 07 06

p - percent updates

Figure 5 Fraction redundant

the same redundancy The redundancy for lower update
fractions IS dramatlcally lower with the IKS pohcy The
WOB pohcy 1s by far the worst, demonstratmg the lun-
ltmg effect of the write-once medium At high update
fractions, the time of last update optlmlzatlon does not
help much, smce the last record addition to a node IS al-
most surely an update

We can explam the results at the end points of the
update fraction range, and hence understand the overall
trends

Ali Insertions: Fred 1s zero for TLU and IKS M
no time splits are done For WOB, F+=,f IS about 1 4 In
WOB, all current nodes were generated by a combined
time and key-spbt Hence, each current node, on average,
has left a half a node of lustorlcal data In Its predecessor
That. predecessor has llkewlse left behmd a half a node of
data In its predecessor Hence, belund every current node
there IS l/2 + l/4 + = 1 node of lustoncal data Each
current node contwns, on average, U,,, of current data
Hence the fraction of redundant data 1s l/UIVe Tins 1s
independent of node Size except as node Size affects US,,
slightly (V,., drops to 693 as node Size Increases)

Almost All Updates: All methods converge when
p 1s large The lund of sphttmg performed by all the poll-
cles 1s largely pure time sphts at these p values Further,
the lack of msertlons makes time-of-last-update the cur-
rent time Hence, the pollcles produce approximately the
same number of redundant records At each time spht,
no more than U rrc-lnnz of data IS current and hence be-
comes redundant The records added between time splits
1s not less than 1 - U ,*.--mar Thus, Fted 1s bounded
by U,.r--mnr/(l - u,V.c-,noe) In fact, F,,,i was close to
V,,,/(t - V.,,) except for very high key spht thresholds
Redundancy can increase wlthout bound aa the key spht
threshold approaches 100% Trmls with higher thresholds

06

05

04

03

02

01

00
01 02 03 04 05 06 07 06 09 10

p - percent updates

Figure 6 Smgle version total uthzation

confirmed this
Table 2 provides data for a variety of node Sizes and

split pohcles The notable thmg IS the impact of mcreas-
mg node Size on redundancy We do not fully understand
this However, the most Important factor for redundancy
m node6 with large numbers of records is the split thresh-
old, not the node Size

The TLU policy approaches the redundancy of the
WOB pohcy as node size Increases The number of
records represented by traihng inserts remains approxl-
mately constant per node as b Increases, and hence be-
comes an mcreasmgly smaller fraction of the records of
the node These are the records that do not need to be
stored redundantly across a time spht

5.4 Single version total utilisation

Single version total utlllzatlon relates the cost of car-
rying multiple veraons, in terms of total space consumed
by these retained versions, to the storage needs for sm-
gle version data This quantity 1s affected by the fraction
of updates, well as how effectively the method utilizes
storage and avoids redundancy The single version total
utilization is

U,et = K/(N x b)

We graph our results for the three split pohcles for node
Size of 11 In Figure 6, with the results for other node sizes
tabulated m Table 3 What we see IS that Un.t tends to
zero aa the update fraction Increases because the current
data becomes an ever smaller part of the total database
At low update factors (mostly Inserts), the ab1ht.y to per-
form isolated key sphts clearly shows an advantage m
holding down the size of the hlstorlcal data base The
dramatic difference between WOB and TLU pollcles re-
sults from time spllttmg frequently being ineffective TLU
avoids the time split With WOB, the time split occurs
regardless

Smgle version total utlllzatlon declmes as node size In-
creases due to the increase in redundancy as node size
increases The change IS dramatic only for small node
sizes Larger nodes with the same split threshold have
similar total utilizations

360

06

06

b-llrecordspernode m a

nu 0

00
01 02 03 04 05 06 07 06 09 10

p - percent updates

Figure 7 Multiple versron utrlrzatron

5.5 Multiple Version Utilization expand[TLU] = (2 x trmesphts + 2 x keysplrts

Multiple version utrlrzatron, U,,,., measures how effec-
trvely the TSB-tree, together wrth the particular split pol-
icy, support multrversron data This can be used to com-
pare TSB-trees with other multrversron approaches It
reflects the cost of mamtammg the integrated Index to
the entire collectron of versions, and the cost of storing
redundant copres of the versions so as to support “as-of’
queries Multrversron utrlrzatlon 1s given by

+3 x trme&keysplrts)/R

IKS: Like TLIJ, this pobcy reqmres two medra and
hence pays the larger node spbttmg cost Here, however,
combined time and keysplits do not occur Hence

expand[IKS] = (2 x trmesphts + 2 x keysplrts)/R

U,,,. = R/(N x b)
The above expansion costs all decline with mcreasmg node
size since the frequency of node sphttmg varies mversely
with node size

Once again, we use node size of 11 as the case that we
graph m Frgure 7, wrth the remamder of the results tab-
ulated m Table 4

The results here are consrstent with our expectations
in comparmg the three splrt pollcres The WOB pohcy
results m very substantrai redundancy m the low update
fraction cases, more than doublmg the number of copres
for these cases Note how well the IKS polrcy drd At low
update fractions, the utrlrzatron was comparable to having
stored all the versrons rn a B+tree, without stormg any
versrons redundantly That rs, the redundant copies are
being stored wrthout compromnung the storage ut~hza-
tion of the TSB-tree At higher update fractrons, there
1s too much redundancy for this to happen Hence, the
multiversion utilization trails off

All polrcres have equal expansion costs when the update
factor IS zero, 1 e only msertlons are performed This 1s
so because all splits are pure key splrts (with WOB, the
splrts are meffectrve time and key splrts), the number of
splrts IS the same and the cost of the sphts are equal

As the update factor increases, the cost for the WOB
polrcy declmes with its decline m redundancy For TLU
and IKS, expansron costs Increase modestly wrth rncreaz-
mg update factor This 1s related to increased redundancy
as update factor increases, resulting rn a larger number of
splrts being required The TLU and IKS polrcles have
higher expansion costs than WOB because the hrstorrcal
node never needs wrrtrng with WOB Expansron costs for
nodes of size 11 are plotted m Frgure 8, with selected
values for a number of node sizes tabulated m Table 5

This quantity 1s also sensitive to node size (especially
for small nodes) because redundancy increases with node
size Hence, U,,,, decreases wrth mcreasmg node size

5.6 File Expansion Cost

6. DISCUSSION

There are a number of pomts worth drscussmg that
have not fit converuently mto the results that we have
reported above

Storage IS not the only cost for supportmg access to
data The performance of the record addltron process 1s
also important Here we treate the cost, m disk accesses
per record addrtron, of the effect of the different polrcres
on file expansron This expansron cost 1s derived from the
frequency of the varrous kmds of node sphttmg that the
three policies entail

6.1 Index Node Time-Sphtting

Our farthful slmulatron of the TSB-tree access method
revealed an unexpected attribute of the method We drd
not believe that performmg time splrttrng of index nodes
would be necessary We knew it would be difficult for
the TSB-tree az Index terms rn an hrstorrcal node cannot

We assume that an updated node needs to be written
to drsk as a result of record addition Hence, we exclude
the cost of wrrtmg one node Further, we neglect the cost
of non-leaf splrts, which IS very small What 1s included IS
the cost of writing the new nodes plus updatmg the index
node that refers to these nodes

WOB: A split does not require re-wrltrng the full
node Rather, a new node (in the case of a pure time spbt)
or two new node6 (m the case of a key and time split) are
written, along with the parent index node Thus

expand[WOB] = (timesplits + 2 x trme&keysplrts)/R

TLU: This pohcy requires a separate medium for
hrstorrcal data, and hence the current node cannot become
the hrstorlcal node The orrgmal full node must be re-
written Tlus policy can have three kinds of node splits
Thus

361

0 30

0 25

0 20

0 15
b-llrecordspermde

0 10
m .

IKS 0
0 00

01 02 03 04 05 08 07 08 09 10
p - percent updates

Figure 8 Expansion cost In disk access

refer to nodes m the current database smce those nodes
can move

We discovered the need for index node time spbttmg
during trrals with a node size of five The problem 1s
that small nodes soon degenerate to havrng only a single
current entry and Its updates, all other entries having
been removed by key spbttmg This makes further key
splits rmposslble

There arc basic two approaches to index node splrttmg

1 Find a split trme at which hlstormal index terms
can mrgrate to an hrstorlcal node without any current
index terms endmg up there as well This mvolves findmg
the oldest current index term and usmg Its time as the
split trme Thus approach was adopted for the srmulatlon,
though not wrthout havrng to deal wrth several subtle
bugs m the splrttrng process

2. Force the descendent nodes of the Index terms to
split as of some time so that that time can be used as
a spbt trme This mtroduces addrtronal redundancy, but
might be useful for mrgratmg/archrvmg the TSB-tree data
as of the time chosen We did not pursue thrs approach

6.2 Other Key Split Thresholds

Only the 2/3 threshold value was used for purposes
of decrdmg whether to trme split or key split An In-
teresting questron IS what happens when the threshold
is varred The obvrous happens, m terms of drrectron of
effect Increasmg the threshold makes key splrttmg less
likely, hence mcreasrng U,., Because time splrttmg fre-
quency 1s Increased, redundancy 1s Increased, and hence
U,,,, and U,,t are decreased File expansron cost also
Increases modestly Decreasmg the threshold has the op-
posite effect

What threshold to use depends on what cost function
one 1s attempting to mrmmrze We discuss this below m
the context of choosrng a spbttmg polrcy Srmrlar consrd-
eratrons apply to the threshold value The 2/3 threshold
appears to be a decent compromme wrth tolerable perfor-
mance over the spectrum of update factors

6.3 Some Conclusions

The purpose of a performance study 1s to assist rn
choosmg design poramrters so that users can optrnnae
their applrcatron, with Its particular characterlstlcs Oue
would bke for this task to be simple, by finding techmques
that are umversally good regardless of application Un-
fortunately, the spbttmg polrcres studied here do not lend
themselves to universal mterpretntlons

Obvrously, rf the entire TSB-tree must resrde on a
WORM medium, then one must use the WOB pobcy
The other polrcres are lmpossrble rn their vanilla form
since they require that the full splittmg node be reused
for current data The beauty of the WOB pobcy IS that It
exploits the full node by transformmg rt into the hrstorlcal
node This makes a virtue of the necessrty of the WORM
medium However, on a WORM medrum, rt IS clumsy to
manage the current data and its representation tends to
be very wasteful of space

If WMRM storage 1s avallable and should per byte
WORM cost be more than a factor of ten less than
WMRM storage cost, then using TLU may be mtercst-

-3 U,,, IS always equal to the WOB pobcy’s result,
and always better than IKS by a modest, but potentrally
significant amount

If WORM storage 1s less than a factor of ten cheaper
than WMRM storage cost, then the IKS polrcy IS a good
choice It gives up a modest amount of current utrllaatron
to garn a substantial reductron m redundancy, and hence
In the srze of the hrstorrcal database Its record addition
cost IS modestly higher than WOB, but as good or better
than TLU (or WOB when data must be migrated to the
WORM medium) When the cost differential is less than
ten, there 1s no update factor at which the TLU (WOB)
storage cost IS less than the IKS storage cost

Currently, It would appear that WORM devrces are
about a factor of ten less costly than magnetic disk Thus,
the choice of polmy 1s not clear

References

[AhSn] Ahn, I and Snodgrass, R , “Partttroned Storage
for Temporal Databases,” Inform&on Systems, 13, 4,
1988 pp 369-391

[BYLa] Baeaa-Yates, R and Larson, P A , “Performance
of Bt-trees wrth Part& Expansions,” IEEE Tram on
Knowledge and Data Engmeenng, lr2, June 1989, pp
258-257

[East] Easton, M , “Key-Sequence Data Sets on Indebble
Storage,” IBM J Res Develop ,303, May 1986, pp 230-
241

[EZGMW] Elsenbarth, B , Zlvmm, N , Gonnet, G ,
Mehlhorn, K and Wood, D , “The Theory of Frrnge Anal-
yas and Its Appllcatron to 2-3 Trees and B-Trees,” In-
form Contr , 55, 1982, pp 125-174

[JeMR] Jensen, C S , Mark, L , and ROUSSO~OU~OS,

N, “Incremental Implementatron Model for Relatronal
Databases wrth Transaction Time,” Umversrty of Mary-
land UMIACS-TR-89-63 CS-TR-2275 July, 1989

362

[LoSa] Lomet, D and Salzberg, B , “Access Methods
for MultIversIon Data,” Proc ACM SICMOD, Portland,
1989, pp 315-324

[McKr] McKenzie, E , “Blbhography Temporal
Databases,” SZGMOD Record, 15 2, Dee 1986, pp 40-
52

[SeSh] Segev, A and Shosham, A , “Logical Modelmg of
Temporal Data,” Proc ACM SIGMOD, May 1987, pp
454-466

[SnAh] Snodgrass, R , and Ahn, I , “A Taxonomy of Time
in Databases,” Proc ACM SIGMOD, March 1985, pp
236-246

[Ston] Stonebraker, M , “The Design of the POST-
GRES Storage System,” Proc 13th VLDB Conference,
Brighton, 1987, pp 289-300

Appendix: Tables of Results

Table 1 Single Version Current Utlhzatlon

Policy Node
Uodare Probablhty

See 01 10 30 50 70 90 99

WOB 5 74 70 61 55 51 48 47

11 71 67 59 53 50 48 46

17 70 67 58 52 49 48 47

35 69 66 57 52 51 48 46

Table 5 Expanston Cost per Record

Policy Node
Update ProbabMy

Stze 31 10 30 50 70 90 99

WOB 5 54 52 47 41 36 31 29

11 25 24 22 20 18 16 15

17 17 16 14 13 12 11 11

35 OS 08 07 06 06 06 05

TLU 5 55 59 63 52 60 58 57

11 26 30 32 31 31 31 30

17 17 21 21 21 21 21 21

35 09 11 10 10 10 11 11

IKS 5 54 55 56 57 58 57 56

11 26 26 27 28 30 31 31

17 17 17 17 19 20 21 21

35 08 06 09 10 10 11 11

Table 3 Smale Verston Total Uttllzatlon

Policy Node
Update PrObatMty

Size 01 10 30 50 70 30 99

WOB 5 37 35 30 '24 17 06 01

11 35 34 29 23 15 06 01

17 35 34 29 23 14 05 01

35 35 33 29 22 14 05 01

TLU 5 74 69 61 55 50 48 46

11 71 67 59 53 50 46 47

17 70 66 59 52 A9 47 46

35 69 66 57 52 49 46 50

TLU 5 72 55 36 26 17 06 01

11 67 46 30 23 15 06 01

17 64 41 29 23 15 05 01

35 60 36 29 22 14 05 01

IKS 5 73 65 57 53 50 48 47

11 70 64 55 52 50 47 46

17 69 63 54 52 49 47 45

35 69 63 53 52 50 47 45

IKS 5 73 65 50 35 21 07 01

11 70 64 48 32 19 06 01

17 69 63 47 31 16 06 01

35 69 63 A7 30 17 05 01

Table 2 Fraction of Records Redundant Table 4 MultIpIe Version Utllmatlon

P0ky Node
Update Probability

Size 01 10 30 50 70 90 99

WOB 5 137 122 96 76 61 49 43

11 139 127 i 00 a5 79 73 71

17 141 126 I 00 a7 a6 al 79

35 1 42 i 28 1 00 90 93 90 68

P0lky Node
Update Probabhty

Sac 01 10 30 50 70 90 99

WOB 5 37 39 43 46 56 64 70

11 35 37 42 46 50 56 59

17 35 37 41 46 48 53 56

35 35 37 41 44 47 51 53

TLU 5 02 20 44 51 50 46 42

11 06 J3 71 73 73 71 67

17 08 61 62 a0 a2 al a0

35 17 a9 92 a7 92 90 92

TLU 5 72 61 51 51 56 65 70

:1 67 51 43 46 51 56 60

17 65 45 42 45 49 53 55

35 60 40 41 41 47 51 52

IKS 5 00 00 06 15 26 37 43

11 00 00 09 27 4A 61 66

17 00 00 10 32 51 70 77

35 00 00 10 39 60 79 a5

IKS 5 7A 72 71 70 69 70 69

11 71 71 66 64 61 60 59

17 70 70 66 62 59 57 56

35 70 70 67 60 57 54 54

363

