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Abstract 
Multidimensional access methods have shown 
high potential for significant performance im-
provements in various application domains. 
However, only few approaches have made their 
way into commercial products. In commercial 
database management systems (DBMSs) the B-
Tree is still the prevalent indexing technique. 
Integrating new indexing methods into existing 
database kernels is in general a very complex 
and costly task. Exceptions exist, as our experi-
ence of integrating the UB-Tree into TransBase, 
a commercial DBMS, shows. The UB-Tree is a 
very promising multidimensional index, which 
has shown its superiority over traditional access 
methods in different scenarios, especially in 
OLAP applications. In this paper we discuss the 
major issues of a UB-Tree integration. As we 
will show, the complexity and cost of this task is 
reduced significantly due to the fact that the UB-
Tree relies on the classical B-Tree. Even though 
commercial DBMSs provide interfaces for index 
extensions, we favor the kernel integration be-
cause of the tight coupling with the query opti-
mizer, which allows for optimal usage of the UB-
Tree in execution plans. Measurements on a 
real-world data warehouse show that the kernel 
integration leads to an additional performance 
improvement compared to our prototype imple-
mentation and competing index methods. 

1 Introduction 
Various research approaches in the past have shown that 
multidimensional access methods (MAMs) have a high 
impact on different database application domains like data 
warehousing, data mining, or geographical information 
systems. However, despite the vast research effort MAMs 
have not made their way into commercial database 
management systems on a broad scale. This is mostly due 
to the fact that the integration of these complex data 
structures into an existing database kernel is fairly 
complicated. Especially concurrency and recovery issues, 
which are as important as performance issues for 
commercial systems, are major obstacles. For most 
MAMs new solutions to these problems, e.g., locking for 
R-Trees [KB95, CM98], have to be developed, as the new 
concepts do not allow reusing standard techniques. This 
makes the kernel integration of an MAM a very costly 
task in the range of multiple man-years. As consequence 
many DBMS producers have not integrated the new 
technology into their systems, but offer it only as add-on 
features. So, are MAMs just another nice research 
gimmick, but commercially not affordable? No, in this 
paper we will show that there are MAMs, which provide 
good performance on one side and can smoothly be 
integrated into a DBMS kernel on the other side. A 
category of MAMs is based on the combination of one-
dimensional index structures and space-filling curves. 
One prominent example is the UB-Tree [Bay97], which 
combines the B-Tree and the Z-curve. Together with its 
sophisticated query processing algorithms it has proven its 
performance advantages in numerous application 
domains. Because the UB-Tree is based on the standard 
B-Tree, which is the basic index structure in almost every 
commercial DBMS, the task of integrating this MAM into 
an existing kernel becomes less complex and less costly. 
The kernel integration of the UB-Tree into TransBase 
[Tra98] (as part of an ESPRIT project funded by the 
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European Commission) has been accomplished within 
one year. TransBase is a full-scale relational database 
system, which conforms to the SQL-92 standard. 
TransBase, which handles databases up to 8 Terabyte of 
data, is used especially in the field of CD-ROM retrieval 
systems, and has an installation base of well beyond 
50,000 sites worldwide. 
In this paper, we will present the major issues and 
problems that have to be tackled and solved for a suc-
cessful UB-Tree kernel integration. The paper is 
organized as follows: Section 2 presents the basic con-
cepts behind the UB-Tree and Section 3 deals with the 
issue of the UB-Tree address representation and the 
implementation of the standard UB-Tree operations. 
Section 4 addresses the specific query operation of the 
UB-Tree and Section 5 tackles the important topic of 
required optimizer extensions to efficiently support the 
UB-Tree. Section 6 covers additional enhancements for 
the UB-Tree and Section 7 presents the performance 
evaluation. Section 8 summarizes related work and 
Section 9 concludes the paper. 

2 Basic Concept of the UB-Tree 
The basic idea of the UB-Tree [Bay97] is to use a space-
filling curve to map a multidimensional universe to one-
dimensional space. Using the Z-Curve (Figure 2-1a) for 
preserving multidimensional clustering as good as 
possible it is a variant of the zkd-B-Tree [OM84].  
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Figure 2-1 Z-Addresses and Z-Regions 

A Z-Address α = Z(x) is the ordinal number of the key 
attributes of a tuple x on the Z-Curve, which can be 
efficiently computed by bit-interleaving (see Section 3.1). 
A standard B-Tree is used to index the tuples taking the 
Z-Address of the tuples as keys.  

The fundamental innovation of UB-Trees is the concept 
of Z-Regions to create a disjunctive partitioning of the 
multidimensional space. This allows for very efficient 
processing of multidimensional range queries (see Section 
4). A Z-Region [α : β ] is the space covered by an interval 
on the Z-Curve and is defined by two Z-Addresses α and 
β. We call β  the region address of [α : β ]. Each Z-
Region maps exactly onto one page on secondary storage, 
i.e., to one leaf page of the B-Tree. 
For an 2 dimensional universe of size 8×8, Figure 2-1b 
shows the corresponding Z-addresses. Figure 2-1c shows 
the Z-region [4: 20] and Figure 2-1d shows a partitioning 
with five Z-regions [0 : 3],[4 : 20], [21 : 35], [36 : 47] and 
[48 : 63]. Assuming a page capacity of 2 points, Figure 
2-1e shows ten points, which create the partitioning of 
Figure 2-1d.  
The details of the UB-Tree algorithms are described in the 
following sections. 

3 UB-Tree Address Representation and 
Standard Operations 

For the rest of the paper we will refer to the function 
computing the Z-Addresses as UBKEY and to the keys as 
Z-values. It is important to note that the UB-Tree 
algorithms can be implemented and integrated without 
fundamental changes to the query processing of the 
database kernel. They do not require special tuple 
handling or other significant modifications, as the 
following sections show. 

3.1 Address Representation and Z-value Computation 
An important question for the implementation of the UB-
Tree inside the database kernel is how to represent the Z-
values. All algorithms for the UB-Tree basically rely on 
Z-values in the format of variable length bitstrings 
(trailing zeros are omitted to reduce storage 
requirements). The operations on Z-values manipulate 
single bits and copy parts of the bitstring. The UBKEY 
function can be efficiently implemented, as it requires 
only reading the specified index attributes bitwise and 
writing the bits at the corresponding positions in the 
resulting Z-value. As input the UBKEY function requires 
a bitstring representation of the attribute values. The 
natural order ≤  of the attribute values in the original 
domain A has to correspond to the bit-lexicographical 
order bitstr≤ on bitstrings, i.e., 

)(     )(  bitstr jiji abitstrabitstraa ≤⇔≤ , where 

[ ] }1,0 | { : *∈→ bbAbitstr generates the corresponding 
bitstring. For example, in case of unsigned integers and 
strings identitybitstr =:  while for signed integers the 
bitstr function has to take care of the sign bit.  

To compute the Z-value of a tuple, we interleave the bits 
of the bitstring representation of the key attributes (see 
Figure 3-1). 
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Figure 3-1 Calculation of Z-values by bit-interleaving the 

transformed attributes 

For the following illustration we assume that all bitstrings 
have the same length steplength; t[i] returns the ith 
attribute of tuple t; bitstr[i] returns the ith bit of the 
bitstring bitstr (the highest order bit has number 0). We 
partition a Z-value into steps. A step consists of all bits 
from the input bitstrings, which have the same bit ordinal, 
i.e., step 0 contains the highest order bits from all input 
values (see Figure 3-1). We require the number of 
dimensions d (we assume that the key attributes are the 
first d attributes of the tuple) of the used UB-Tree. Figure 
3-2 shows the pseudo code for the basic bit-interleaving 
algorithm.  

Z-value UBKEY(Tuple t){ 
int i,s; 
int bp;  //the bit position in the Z-value 
Z-value addr; //the result Z-value 
Bitstring bs[dimno]; // bitstring representation of the attribute 
values 
//Transformation of the key attributes 
for (i=0; i < d; i++) { 
// transformation of the attribute to a bitstring depends on the attribute 
type 
 bs[i] = TransformAttribute(t[i]); 
} 
//Bit-interleaving – Calculation of the Z-value 
bp=0; //starting with the first bit of the Z-
value 
//looping first over dimensions then over steps realizes the bit-
interleaving 
for (s=0;s < steplength; s++) { 

for(i=0; i < d; i++) { 
 // the bpth bit of the Z-value is 
 // set to the sth bit of the ith bitstring 
 addr[bp]=bs[i][s]; 
 bp++; //advance to next bit of Z-value 
 }} 

return addr;} 
Figure 3-2: Basic UBKEY Function 

It is also possible to use other transformation functions for 
generating the bitstring for an attribute value, allowing a 
more powerful semantics, e.g., soundex codes or case 
insensitive search on strings. As consequence, the bitstr 
function has to be adapted for the individual data types 
supported by the UB-Tree. If possible, it is useful to 
normalize attributes to unsigned integers starting with 0 as 
one step of the transformation, as this allows for a much 
better space partitioning with shorter Z-values. One 
example for normalization for complex data types is 
MHC [MRB99]. Other possibilities for normalization 
include hashing or more complex non-linear methods. 

Note that complex normalization may lead to significant 
performance overhead, which may then not be neglected 
any more. Our standard normalization techniques just 
require a few microseconds of CPU cycles and therefore 
do not affect the address calculation performance. 

3.2 Insertion, Deletion, Update 
The basic algorithms of the UB-Tree are handled by the 
underlying B-Tree. To perform an insertion, deletion or 
update one just has to compute the Z-value corresponding 
to the tuple. The underlying B-Tree uses that Z-value to 
determine the page where the tuple is stored and processes 
the operation as usual. As consequence, the same 
performance guarantees as for the basic operations on B-
Trees can also be given for the basic operations of the 
UB-Tree. Figure 3-3 shows the code for insertion, which 
is similar to deletion and update. 

Status UBTree_insertTuple(Tuple t) 
{ 
return BTree_insertTuple(UBKEY(t),t); //call to B-Tree 
standard insertion algorithm, inserting tuple t with key UBKEY(t)  
} 

Figure 3-3: Insertion Function 

3.3 Page Splitting 
The split algorithm of the underlying B-Tree handles the 
page splitting in UB-Trees. Only the calculation of the 
page separator has to be modified, as the page split (i.e., 
region split for UB-Trees) strategy is crucial for the range 
query performance of the UB-Tree by influencing the 
space partitioning. This modification adds no complexity 
to the split costs as it is done in O(n) bit operations, where 
n is the length of the Z-value in bits, and the worst case 
page utilization of 50% is still guaranteed [Mar99]. 
The goal of region splitting is to create rectangular 
regions whenever possible to reduce the number of 
regions overlapped by a range query. This can be 
achieved by choosing the shortest Z-value (i.e., the Z-
value that has as many trailing zero bits as possible) 
between the two middle tuples s and t as new separator, 
instead of s, t or another Z-value in the middle of the 
page. Figure 3-4 shows the split algorithm of UB-Trees. 

Status UBTree_splitPage(Page P, Tuple s, Tuple 
t) { 
Z-value sep; 
sep=UBTree_calculateSeparator(UBKEY(s),UBKEY(t)); 
//Calculating the best separator between two Z-values, i.e., the shortest 
Z-value between UBKEY(s) and UBKEY(t) 
BTree_splitPage(P,s,t,sep); // Btree_splitPage is the 
standard algorithm of the Btree: It splits page P between the two tuples s 
and t with sep as the separator between the two generated pages 
} 

Figure 3-4 Page Split algorithm of UB-Trees 

The advantage of this split strategy is twofold: first, better 
range query performance on average; second, shorter 
separators lead to a more compact index part of the UB-
Tree, a phenomenon also exploited in Prefix-B-Trees 
[BU77]. 



4 Range Query Processing  
Processing a multidimensional range query, a UB-Tree 
retrieves all Z-regions, which are properly intersected by 
the query box [Mar99]. Due to the mapping of the 
multidimensional space to Z-values, this results in a set of 
intervals on the B-Tree storing the Z-values ( 

Figure 4-1). 
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Figure 4-1: How query boxes map to a set of Z-value 

intervals 

A B-Tree answers sets of interval restrictions on its key 
efficiently by traversing the corresponding intervals of 
pages directly on the leaf node level. For large B-Trees, 
i.e., when the index part cannot be completely cached, the 
processing is improved in TransBase as it supports jumps 
in the index part of the B-Tree, instead of starting at the 
root for each interval. Relying on this standard technique, 
the main task of the UB-Tree range query algorithm is to 
efficiently calculate the set of one-dimensional intervals 
of Z-values from one multidimensional interval.  

4.1 UB-Tree Range Query Algorithm 
One possibility of processing UB-Tree range queries is to 
compute all Z-value intervals (cf.  

Figure 4-1) for a query box in advance before accessing 
the B-Tree. Due to the nature of the Z-curve this may lead 
to a large set of intervals, many of which may be located 
in the same Z-Region. This naive approach will either 
result in multiple accesses to the same B-Tree page or will 
require calculation effort to identify all intervals 
belonging to one page. The resulting processing overhead 
is avoided by constructing the intervals on the fly, 
processing the query box page-by-page. As a consequence 
we use the page-by-page approach for the kernel 
integration. Iteratively constructing the intervals on the fly 

also has the advantage of providing the first result tuples 
earlier, which is good for pipelining. However it requires 
post filtering of the retrieved pages. 

The iterative range query algorithm (see Figure 4-2) for 
the UB-Tree works as follows. Let the multidimensional 
range restriction be specified by a query box Q with a 
starting corner and an ending corner, which are given by 
the two tuples ql resp.  qh (UBKEY(ql) < UBKEY(qh)). 
First the algorithm computes the Z-values for ql and qh, 
then the region containing ql is located1. Let P, Q be two 
adjacent pages in the UB-Tree and the Z-value sep be the 
separator between the two pages with 

)()( :, sUBKEYseptUBKEYQsPt <≤∈∀∈∀ . We then 
call sep the end or region address of the region 
corresponding to page P. The range query algorithm then 
iteratively determines all the regions intersected by the 
query box. This is achieved by calculating the Z-value for 
the next intersection point of the Z-curve with the query 
box based on the currently processed region/page (see 
next section).  

Status UBTree_Range_Query(Tuple ql, Tuple qh) { 
Z-value start = UBKEY(ql); 
Z-value end = UBKEY(qh); 
Z-value cur = start; 
While (1) { //continue as long we are in the query box 
 cur = getRegionSeparator(cur); // getting the 
address of the region containing cur 
 FilterTuples(GetPage(cur), ql, qh); //post-
filtering of the tuples in the region  
 if (cur >= end) break; //stop once we covered the 
whole query box 
 cur = getNextZvalue(&cur, start, end); 
//calculation of next region 
}} 

Figure 4-2: Range Query Algorithm 

All these steps are performed in O(n) bit operations where 
n is the length of the Z-value [Mar99]. The separator 
computation and fetching of the page can be performed by 
one B-Tree access. After filtering out all matching tuples 
of a fetched page, they can be piped for further processing 
by the DBMS. 

4.2 Calculating the next intersection point 
Calculating the next intersection point is the crucial part 
of the UB-Tree range query algorithm. In the following 
we will show that this step only requires bit operations on 
Z-values and no I/O or B-Tree search is necessary. 
Starting point for getNextZvalue is the region address cur 
of the current region. The task now is to find the next 
intersection point of the Z-Curve with the query box Q. 
This intersection point nisp is the minimal Z-value larger 
than the current region address, which is inside Q, i.e., 

{ }( ) )()()(min QxcurxUBKEYxUBKEYnisp ∈∧>=  

                                                             
1 Note: ql and qh do not have to be tuples existing in the 
database – it is only important to which regions they are 
mapped according to the space partitioning. 



Figure 4-3 illustrates two examples of the next 
intersection point calculation for the dotted query box Q. 
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Figure 4-3 Region Address and Next Intersection Points 

In Figure 4-3a, the region address cur=A of region ρ 
yields B of region σ as the next intersection point with Q. 
Consequently the range query algorithm will continue 
with processing region σ. In this case, B is the direct 
successor of A on the Z-Curve, i.e., B=A+1. In Figure 
4-3b we are looking for the next intersection point for the 
region address cur=C of region σ. The call to 
getNextZvalue yields the Z-value D causing to process 
region υ next, skipping the four regions τ1, τ2, τ3, and τ4. 
Informally, the algorithm determines for the successor of 
a region address in which dimensions it is not contained 
in the query box. From this information it identifies the 
bits that have to be modified to generate the correct next 
intersection point. 
For the detailed description of the algorithm we introduce 
the following functions: BP(i,s) returns for each bit posi-
tion/step of a dimension i to which bit position in the 
resulting Z-value it corresponds; given a bit position bp in 
a Z-value the functions DIM(bp) and STEP(bp) will 
return the corresponding dimension resp. step. 
The first step is to increment the region address by one, 
i.e., nisp=cur+1. We then test if nisp is in the query box 

by bitwise comparing with the Z-values of ql and qh – we 
do not have to transform nisp back to Cartesian 
coordinates. During the comparison we also determine 
additional information for each dimension i: 
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If nisp is in qb then we have already found our next 
intersection point. If not, we have to determine the bits we 
have to set to 1 and set to 0 to get the correct nisp. Let be 

[ ])min( ioutstepoutStep = , and d the corresponding 
dimension. We have to distinguish two cases: first, if 
flag[d]=-1 then we have found the bit 
changeBP=BP(d,outstep) that we can safely set to 1 such 
that nisp > cur. Second, if flag[d]=1 then we have to find 
a lower bit position in nisp we can set to 1, because the bit 
specified by outstep has to be set to 0. In both cases the 
bits following the changed bit have to be adapted 
accordingly (see Figure 4-4).  

BP changeBP=BP(d,outstep); //we start with the minimal bit 
position that has to be changed 
int i; 
if (flag[d] == 1) // we cannot set this bit to 1, therefore we 
have to find a lower bit position we can safely set  
then { 

changeBP=max({bp|bp<changeBP and bp >= 
saveMax[Dim(bp)] and Val(nisp,bp)=0}); //maximal 
bitposition that is save to set to 1 

saveMin[DIM(changeBP)]=STEP(changeBP); 
flag[DIM(changeBP)]=0; 
} 

// now we can change the rest of the Z-value 
for(i=0;i<dimno;i++) { //for each dimension we determine 
how to change the bits 
if(flag[i]>=0) // we have not fallen below the minimum in this 
dimension 
then { 
 if(changeBP > BP(i,saveMin[i])) 
 then “set all bits of dim with bit positions 
> changeBP to 0” 
 else “set all bits of dim with bit positions 
> changeBP to the minimum of the query box in 
this dim” 
} 
else { // if we have fallen below the min in this dimension the lowest 
possible value is the min itself 
 “set the bits to the minimum of the query 
box in this dim” 
}} 

Figure 4-4 Pseudo code for parts of getNextZvalue 



5 Query Engine Extensions 
One of the major benefits of a kernel integration of the 
UB-Tree is the tight integration with the query engine. In 
the following we will discuss the most important issues 
that enable the query engine to use the UB-Tree in the 
most efficient way.  

5.1 General Extensions 
Supporting a new index method usually requires 
extension of schema information and DDL of the DBMS. 
For the UB-Tree the database catalog does not have to 
store additional information except the transformation 
function for each key attribute. The rest is also required 
by other index structures, for example, the index 
attributes, the number of dimensions, the domain of each 
attribute, etc. 
A new storage clause (CLUSTERING UBTREE ON 
{<set of attributes>}) in the DDL statement for creating a 
table specifies the creation of a UB-Tree index. 
Additionally, specifying the actual domains for the 
attributes indexed by the UB-Tree by check constraints 
allows for optimal multidimensional clustering. Figure 
5-1 shows the creation of a three-dimensional UB-Tree 
with two additional attributes. 

CREATE TABLE fact( 
date DATETIME [YY:DD] CHECK(date BETWEEN ‘1997-
1-1’ AND ‘2020-12-31’, 
region INTEGER CHECK(region BETWEEN 0 AND 2047), 
product INTEGER CHECK(product BETWEEN 0 AND 
999999), 
price NUMERIC (12,2), 
quantity NUMERIC(8,2), 
PRIMARY KEY (product, date, region), 
CLUSTERING UBTREE ON {product, date, region})  

Figure 5-1 Create statement for a UB-Tree 

With the kernel integration the UB-Tree query 
functionality is hidden by the standard SQL interface, i.e., 
no extension of the DML is required. The extensions of 
the query engine, especially of the optimizer, will take 
care of the appropriate usage of the new index, e.g., 
processing a multidimensional range query on the UB-
Tree if possible. 

5.2 Handling Multidimensional Range Queries 
One of the big advantages of the UB-Tree is the efficient 
processing of multidimensional range queries. State-of-
the-art query engines usually only extract the most 
selective predicate from the query to pass it down to the 
selected index. In case of the UB-Tree the query engine 
has to take care of generating a suitable query box or a set 
of query boxes from the query predicate. This requires 
passing down a more complex structure instead of a single 
range to the underlying index module. We will specify an 
optimizer rule that allows for generating a query box from 
the query. We introduce the physical operator 

),( qbRRQ  that represents a range query specified by 
the query box qb on a relation R. Let A be the set of 

attributes of R with attribute 
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operator )(RΨσ . This is transformed to 
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of multidimensional query boxes on R, i.e., 
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Example: The SQL statement 
SELECT count(*)  
FROM R 
WHERE A1 BETWEEN 0 AND 10 AND A2 IN 
[3,12,31] AND A3 BETWEEN 3 AND 9 
leads to the predicate describing 3 query boxes: 
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As the example shows, the identification of query boxes 
from arbitrary predicates is a complex problem by its own 
the query optimizer needed to be enhanced for. The 
TransBase optimizer already recognized a special subset 
of multidimensional intervals, namely those, which can be 
directly processed by B-Trees intervals. This greatly 
facilitated the extension of the optimizer to general 
multidimensional intervals. 
Let AP ⊆  be the set of attributes of R, which are 

specified in iρ . We can specify the following rule to 
create the corresponding query box: 
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2 Note: In this paper we only deal with closed intervals 
( ≤≥, ) for restrictions. Other restrictions ( <>, ), which 
cannot be mapped to closed intervals (e.g., for non-
discrete domains), are handled with appropriate post 
filtering.  



Given such a query box, the optimizer then can decide 
which access method to use to answer the query. 

6 UB-Tree Enhancements 
This section deals with some enhancements of the UB-
Tree and its algorithms, which have not been integrated 
into the TransBase kernel yet. These improvements are 
not necessary for a successful integration of the UB-Tree, 
but they provide further performance optimizations.  

6.1 Optimizing Space Partitioning for Range Queries 
The UB-Tree range query performance is enhanced by a 
modification of the page splitting algorithm leading to a 
better space partitioning. The so-called ε-Split chooses the 
split point in an interval of ε% of the page capacity 
around the middle of the page and not directly in the 
middle. 
That is, it chooses the optimal split point according to the 
space partitioning in a certain range of tuples around the 
middle of the page, but not only between the two tuples in 
the middle. The cost for the optimal splitting is the 
reduced page utilization guarantee of %%50 ε− . The 
enhanced split algorithm requires the two tuples, which 
are %ε  away to the left and to the right from the middle 
of the page, whereas the standard version takes just the 
two tuples to the left and right of the page middle. Figure 
6-1 shows the same two-dimensional UB-tree with 
standard split point calculation and with ε-Split (ε = 14%): 
the effect is clearly visible.  

(a) w/o -Split (b) with -Split(a) w/o -Split (b) with -Split  
Figure 6-1: Influence of Epsilon-Split on the Space 

Partitioning 

The optimal choice of ε presents a tradeoff between 
storage utilization and quality of space partitioning: the 
higher ε the better the space partitioning and as 
consequence the range query performance but the lower 
the worst-case storage guarantee. However, empirical 
results (Figure 6-2 shows the results of 6-dimensional 
range queries with varying volume and location on a 6D 
UB-Tree for growing ε) have shown that already a small ε 
(around 5%) leads to significant improvement of the 
space partitioning. 
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Figure 6-2 Influence of Epsilon Splitting on Range Query 

Performance 

For ε >15% no significant improvements in the space 
partitioning are observed. It is important to note that the ε-
Split has the same complexity as the regular split 
algorithm, and that for the individual UB-Tree ε is a 
performance tuning parameter. 

6.2 Dealing with multiple query boxes 
Often complex queries do not only lead to one query box, 
but to a set of query boxes on the multidimensional space. 
Processing the set of query boxes sequentially with the 
UB-Tree range query algorithm may lead to unnecessary 
page accesses in the cases where query boxes overlap the 
same regions. As consequence, performance problems 
arise if the already accessed page cannot be cached over 
the total processing of the query box set. The algorithm 
presented in [FMB99] solves this problem by handling all 
query boxes simultaneously. It guarantees that each 
region/page is accessed only once, leading to significant 
performance improvement over the standard UB-Tree 
range query algorithm in case of query boxes overlapping 
many pages together. 

6.3 Reducing Post Filtering of the Range Query 
Algorithm 

Post filtering is only necessary for regions not fully 
contained within the query box. We provide an algorithm 
similar to getNextZvalue and with the same complexity, 
which determines for a region if it is completely 
overlapped by a query box or not. This is an important 
performance optimization for large query boxes as most 
regions will be completely inside of the query box. 

7 Performance Evaluation 
In this section we provide some measurement results that 
show the performance gains that are achieved by the 
kernel integration of the UB-Tree into the TransBase 
database system (called TransBase Hyper Cube, Figure 
7-1b). We are comparing with our prototype 
implementation of the UB-Tree (called UB/API, Figure 
7-1a) and the native TransBase B-Tree. Our previous 
comparisons of the UB-Tree with competing index 
methods of TransBase and other RDBMSs [MZB99, 
MRB99], based on the UB/API, yielded significant 



performance improvements. The speed-up achieved by 
the kernel integration applies directly to the results of our 
previous comparisons, yielding a speed-up of several 
orders of magnitude of UB-Trees compared to the 
methods used in these papers.  
Our prototype implementation of the UB-Tree is realized 
as an application on top of an existing DBMS using the 
standard SQL interface (currently TransBase, Oracle, 
Informix, SQL Server 7, and DB2 are supported). The 
leaf pages of the UB-Tree are stored as single tuples in a 
relation and the index part is mapped to the B-Tree index 
of the underlying system. 

Application

UB-Library

TransBase

Application

TransBase
Hyper Cube

(a) UB/API (b) TransBase Hyper Cube

Inter process
communication

 
Figure 7-1: Implementation as UB/API versus TransBase 

Hyper Cube 

The measurements were conducted on a real world data 
warehouse provided by one of our project partners, a 
market research company. The measurements consist of 
604 real world reports on a three dimensional (time, 
products, segments) star-schema with a total of around 
4GB of data. The reports represent typical analysis of 
product hitlists in a given period, market share, market 
trends, and the like, which result in three-dimensional 
range queries on the fact table.  

We created three instances of the fact table: two indexed 
by UB-Trees (integrated and external), and one indexed 
by a compound B-Tree on the three dimension keys. From 
the reports we only measured the fact table access, as the 
further processing is identical for all methods. Table 7-1 
shows the measurement results over all 604 reports.  
On average, the integrated UB-Tree is about 2-3 times 
faster than UB/API (see Table 7-1). As mentioned above, 
this speed up applies directly to the performance 
advantage over both clustering compound B-Trees as well 
as index intersection of multiple secondary B-Trees or 
bitmap indexes. 

 
Speedup Factor 
UB/API / HCI 

Speedup Factor 
Compound/HCI 

Average 2,8 11,5 
1. Quartil 2,3 8,5 
Max 3,0 5,0 
Min 3,0 2,3 
3. Quartil 2,8 13,2 
Table 7-1 Summary of Report Results (average response 

times in seconds) 

The significant performance improvement of the kernel 
integration can be explained by the design of UB/API. 
First, each fetch of a page requires one SQL statement; 
this leads to heavy client/server communication together 
with the DBMS overhead of processing the query, which 
sums up to about 30% of the total processing time of a 
range query. Second, we had to implement some database 
functionality, like page and tuple handling, post filtering 
etc., which causes additional overhead. Putting all 
together, the above mentioned speedup factor fits our 
expectation. 

8 Related Work 
Integrating new index methods into a database kernel is 
often regarded as a too costly task. On the other side, 
database vendors have recognized the need for more 
flexible, powerful indexing methods, often tailored to 
specific application domains. As consequence, most 
vendors have extended their standard B-Trees and provide 
interfaces that allow the users to include their own 
functions for the index key computation. Some systems 
even allow the user to implement their own index 
structures in external modules. We will point out the 
deficiencies of these approaches in this section. 

8.1 Function-based B-Trees  
For standard B-Trees the key of the index consists of a 
subset of the attributes of the underlying table T. A more 
general idea is to use a function to compute the key values 
for the tuples Tt ∈ . We will refer to this type of B-Trees 
as function-based B-Trees or short BF-Trees. 
Example: A standard B-Tree is a special instance of the 
BF-Tree where F is the projection of the key attributes 
from the tuple. B-Trees storing SOUNDEX codes or case-
insensitive keys are other well-known examples. 
BF-Trees were motivated by the need to support indexing 
on user-defined types in object-relational systems. 
Commercial implementations are provided for example 
by function-based indexes in Oracle8i [Ora99], functional 
indexes in Informix [Inf99], the high level indexing 
framework of IBM DB2 [CCF+99], or as indexes on 
computed columns in MS SQL Server 2000 [MS00]. 
However, BF-Trees do not allow for the integration of 
new query algorithms, like the UB-Tree range query 
algorithm. Therefore, implementing the UB-Tree as a BF-
Tree with UBKEY as F will not lead to the expected 
performance.  

8.2 Extended Index Interfaces 
Some commercial database management systems provide 
even more enhanced indexing interfaces, which allow for 
implementation of arbitrary index structures by the user in 
external modules (e.g., Extensible Indexing API by 
Oracle [ORA99], Informix Datablade API [Inf99]). 
Analogous to the GiST framework (see next section), the 
user has to provide a set of functions/operators that are 
used by the database server to access the index. The index 



itself can be either stored inside the database (e.g., as an 
IOT in Oracle) or in external files. The problem of these 
index interfaces is threefold: performance of the index, 
optimizer support, and locking and recovery. The 
performance problem of extended index interfaces has 
two aspects: first, only non-clustered indexes are 
supported. Index structures, whose performance is 
achieved by appropriate clustering, like the UB-Tree that 
clusters according to multiple dimensions, can therefore 
not be implemented via these interfaces. In addition, as 
the DBMS internal modules cannot be used, efficient page 
and tuple handling has to be implemented. This leads to 
significant coding effort for the index implementation. 
The coupling of the external index with the query 
optimizer is achieved by providing cost functions for the 
index operations. However, to our knowledge, there is no 
way to add rules to guide the optimizer with heuristics, 
which is very important to achieve optimal query plans. 
Another significant drawback of these ‘add-on’ 
approaches is the handling of locking and recovery. The 
external indexes are not tightly coupled with the DMBS 
locking and recovery services. As consequence, the index 
implementation has to take care of recovery issues itself 
[RSS+99], and the lock granularity is often the complete 
index itself. 
Taking all these aspects into account, in case of the UB-
Tree the kernel integration is much more favorable than 
an implementation as an external index. 

8.3 GiST – Framework 
The General Search Tree (GiST) approach of [HNP95] 
provides a single framework for any tree-based index 
structure. The GiST framework provides the basic 
functionality for trees, e.g., insertion, deletion, splitting, 
search, etc. The individual semantics of the index are 
provided by the user with a key class, which implements 
six key functions the basic functions rely on. As 
consequence, the user has only to change a small part of 
the code to implement various index methods (e.g., B+-
Trees, R-Trees). In general, the UB-Tree fits perfectly 
into the GiST framework, but efficient implementation 
would require more user control at two points: search 
algorithm and splitting. The major drawback of the first 
GiST approach is the fixed query functionality – the user 
cannot adapt the search algorithm to the specific indexing 
technique, which in many application scenarios will lead 
to significant performance problems. The UB-Tree range 
query algorithm is one example of such a search 
algorithm. The extension of [Aok98], which gives the 
user the control of the tree traversal during search, should 
suffice for an efficient range query implementation. With 
respect to splitting, the ε-Split (see Section 6.1) cannot be 
implemented as long as the Penalty function of GiST only 
takes two tuples (entries) of a page into account, but not a 
set of tuples. Putting all together, if the extended GiST 
framework is available, the benefits described in [Kor99] 
apply to the UB-Tree integration as well. 

9 Summary and Conclusion 
Multidimensional access methods are not widely 
supported by commercial database management systems 
despite their performance impacts in various application 
domains. This is mostly due to the fact that a kernel 
integration of these sophisticated data structures is 
considered to be a very costly and complex task. In this 
paper we have shown that this is not the case for the UB-
Tree, as it heavily relies on the well-known B-Tree, 
reducing the complexity of the additional algorithms to a 
minimum. The UB-Tree was integrated within one year, 
and by now TransBase Hyper Cube is a commercially 
available product. Figure 9-1 shows the changes of the 
individual database kernel modules required by the UB-
Tree integration.  
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Figure 9-1 Affected Modules of TransBase 

The shaded boxes mark the modifications in the single 
modules, where the darker shading signals the more 
complex modifications. The performance gains show that 
the effort of the integration is worth it: with up to a factor 
of 3 faster than the prototype implementation on top of a 
DBMS, the kernel integrated UB-Tree provides 
significantly better performance than traditional access 
methods in various application domains. The big 
advantage of the kernel integration in comparison with 
other approaches is the tight coupling with the query 
optimizer. This allows for optimal usage of the UB-Tree.  
As we do not rely on any TransBase specific features for 
the UB-Tree algorithms, we expect the same integration 
effort for other database systems as well as long they 
provide clustering B-Trees on computed keys. 



An issue not addressed in this paper is the question, when 
to use the UB-Tree for a specific application scenario and 
which UB-Tree organization (e.g., number of dimensions) 
is optimal. This problem is addressed in what we call 
physical data modeling and we are in the progress of 
identifying design rules for optimal indexing strategies 
with UB-Trees. 
Summarizing our experiences, UB-Trees smoothly 
integrate into the indexing engine and extend the B-Tree 
concept in order to handle multiple dimensions 
symmetrically. They are extremely useful for both 
clustering tables as well as covering secondary indexes 
(secondary indexes that contain all attributes required by a 
given query) to speed up multidimensional range queries. 
Extending the optimizer allows for good combination 
with single attribute access methods in physical data 
modeling and query processing, which will lead to 
efficient and flexible index schemes.  
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