
Integrating the UB-Tree into a Database System Kernel

Frank Ramsak1, Volker Markl1, Robert Fenk1, Martin Zirkel2, Klaus Elhardt3, Rudolf Bayer1,2

1Bayerisches Forschungszentrum

für Wissensbasierte Systeme
Orleansstraße 34,

D- 81667 München, Germany

2Institut für Informatik
TU München

Orleansstraße 34,
D-81667 München, Germany

3TransAction Software GmbH
Gustav-Heinemann-Ring 109,
D-81739 München, Germany

{frank.ramsak, robert.fenk, volker.markl}@forwiss.de, {zirkel, bayer}@in.tum.de, klaus.elhardt@transaction.de

Abstract
Multidimensional access methods have shown
high potential for significant performance im-
provements in various application domains.
However, only few approaches have made their
way into commercial products. In commercial
database management systems (DBMSs) the B-
Tree is still the prevalent indexing technique.
Integrating new indexing methods into existing
database kernels is in general a very complex
and costly task. Exceptions exist, as our experi-
ence of integrating the UB-Tree into TransBase,
a commercial DBMS, shows. The UB-Tree is a
very promising multidimensional index, which
has shown its superiority over traditional access
methods in different scenarios, especially in
OLAP applications. In this paper we discuss the
major issues of a UB-Tree integration. As we
will show, the complexity and cost of this task is
reduced significantly due to the fact that the UB-
Tree relies on the classical B-Tree. Even though
commercial DBMSs provide interfaces for index
extensions, we favor the kernel integration be-
cause of the tight coupling with the query opti-
mizer, which allows for optimal usage of the UB-
Tree in execution plans. Measurements on a
real-world data warehouse show that the kernel
integration leads to an additional performance
improvement compared to our prototype imple-
mentation and competing index methods.

1 Introduction
Various research approaches in the past have shown that
multidimensional access methods (MAMs) have a high
impact on different database application domains like data
warehousing, data mining, or geographical information
systems. However, despite the vast research effort MAMs
have not made their way into commercial database
management systems on a broad scale. This is mostly due
to the fact that the integration of these complex data
structures into an existing database kernel is fairly
complicated. Especially concurrency and recovery issues,
which are as important as performance issues for
commercial systems, are major obstacles. For most
MAMs new solutions to these problems, e.g., locking for
R-Trees [KB95, CM98], have to be developed, as the new
concepts do not allow reusing standard techniques. This
makes the kernel integration of an MAM a very costly
task in the range of multiple man-years. As consequence
many DBMS producers have not integrated the new
technology into their systems, but offer it only as add-on
features. So, are MAMs just another nice research
gimmick, but commercially not affordable? No, in this
paper we will show that there are MAMs, which provide
good performance on one side and can smoothly be
integrated into a DBMS kernel on the other side. A
category of MAMs is based on the combination of one-
dimensional index structures and space-filling curves.
One prominent example is the UB-Tree [Bay97], which
combines the B-Tree and the Z-curve. Together with its
sophisticated query processing algorithms it has proven its
performance advantages in numerous application
domains. Because the UB-Tree is based on the standard
B-Tree, which is the basic index structure in almost every
commercial DBMS, the task of integrating this MAM into
an existing kernel becomes less complex and less costly.
The kernel integration of the UB-Tree into TransBase
[Tra98] (as part of an ESPRIT project funded by the

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 26th International Conference on Very
Large Databases, Cairo, Egypt, 2000

European Commission) has been accomplished within
one year. TransBase is a full-scale relational database
system, which conforms to the SQL-92 standard.
TransBase, which handles databases up to 8 Terabyte of
data, is used especially in the field of CD-ROM retrieval
systems, and has an installation base of well beyond
50,000 sites worldwide.
In this paper, we will present the major issues and
problems that have to be tackled and solved for a suc-
cessful UB-Tree kernel integration. The paper is
organized as follows: Section 2 presents the basic con-
cepts behind the UB-Tree and Section 3 deals with the
issue of the UB-Tree address representation and the
implementation of the standard UB-Tree operations.
Section 4 addresses the specific query operation of the
UB-Tree and Section 5 tackles the important topic of
required optimizer extensions to efficiently support the
UB-Tree. Section 6 covers additional enhancements for
the UB-Tree and Section 7 presents the performance
evaluation. Section 8 summarizes related work and
Section 9 concludes the paper.

2 Basic Concept of the UB-Tree
The basic idea of the UB-Tree [Bay97] is to use a space-
filling curve to map a multidimensional universe to one-
dimensional space. Using the Z-Curve (Figure 2-1a) for
preserving multidimensional clustering as good as
possible it is a variant of the zkd-B-Tree [OM84].

1 0 5 4 17 16 21 20
3 2 7 6 19 18 23 22
9 8 13 12 25 24 29 28
11 10 15 14 27 26 31 30
33 32 37 36 49 48 53 52
35 34 39 38 51 50 55 54
41 40 45 44 57 56 61 60
43 42 47 46 59 58 63 62

1 0 3 2 5 4 7 6

1
0

4

2

5

3

7
6

(a) (b)

(c) (d)

(e)
Figure 2-1 Z-Addresses and Z-Regions

A Z-Address α = Z(x) is the ordinal number of the key
attributes of a tuple x on the Z-Curve, which can be
efficiently computed by bit-interleaving (see Section 3.1).
A standard B-Tree is used to index the tuples taking the
Z-Address of the tuples as keys.

The fundamental innovation of UB-Trees is the concept
of Z-Regions to create a disjunctive partitioning of the
multidimensional space. This allows for very efficient
processing of multidimensional range queries (see Section
4). A Z-Region [α : β] is the space covered by an interval
on the Z-Curve and is defined by two Z-Addresses α and
β. We call β the region address of [α : β]. Each Z-
Region maps exactly onto one page on secondary storage,
i.e., to one leaf page of the B-Tree.
For an 2 dimensional universe of size 8×8, Figure 2-1b
shows the corresponding Z-addresses. Figure 2-1c shows
the Z-region [4: 20] and Figure 2-1d shows a partitioning
with five Z-regions [0 : 3],[4 : 20], [21 : 35], [36 : 47] and
[48 : 63]. Assuming a page capacity of 2 points, Figure
2-1e shows ten points, which create the partitioning of
Figure 2-1d.
The details of the UB-Tree algorithms are described in the
following sections.

3 UB-Tree Address Representation and
Standard Operations

For the rest of the paper we will refer to the function
computing the Z-Addresses as UBKEY and to the keys as
Z-values. It is important to note that the UB-Tree
algorithms can be implemented and integrated without
fundamental changes to the query processing of the
database kernel. They do not require special tuple
handling or other significant modifications, as the
following sections show.

3.1 Address Representation and Z-value Computation
An important question for the implementation of the UB-
Tree inside the database kernel is how to represent the Z-
values. All algorithms for the UB-Tree basically rely on
Z-values in the format of variable length bitstrings
(trailing zeros are omitted to reduce storage
requirements). The operations on Z-values manipulate
single bits and copy parts of the bitstring. The UBKEY
function can be efficiently implemented, as it requires
only reading the specified index attributes bitwise and
writing the bits at the corresponding positions in the
resulting Z-value. As input the UBKEY function requires
a bitstring representation of the attribute values. The
natural order ≤ of the attribute values in the original
domain A has to correspond to the bit-lexicographical
order bitstr≤ on bitstrings, i.e.,

)()(bitstr jiji abitstrabitstraa ≤⇔≤ , where

[] }1,0 | { : *∈→ bbAbitstr generates the corresponding
bitstring. For example, in case of unsigned integers and
strings identitybitstr =: while for signed integers the
bitstr function has to take care of the sign bit.

To compute the Z-value of a tuple, we interleave the bits
of the bitstring representation of the key attributes (see
Figure 3-1).

 Bitstring 1
0 1 1

Bitstring d
1 0 1

0...1 1...0 1...1
Step0 Step1 Step2

...

Z-value
Figure 3-1 Calculation of Z-values by bit-interleaving the

transformed attributes

For the following illustration we assume that all bitstrings
have the same length steplength; t[i] returns the ith
attribute of tuple t; bitstr[i] returns the ith bit of the
bitstring bitstr (the highest order bit has number 0). We
partition a Z-value into steps. A step consists of all bits
from the input bitstrings, which have the same bit ordinal,
i.e., step 0 contains the highest order bits from all input
values (see Figure 3-1). We require the number of
dimensions d (we assume that the key attributes are the
first d attributes of the tuple) of the used UB-Tree. Figure
3-2 shows the pseudo code for the basic bit-interleaving
algorithm.

Z-value UBKEY(Tuple t){
int i,s;
int bp; //the bit position in the Z-value
Z-value addr; //the result Z-value
Bitstring bs[dimno]; // bitstring representation of the attribute
values
//Transformation of the key attributes
for (i=0; i < d; i++) {
// transformation of the attribute to a bitstring depends on the attribute
type
 bs[i] = TransformAttribute(t[i]);
}
//Bit-interleaving – Calculation of the Z-value
bp=0; //starting with the first bit of the Z-
value
//looping first over dimensions then over steps realizes the bit-
interleaving
for (s=0;s < steplength; s++) {

for(i=0; i < d; i++) {
 // the bpth bit of the Z-value is
 // set to the sth bit of the ith bitstring
 addr[bp]=bs[i][s];
 bp++; //advance to next bit of Z-value
 }}

return addr;}
Figure 3-2: Basic UBKEY Function

It is also possible to use other transformation functions for
generating the bitstring for an attribute value, allowing a
more powerful semantics, e.g., soundex codes or case
insensitive search on strings. As consequence, the bitstr
function has to be adapted for the individual data types
supported by the UB-Tree. If possible, it is useful to
normalize attributes to unsigned integers starting with 0 as
one step of the transformation, as this allows for a much
better space partitioning with shorter Z-values. One
example for normalization for complex data types is
MHC [MRB99]. Other possibilities for normalization
include hashing or more complex non-linear methods.

Note that complex normalization may lead to significant
performance overhead, which may then not be neglected
any more. Our standard normalization techniques just
require a few microseconds of CPU cycles and therefore
do not affect the address calculation performance.

3.2 Insertion, Deletion, Update
The basic algorithms of the UB-Tree are handled by the
underlying B-Tree. To perform an insertion, deletion or
update one just has to compute the Z-value corresponding
to the tuple. The underlying B-Tree uses that Z-value to
determine the page where the tuple is stored and processes
the operation as usual. As consequence, the same
performance guarantees as for the basic operations on B-
Trees can also be given for the basic operations of the
UB-Tree. Figure 3-3 shows the code for insertion, which
is similar to deletion and update.

Status UBTree_insertTuple(Tuple t)
{
return BTree_insertTuple(UBKEY(t),t); //call to B-Tree
standard insertion algorithm, inserting tuple t with key UBKEY(t)
}

Figure 3-3: Insertion Function

3.3 Page Splitting
The split algorithm of the underlying B-Tree handles the
page splitting in UB-Trees. Only the calculation of the
page separator has to be modified, as the page split (i.e.,
region split for UB-Trees) strategy is crucial for the range
query performance of the UB-Tree by influencing the
space partitioning. This modification adds no complexity
to the split costs as it is done in O(n) bit operations, where
n is the length of the Z-value in bits, and the worst case
page utilization of 50% is still guaranteed [Mar99].
The goal of region splitting is to create rectangular
regions whenever possible to reduce the number of
regions overlapped by a range query. This can be
achieved by choosing the shortest Z-value (i.e., the Z-
value that has as many trailing zero bits as possible)
between the two middle tuples s and t as new separator,
instead of s, t or another Z-value in the middle of the
page. Figure 3-4 shows the split algorithm of UB-Trees.

Status UBTree_splitPage(Page P, Tuple s, Tuple
t) {
Z-value sep;
sep=UBTree_calculateSeparator(UBKEY(s),UBKEY(t));
//Calculating the best separator between two Z-values, i.e., the shortest
Z-value between UBKEY(s) and UBKEY(t)
BTree_splitPage(P,s,t,sep); // Btree_splitPage is the
standard algorithm of the Btree: It splits page P between the two tuples s
and t with sep as the separator between the two generated pages
}

Figure 3-4 Page Split algorithm of UB-Trees

The advantage of this split strategy is twofold: first, better
range query performance on average; second, shorter
separators lead to a more compact index part of the UB-
Tree, a phenomenon also exploited in Prefix-B-Trees
[BU77].

4 Range Query Processing
Processing a multidimensional range query, a UB-Tree
retrieves all Z-regions, which are properly intersected by
the query box [Mar99]. Due to the mapping of the
multidimensional space to Z-values, this results in a set of
intervals on the B-Tree storing the Z-values (

Figure 4-1).

I1 I2

I3
I4

I1 I2

I3
I4

Index pages

Data pages

jump

I1 In
Figure 4-1: How query boxes map to a set of Z-value

intervals

A B-Tree answers sets of interval restrictions on its key
efficiently by traversing the corresponding intervals of
pages directly on the leaf node level. For large B-Trees,
i.e., when the index part cannot be completely cached, the
processing is improved in TransBase as it supports jumps
in the index part of the B-Tree, instead of starting at the
root for each interval. Relying on this standard technique,
the main task of the UB-Tree range query algorithm is to
efficiently calculate the set of one-dimensional intervals
of Z-values from one multidimensional interval.

4.1 UB-Tree Range Query Algorithm
One possibility of processing UB-Tree range queries is to
compute all Z-value intervals (cf.

Figure 4-1) for a query box in advance before accessing
the B-Tree. Due to the nature of the Z-curve this may lead
to a large set of intervals, many of which may be located
in the same Z-Region. This naive approach will either
result in multiple accesses to the same B-Tree page or will
require calculation effort to identify all intervals
belonging to one page. The resulting processing overhead
is avoided by constructing the intervals on the fly,
processing the query box page-by-page. As a consequence
we use the page-by-page approach for the kernel
integration. Iteratively constructing the intervals on the fly

also has the advantage of providing the first result tuples
earlier, which is good for pipelining. However it requires
post filtering of the retrieved pages.

The iterative range query algorithm (see Figure 4-2) for
the UB-Tree works as follows. Let the multidimensional
range restriction be specified by a query box Q with a
starting corner and an ending corner, which are given by
the two tuples ql resp. qh (UBKEY(ql) < UBKEY(qh)).
First the algorithm computes the Z-values for ql and qh,
then the region containing ql is located1. Let P, Q be two
adjacent pages in the UB-Tree and the Z-value sep be the
separator between the two pages with

)()(:, sUBKEYseptUBKEYQsPt <≤∈∀∈∀ . We then
call sep the end or region address of the region
corresponding to page P. The range query algorithm then
iteratively determines all the regions intersected by the
query box. This is achieved by calculating the Z-value for
the next intersection point of the Z-curve with the query
box based on the currently processed region/page (see
next section).

Status UBTree_Range_Query(Tuple ql, Tuple qh) {
Z-value start = UBKEY(ql);
Z-value end = UBKEY(qh);
Z-value cur = start;
While (1) { //continue as long we are in the query box
 cur = getRegionSeparator(cur); // getting the
address of the region containing cur
 FilterTuples(GetPage(cur), ql, qh); //post-
filtering of the tuples in the region
 if (cur >= end) break; //stop once we covered the
whole query box
 cur = getNextZvalue(&cur, start, end);
//calculation of next region
}}

Figure 4-2: Range Query Algorithm

All these steps are performed in O(n) bit operations where
n is the length of the Z-value [Mar99]. The separator
computation and fetching of the page can be performed by
one B-Tree access. After filtering out all matching tuples
of a fetched page, they can be piped for further processing
by the DBMS.

4.2 Calculating the next intersection point
Calculating the next intersection point is the crucial part
of the UB-Tree range query algorithm. In the following
we will show that this step only requires bit operations on
Z-values and no I/O or B-Tree search is necessary.
Starting point for getNextZvalue is the region address cur
of the current region. The task now is to find the next
intersection point of the Z-Curve with the query box Q.
This intersection point nisp is the minimal Z-value larger
than the current region address, which is inside Q, i.e.,

{ }())()()(min QxcurxUBKEYxUBKEYnisp ∈∧>=

1 Note: ql and qh do not have to be tuples existing in the
database – it is only important to which regions they are
mapped according to the space partitioning.

Figure 4-3 illustrates two examples of the next
intersection point calculation for the dotted query box Q.

Region Address Next Intersection Point

B

A

(a)

B

A

(a)

(b)

D
C

υ

τ1

τ2

τ3 τ4

(b)

D
C

υ

τ1

τ2

τ3 τ4

Figure 4-3 Region Address and Next Intersection Points

In Figure 4-3a, the region address cur=A of region ρ
yields B of region σ as the next intersection point with Q.
Consequently the range query algorithm will continue
with processing region σ. In this case, B is the direct
successor of A on the Z-Curve, i.e., B=A+1. In Figure
4-3b we are looking for the next intersection point for the
region address cur=C of region σ. The call to
getNextZvalue yields the Z-value D causing to process
region υ next, skipping the four regions τ1, τ2, τ3, and τ4.
Informally, the algorithm determines for the successor of
a region address in which dimensions it is not contained
in the query box. From this information it identifies the
bits that have to be modified to generate the correct next
intersection point.
For the detailed description of the algorithm we introduce
the following functions: BP(i,s) returns for each bit posi-
tion/step of a dimension i to which bit position in the
resulting Z-value it corresponds; given a bit position bp in
a Z-value the functions DIM(bp) and STEP(bp) will
return the corresponding dimension resp. step.
The first step is to increment the region address by one,
i.e., nisp=cur+1. We then test if nisp is in the query box

by bitwise comparing with the Z-values of ql and qh – we
do not have to transform nisp back to Cartesian
coordinates. During the comparison we also determine
additional information for each dimension i:

[]

[]
iqbnispqb

iioutStep

iqb

nisp
iqbnisp

iqb

nisp

iflag

dimension in in if left;been has where
dimension in step the

 dimension in of

 maximum theexceeded has if 1
 dimension in in is if 0

 dimension in of

 minimum thebelowfallen has if 1

∞











−

=

[]

[]
maximum thebelowfallen has

 wheredimension in step the

exceededbeen has minimum
 the wheredimension in step the

nispiisaveMax

iisaveMin

If nisp is in qb then we have already found our next
intersection point. If not, we have to determine the bits we
have to set to 1 and set to 0 to get the correct nisp. Let be

[])min(ioutstepoutStep = , and d the corresponding
dimension. We have to distinguish two cases: first, if
flag[d]=-1 then we have found the bit
changeBP=BP(d,outstep) that we can safely set to 1 such
that nisp > cur. Second, if flag[d]=1 then we have to find
a lower bit position in nisp we can set to 1, because the bit
specified by outstep has to be set to 0. In both cases the
bits following the changed bit have to be adapted
accordingly (see Figure 4-4).

BP changeBP=BP(d,outstep); //we start with the minimal bit
position that has to be changed
int i;
if (flag[d] == 1) // we cannot set this bit to 1, therefore we
have to find a lower bit position we can safely set
then {

changeBP=max({bp|bp<changeBP and bp >=
saveMax[Dim(bp)] and Val(nisp,bp)=0}); //maximal
bitposition that is save to set to 1

saveMin[DIM(changeBP)]=STEP(changeBP);
flag[DIM(changeBP)]=0;
}

// now we can change the rest of the Z-value
for(i=0;i<dimno;i++) { //for each dimension we determine
how to change the bits
if(flag[i]>=0) // we have not fallen below the minimum in this
dimension
then {
 if(changeBP > BP(i,saveMin[i]))
 then “set all bits of dim with bit positions
> changeBP to 0”
 else “set all bits of dim with bit positions
> changeBP to the minimum of the query box in
this dim”
}
else { // if we have fallen below the min in this dimension the lowest
possible value is the min itself
 “set the bits to the minimum of the query
box in this dim”
}}

Figure 4-4 Pseudo code for parts of getNextZvalue

5 Query Engine Extensions
One of the major benefits of a kernel integration of the
UB-Tree is the tight integration with the query engine. In
the following we will discuss the most important issues
that enable the query engine to use the UB-Tree in the
most efficient way.

5.1 General Extensions
Supporting a new index method usually requires
extension of schema information and DDL of the DBMS.
For the UB-Tree the database catalog does not have to
store additional information except the transformation
function for each key attribute. The rest is also required
by other index structures, for example, the index
attributes, the number of dimensions, the domain of each
attribute, etc.
A new storage clause (CLUSTERING UBTREE ON
{<set of attributes>}) in the DDL statement for creating a
table specifies the creation of a UB-Tree index.
Additionally, specifying the actual domains for the
attributes indexed by the UB-Tree by check constraints
allows for optimal multidimensional clustering. Figure
5-1 shows the creation of a three-dimensional UB-Tree
with two additional attributes.

CREATE TABLE fact(
date DATETIME [YY:DD] CHECK(date BETWEEN ‘1997-
1-1’ AND ‘2020-12-31’,
region INTEGER CHECK(region BETWEEN 0 AND 2047),
product INTEGER CHECK(product BETWEEN 0 AND
999999),
price NUMERIC (12,2),
quantity NUMERIC(8,2),
PRIMARY KEY (product, date, region),
CLUSTERING UBTREE ON {product, date, region})

Figure 5-1 Create statement for a UB-Tree

With the kernel integration the UB-Tree query
functionality is hidden by the standard SQL interface, i.e.,
no extension of the DML is required. The extensions of
the query engine, especially of the optimizer, will take
care of the appropriate usage of the new index, e.g.,
processing a multidimensional range query on the UB-
Tree if possible.

5.2 Handling Multidimensional Range Queries
One of the big advantages of the UB-Tree is the efficient
processing of multidimensional range queries. State-of-
the-art query engines usually only extract the most
selective predicate from the query to pass it down to the
selected index. In case of the UB-Tree the query engine
has to take care of generating a suitable query box or a set
of query boxes from the query predicate. This requires
passing down a more complex structure instead of a single
range to the underlying index module. We will specify an
optimizer rule that allows for generating a query box from
the query. We introduce the physical operator

),(qbRRQ that represents a range query specified by
the query box qb on a relation R. Let A be the set of

attributes of R with attribute
[]ii AA max;mindomain thehaving i∈ . The query box

qb specifies for each attribute the restricted range, i.e.,

[]iiiii qhqlAqhqlqb ;for

......

......

∈















= 2. For each

),(, qbASAA ii ∈ specifies the selectivity of attribute

iA in qb.

Each restriction on a table specified by the predicate Ψ
in the WHERE clause is represented by the logical
operator)(RΨσ . This is transformed to

))(()(RR ΡΞΨ = σσσ with Ρ corresponding to the set
of multidimensional query boxes on R, i.e.,

[]I
n

j

i
j

i
jji baA

1
m1 ; where...

=
∈=∨∨=Ρ ρρρ , and

Ξ corresponding to the restrictions, which cannot be
mapped to multidimensional query boxes, e.g., ji AA < .

We can therefore write:))(()(U
i

RR
iρσσσ ΞΨ = .

Example: The SQL statement
SELECT count(*)
FROM R
WHERE A1 BETWEEN 0 AND 10 AND A2 IN
[3,12,31] AND A3 BETWEEN 3 AND 9
leads to the predicate describing 3 query boxes:

[] [] []()
[] [] []()
[] [] []()9;331,3110;0

9;312,1210;0

9;33,310;0

321

321

321

∈∧∈∧∈
∨∈∧∈∧∈

∨∈∧∈∧∈=Ρ

AAA

AAA

AAA

As the example shows, the identification of query boxes
from arbitrary predicates is a complex problem by its own
the query optimizer needed to be enhanced for. The
TransBase optimizer already recognized a special subset
of multidimensional intervals, namely those, which can be
directly processed by B-Trees intervals. This greatly
facilitated the extension of the optimizer to general
multidimensional intervals.
Let AP ⊆ be the set of attributes of R, which are

specified in iρ . We can specify the following rule to
create the corresponding query box:



 ∈=



 ∈=

 otherwise max
 if

 and
otherwise min

 if
with

),(BY)(REPLACE

i

ii
i

i

ii
i

PAb
qh

PAa
ql

qbRRQR
iρσ

2 Note: In this paper we only deal with closed intervals
(≤≥,) for restrictions. Other restrictions (<>,), which
cannot be mapped to closed intervals (e.g., for non-
discrete domains), are handled with appropriate post
filtering.

Given such a query box, the optimizer then can decide
which access method to use to answer the query.

6 UB-Tree Enhancements
This section deals with some enhancements of the UB-
Tree and its algorithms, which have not been integrated
into the TransBase kernel yet. These improvements are
not necessary for a successful integration of the UB-Tree,
but they provide further performance optimizations.

6.1 Optimizing Space Partitioning for Range Queries
The UB-Tree range query performance is enhanced by a
modification of the page splitting algorithm leading to a
better space partitioning. The so-called ε-Split chooses the
split point in an interval of ε% of the page capacity
around the middle of the page and not directly in the
middle.
That is, it chooses the optimal split point according to the
space partitioning in a certain range of tuples around the
middle of the page, but not only between the two tuples in
the middle. The cost for the optimal splitting is the
reduced page utilization guarantee of %%50 ε− . The
enhanced split algorithm requires the two tuples, which
are %ε away to the left and to the right from the middle
of the page, whereas the standard version takes just the
two tuples to the left and right of the page middle. Figure
6-1 shows the same two-dimensional UB-tree with
standard split point calculation and with ε-Split (ε = 14%):
the effect is clearly visible.

(a) w/o -Split (b) with -Split(a) w/o -Split (b) with -Split
Figure 6-1: Influence of Epsilon-Split on the Space

Partitioning

The optimal choice of ε presents a tradeoff between
storage utilization and quality of space partitioning: the
higher ε the better the space partitioning and as
consequence the range query performance but the lower
the worst-case storage guarantee. However, empirical
results (Figure 6-2 shows the results of 6-dimensional
range queries with varying volume and location on a 6D
UB-Tree for growing ε) have shown that already a small ε
(around 5%) leads to significant improvement of the
space partitioning.

0%

5%

10%

15%

20%

25%

0% 1% 3% 5% 6% 8% 10% 16% 100%

Epsilon

S
av

ed
 r

eg
io

n
 a

cc
es

se
s

in
 c

o
m

p
ar

is
o

n
 t

o

n
o

n
-e

p
si

lo
n

 s
p

lit
ti

n
g

Figure 6-2 Influence of Epsilon Splitting on Range Query

Performance

For ε >15% no significant improvements in the space
partitioning are observed. It is important to note that the ε-
Split has the same complexity as the regular split
algorithm, and that for the individual UB-Tree ε is a
performance tuning parameter.

6.2 Dealing with multiple query boxes
Often complex queries do not only lead to one query box,
but to a set of query boxes on the multidimensional space.
Processing the set of query boxes sequentially with the
UB-Tree range query algorithm may lead to unnecessary
page accesses in the cases where query boxes overlap the
same regions. As consequence, performance problems
arise if the already accessed page cannot be cached over
the total processing of the query box set. The algorithm
presented in [FMB99] solves this problem by handling all
query boxes simultaneously. It guarantees that each
region/page is accessed only once, leading to significant
performance improvement over the standard UB-Tree
range query algorithm in case of query boxes overlapping
many pages together.

6.3 Reducing Post Filtering of the Range Query
Algorithm

Post filtering is only necessary for regions not fully
contained within the query box. We provide an algorithm
similar to getNextZvalue and with the same complexity,
which determines for a region if it is completely
overlapped by a query box or not. This is an important
performance optimization for large query boxes as most
regions will be completely inside of the query box.

7 Performance Evaluation
In this section we provide some measurement results that
show the performance gains that are achieved by the
kernel integration of the UB-Tree into the TransBase
database system (called TransBase Hyper Cube, Figure
7-1b). We are comparing with our prototype
implementation of the UB-Tree (called UB/API, Figure
7-1a) and the native TransBase B-Tree. Our previous
comparisons of the UB-Tree with competing index
methods of TransBase and other RDBMSs [MZB99,
MRB99], based on the UB/API, yielded significant

performance improvements. The speed-up achieved by
the kernel integration applies directly to the results of our
previous comparisons, yielding a speed-up of several
orders of magnitude of UB-Trees compared to the
methods used in these papers.
Our prototype implementation of the UB-Tree is realized
as an application on top of an existing DBMS using the
standard SQL interface (currently TransBase, Oracle,
Informix, SQL Server 7, and DB2 are supported). The
leaf pages of the UB-Tree are stored as single tuples in a
relation and the index part is mapped to the B-Tree index
of the underlying system.

Application

UB-Library

TransBase

Application

TransBase
Hyper Cube

(a) UB/API (b) TransBase Hyper Cube

Inter process
communication

Figure 7-1: Implementation as UB/API versus TransBase

Hyper Cube

The measurements were conducted on a real world data
warehouse provided by one of our project partners, a
market research company. The measurements consist of
604 real world reports on a three dimensional (time,
products, segments) star-schema with a total of around
4GB of data. The reports represent typical analysis of
product hitlists in a given period, market share, market
trends, and the like, which result in three-dimensional
range queries on the fact table.

We created three instances of the fact table: two indexed
by UB-Trees (integrated and external), and one indexed
by a compound B-Tree on the three dimension keys. From
the reports we only measured the fact table access, as the
further processing is identical for all methods. Table 7-1
shows the measurement results over all 604 reports.
On average, the integrated UB-Tree is about 2-3 times
faster than UB/API (see Table 7-1). As mentioned above,
this speed up applies directly to the performance
advantage over both clustering compound B-Trees as well
as index intersection of multiple secondary B-Trees or
bitmap indexes.

Speedup Factor
UB/API / HCI

Speedup Factor
Compound/HCI

Average 2,8 11,5
1. Quartil 2,3 8,5
Max 3,0 5,0
Min 3,0 2,3
3. Quartil 2,8 13,2
Table 7-1 Summary of Report Results (average response

times in seconds)

The significant performance improvement of the kernel
integration can be explained by the design of UB/API.
First, each fetch of a page requires one SQL statement;
this leads to heavy client/server communication together
with the DBMS overhead of processing the query, which
sums up to about 30% of the total processing time of a
range query. Second, we had to implement some database
functionality, like page and tuple handling, post filtering
etc., which causes additional overhead. Putting all
together, the above mentioned speedup factor fits our
expectation.

8 Related Work
Integrating new index methods into a database kernel is
often regarded as a too costly task. On the other side,
database vendors have recognized the need for more
flexible, powerful indexing methods, often tailored to
specific application domains. As consequence, most
vendors have extended their standard B-Trees and provide
interfaces that allow the users to include their own
functions for the index key computation. Some systems
even allow the user to implement their own index
structures in external modules. We will point out the
deficiencies of these approaches in this section.

8.1 Function-based B-Trees
For standard B-Trees the key of the index consists of a
subset of the attributes of the underlying table T. A more
general idea is to use a function to compute the key values
for the tuples Tt ∈ . We will refer to this type of B-Trees
as function-based B-Trees or short BF-Trees.
Example: A standard B-Tree is a special instance of the
BF-Tree where F is the projection of the key attributes
from the tuple. B-Trees storing SOUNDEX codes or case-
insensitive keys are other well-known examples.
BF-Trees were motivated by the need to support indexing
on user-defined types in object-relational systems.
Commercial implementations are provided for example
by function-based indexes in Oracle8i [Ora99], functional
indexes in Informix [Inf99], the high level indexing
framework of IBM DB2 [CCF+99], or as indexes on
computed columns in MS SQL Server 2000 [MS00].
However, BF-Trees do not allow for the integration of
new query algorithms, like the UB-Tree range query
algorithm. Therefore, implementing the UB-Tree as a BF-
Tree with UBKEY as F will not lead to the expected
performance.

8.2 Extended Index Interfaces
Some commercial database management systems provide
even more enhanced indexing interfaces, which allow for
implementation of arbitrary index structures by the user in
external modules (e.g., Extensible Indexing API by
Oracle [ORA99], Informix Datablade API [Inf99]).
Analogous to the GiST framework (see next section), the
user has to provide a set of functions/operators that are
used by the database server to access the index. The index

itself can be either stored inside the database (e.g., as an
IOT in Oracle) or in external files. The problem of these
index interfaces is threefold: performance of the index,
optimizer support, and locking and recovery. The
performance problem of extended index interfaces has
two aspects: first, only non-clustered indexes are
supported. Index structures, whose performance is
achieved by appropriate clustering, like the UB-Tree that
clusters according to multiple dimensions, can therefore
not be implemented via these interfaces. In addition, as
the DBMS internal modules cannot be used, efficient page
and tuple handling has to be implemented. This leads to
significant coding effort for the index implementation.
The coupling of the external index with the query
optimizer is achieved by providing cost functions for the
index operations. However, to our knowledge, there is no
way to add rules to guide the optimizer with heuristics,
which is very important to achieve optimal query plans.
Another significant drawback of these ‘add-on’
approaches is the handling of locking and recovery. The
external indexes are not tightly coupled with the DMBS
locking and recovery services. As consequence, the index
implementation has to take care of recovery issues itself
[RSS+99], and the lock granularity is often the complete
index itself.
Taking all these aspects into account, in case of the UB-
Tree the kernel integration is much more favorable than
an implementation as an external index.

8.3 GiST – Framework
The General Search Tree (GiST) approach of [HNP95]
provides a single framework for any tree-based index
structure. The GiST framework provides the basic
functionality for trees, e.g., insertion, deletion, splitting,
search, etc. The individual semantics of the index are
provided by the user with a key class, which implements
six key functions the basic functions rely on. As
consequence, the user has only to change a small part of
the code to implement various index methods (e.g., B+-
Trees, R-Trees). In general, the UB-Tree fits perfectly
into the GiST framework, but efficient implementation
would require more user control at two points: search
algorithm and splitting. The major drawback of the first
GiST approach is the fixed query functionality – the user
cannot adapt the search algorithm to the specific indexing
technique, which in many application scenarios will lead
to significant performance problems. The UB-Tree range
query algorithm is one example of such a search
algorithm. The extension of [Aok98], which gives the
user the control of the tree traversal during search, should
suffice for an efficient range query implementation. With
respect to splitting, the ε-Split (see Section 6.1) cannot be
implemented as long as the Penalty function of GiST only
takes two tuples (entries) of a page into account, but not a
set of tuples. Putting all together, if the extended GiST
framework is available, the benefits described in [Kor99]
apply to the UB-Tree integration as well.

9 Summary and Conclusion
Multidimensional access methods are not widely
supported by commercial database management systems
despite their performance impacts in various application
domains. This is mostly due to the fact that a kernel
integration of these sophisticated data structures is
considered to be a very costly and complex task. In this
paper we have shown that this is not the case for the UB-
Tree, as it heavily relies on the well-known B-Tree,
reducing the complexity of the additional algorithms to a
minimum. The UB-Tree was integrated within one year,
and by now TransBase Hyper Cube is a commercially
available product. Figure 9-1 shows the changes of the
individual database kernel modules required by the UB-
Tree integration.

Configuration and minor extensionConfiguration and minor extension

Access Structure
Manager

Query
Processor

Lock
Manager

Catalog
Manager

Creation of UB-Trees

SQL
Compiler/Interpreter

Extend Parser with
DDL statements
for UB-Trees

Query
Optimizer

New Rules+Cost Model
for UB-Trees

UB-Tree Range
Query Support

UB-Tree Modules:
Transformation Functions, Page Splitting,
Range Query

Storage
Manager

Recovery
Manager

Buffer
Manager

Communication Manager

Access Structure
Manager

Query
Processor

Lock
Manager

Catalog
Manager

Creation of UB-Trees

SQL
Compiler/Interpreter

Extend Parser with
DDL statements
for UB-Trees

Query
Optimizer

New Rules+Cost Model
for UB-Trees

UB-Tree Range
Query Support

UB-Tree Modules:
Transformation Functions, Page Splitting,
Range Query

Storage
Manager

Recovery
Manager

Buffer
Manager

Communication Manager

Extension of existing codeExtension of existing code

New modulesNew modules

Figure 9-1 Affected Modules of TransBase

The shaded boxes mark the modifications in the single
modules, where the darker shading signals the more
complex modifications. The performance gains show that
the effort of the integration is worth it: with up to a factor
of 3 faster than the prototype implementation on top of a
DBMS, the kernel integrated UB-Tree provides
significantly better performance than traditional access
methods in various application domains. The big
advantage of the kernel integration in comparison with
other approaches is the tight coupling with the query
optimizer. This allows for optimal usage of the UB-Tree.
As we do not rely on any TransBase specific features for
the UB-Tree algorithms, we expect the same integration
effort for other database systems as well as long they
provide clustering B-Trees on computed keys.

An issue not addressed in this paper is the question, when
to use the UB-Tree for a specific application scenario and
which UB-Tree organization (e.g., number of dimensions)
is optimal. This problem is addressed in what we call
physical data modeling and we are in the progress of
identifying design rules for optimal indexing strategies
with UB-Trees.
Summarizing our experiences, UB-Trees smoothly
integrate into the indexing engine and extend the B-Tree
concept in order to handle multiple dimensions
symmetrically. They are extremely useful for both
clustering tables as well as covering secondary indexes
(secondary indexes that contain all attributes required by a
given query) to speed up multidimensional range queries.
Extending the optimizer allows for good combination
with single attribute access methods in physical data
modeling and query processing, which will lead to
efficient and flexible index schemes.

Acknowledgements
We thank our project partners the European Commission,
Teijin Systems Technology, and Microsoft Research for
funding this research work. We also thank our master
student Stephan Merkel for his effort in doing the
performance measurements reported in this paper. In
addition we thank Goetz Graefe for his constructive
comments.

References

[Aok98] P. M. Aoki. Generalizing “Search” in
Generalized Search Trees. Proc. of ICDE
1998.

[Bay97] R. Bayer. The universal B-Tree for
multidimensional Indexing: General
Concepts. World-Wide Computing and Its
Applications ‘97 (WWCA ‘97). Tsukuba,
Japan, 10-11, Lecture Notes on Computer
Science, Springer Verlag, March, 1997.

[BSS+99] R. Bliujute, S. Salentis, G. Slivinskas, and
C.S. Jensen. Developing a DataBlade for a
New Index. Proc. of ICDE 1999.

[BU77] R. Bayer and K. Unterauer. Prefix B-Trees.
ACM TODS 2(1), 1977, pp. 11-26.

[CCF+99] W. Chen, J.-H. Chow, Y.C. Fuh, J.
Grandbois, M. Jou, N. Mattos, B. Tran, and
Y. Wang. High Level Indexing of User-
Defined Types. Proc. of 25th VLDB,
Edinburgh, Scotland, 1999.

[CM98] K. Chakrabarti and S. Mehrotra. Dynamic
Granular Locking Approach to Phantom
Protection in R-Trees. Proc. of ICDE, 1998.

[FMB99] R. Fenk, V. Markl, and R. Bayer. Improving
Multidimensional Range Queries of non
rectangular Volumes specified by a Query
Box Set. Proc. of International Symposium
on Database, Web and Cooperative Systems

(DWACOS), Baden-Baden, Germany, 1999
[HNP95] J. M. Hellerstein, J. F. Naughton, and A.

Pfeffer. Generalized Search Trees for
Database Systems. Proc. of 21st VLDB,
Zurich, Switzerland, 1995.

[HR96] E.P. Harris, and K. Ramamohanarao. Join
algorithm costs revisited. VLDB Journal, 5,
1996

[Inf99] Informix Software Incorporation. Informix
Dynamic Server with Universal Data
Option Version 9.1.X Documentation. 1999.

[LKC99] J.-H. Lee, D.-H. Kim, C.-W. Chung. Multi-
dimensional Selectivity Estimation Using
Compressed Histogram Information. Proc.
of SIGMOD99, Philadelphia, U.S.A., 1999

[KB95] M. Kornacker and D. Banks. High-
Concurrency Locking in R-Trees. Proc. of
21st VLDB, Zürich, Switzerland, 1995.

[Kor99] M. Kornacker. High-Performance
Extensible Indexing. Proc. of the 25th
VLDB, Edinburgh, Scotland, 1999.

[Mar99] V. Markl. MISTRAL: Processing Relational
Queries using a Multidimensional Access
Technique. Ph.D. Thesis, Technische
Universität München, 1999.

[MRB99] V. Markl, F. Ramsak, and R. Bayer.
Improving OLAP Performance by
Multidimensional Hierarchical Clustering.
Proc. of IDEAS’99, Montreal, Canada,
1999.

[MS00] Microsoft Coperation. SQL Server 2000
Books Online. 2000.

[MZB99] V. Markl, M. Zirkel, and R. Bayer.
Processing Operations with Restrictions in
Relational Database Management Systems
without external Sorting. Proc. of ICDE,
Sydney, Australia, 1999.

[OM84] J. A. Orenstein and T.H. Merret. A Class of
Data Structures for Associate Searching.
Proc. of ACM SIGMOD-PODS Conf.,
Portland, Oregon, 1984, pp. 294-305.

[Ora99] Oracle Corporation. Oracle 8i Server,
Release 8.1.5 Documentation. 1999.

[PI97] V. Poosala, and Y.E. Ioannidis. Selectivity
Estimation Without the Attribute Value
Independence Assumption. Proc of the 23th
VLDB, 1997

[Tra98] TransAction Software GmbH. TransBase
Documentation. 1998.

[WKW94] K.Y. Whang, S.W. Kim, G. Wiederhold.
Dynamic Maintenance of Data Distribution
for Selectivity Estimation. VLDB Journal
Vol. 3, No. 1, 1994

