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processes are unique. A k-d tree is used as the structure within nodes for very efficient searching. 
Node splitting requires that this k-d tree be split. This produces nodes which no longer represent 
brick-like regions in k-space, but that can be characterized as holey bricks, bricks in which subregions 
have been extracted. We present results that guarantee hB-tree users decent storage utilization, 
reasonable size index terms, and good search and insert performance. These results guarantee that 
the hB-tree copes well with arbitrary distributions of keys. 
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1. INTRODUCTION 

There are a number of application areas where it is very common to perform 
searches using the values of several attributes. Examples of such areas include 
geographic or geometric data, VLSI design, and certain kinds of document 
retrieval. 

Where multiple-attribute searches are the rule and single-attributes searches 
the exception, there are advantages to using one multiattribute index compared 
with several single-attribute indexes. First, the clustering of index terms and 
data on disk can dramatically reduce the number of I/O accesses needed for the 
search. Second, when new records are inserted, a multiattribute organization 
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needs only a single update of its index. Multiple single-attribute indexes require 
multiple updates. 

Despite these two important advantages, multiattribute index organizations 
have not commonly been used. One reason for this is that multiattribute orga- 
nizations yield poor clustering for single attributes. A “cross section”, or “partial 
match” query, where the value of only one of the attributes is specified, requires 
searching all pages in the “hyperplane” of the multiattribute index. An example 
would be finding all the baseball games played on a given date, in a multiattribute 
file organized both by team and by date. Figure 1 illustrates this. 

Of course, single-attribute secondary indexes also lose data clustering. Thus, 
the choice between a multiattribute index or multiple single-attribute indexes is 
application-dependent. However, multiattribute organizations are rarely used in 
general-purpose database systems, even for applications which would benefit 
from their use. 

A substantial part of the reason for the lack of use of multiattribute index 
methods is that they fail, in one way or another, to be good search structures. 
Good search structures must have at least the following properties: 

(1) good average storage utilization both in the index and in the data pages; 
(2) large index fan-out, resulting in a small index and a small number of disk 

accesses; 
(3) easy incremental reorganization as the file grows; 
(4) simple algorithms with an absence of special cases; and 
(5) an ability to handle range searches (and partial match searches) as well as 

exact match searches. 

Many existing multiattribute search methods exhibit these characteristics some 
of the time. However, a good search organization must guarantee these charac- 
teristics all of the time in the face of arbitrary data. 

In this paper we introduce a new multiattribute search structure which guar- 
antees good performance in the face of any pattern of data distribution and any 
pattern of insertions and deletions. This method promises good space utilization 
both in the data pages and in the index. 

Our point of departure is the K-D-B-tree of Robinson [El. K-D-B-tree nodes 
always represent rectangular regions, or bricks. In our structure, the nodes 
represent bricks from which smaller bricks have been removed, or “holey bricks.” 
We call our structure the Ml-tree, or holey brick B-tree. A similar idea was used 
in the one-dimensional case for DL*-trees in [9]. Holey bricks have also been 
used in [5] and in [13]. 

We distinguish between data nodes that are pages which contain the records 
of the database and index nodes that contain k-d trees. The data nodes are the 
leaves of the hB-tree. The index nodes are the internal nodes of the hB-tree. 
Thus, the hB-tree is similar to the B+-tree [4]. 

The hB-tree grows from the leaves and has all leaves at the same level, just as 
a B-tree does. Since it is a B-tree-like structure, enhancements such as partial 
expansions [lo] and Bounded Disorder files [7, 111 can be used to improve its 
efficiency. 
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Fig. 1. Clustering for a single attribute is compromised in any multiattribute index. 

Robinson does not specify the internal structure of his K-D-B-tree nodes. In 
order to present information about node utilization and average fan-out, we must 
choose some specific node structure. We argue that the k-d tree is a good choice 
for the internal structure of the index node of the hB-tree. That is, we use the 
k-d trees within hB-tree index nodes to organize information about lower levels 
of the hB-tree. The k-d tree also assists in organizing data nodes of hB-trees. 

The original version of the k-d tree [2] is a binary tree which requires a fixed 
alternation from one attribute to another as one descends the tree. We use a 
generalization of this structure [3], which allows the dynamic insertion of data 
to determine the choice of attribute. This means that some attribute identifier 
(age, salary, x-coordinate) must be stored in the k-d tree node as well as the 
comparison value. 

In addition, in order to represent holey bricks, several leaves of the k-d tree in 
an hB-tree index node may refer to the same hB-tree node at a lower level of the 
hB-tree. This construction is illustrated in Figure 2. 

As with the single-attribute B+-tree, when new records are added, a data node 
must occasionally split, and new information is posted to its parent. When too 
much information is posted to an index node, the index node must split. When 
an index node splits, information about that split is posted to the parent of the 
index node. Eventually, the root will split and the hB-tree will grow in height. 
We shall give precise algorithms for these operations on the hB-tree and show 
how these algorithms lead to node utilization that is excellent on average, and 
still quite good in the worst case. We also establish bounds on the amount of 
information posted to higher levels, so that we can establish a lower boucd on 
hB-tree node fan-out. 
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Fig. 2. A holey brick is represented via a k-d tree. A holey brick is a 
brick from which a smaller brick has been removed. Two leaves of the 
k-d tree are required to reference the holey brick region denoted by B. 

An overview of some of the other proposed multiattribute search structures is 
given in Section 2. We then introduce the hB-tree and show how to search for 
points (exact match queries) and for regions (range queries) in Section 3. 

In subsequent sections we describe insertion and updating. In Section 4 we 
show how the insertion process compares with that of single-attribute B+-trees; 
this leads to our node utilization analysis and our guarantees on fan-out. In 
Section 5 we give the details of node splitting, and in Section 6 show how to post 
index information. In the last section we summarize and discuss these results. In 
the appendix, we include proofs of the correctness of some of our assertions. 

In sections where it is relevant, we establish worst-case results for storage 
utilization and for size of index entries. These worst-case results guarantee that 
the hB-tree will have good space utilization in the index and data pages. Exact 
match queries are guaranteed to have good performance and the index is guar- 
anteed to be significantly smaller than the data collection. These guarantees hold 
for all data distributions, any order of insertion, and any query patterns. 

2. OTHER MULTIATTRIBUTE SEARCH STRUCTURES 

There have been many structures proposed for multiattribute searching. The 
simplest idea is to concatenate the key attributes in some order, and use a single- 
attribute search structure such as a B-tree. The disadvantage of this method is 
that some attributes are favored over others. A partial match query specifying 
the value of the first attribute will be very efficient, since the records matching 
on that attribute will be clustered. A partial match query on the last attribute 
will require that most, if not all, of the search structure be accessed. 

2.1 Bit Interleaving 

Another approach is to interleave the keys of several attributes, using first a 
binary digit from one, then a binary digit from another. This method is used in 
[14]. In bit interleaving, the ordering of digits from the various attributes is fixed, 
and typically is the same for the entire key space. Bit interleaving guarantees 
good node utilization since a single-attribute search structure with good node 
utilization may be chosen once the interleaving pattern is fixed. 

If the assumptions made in choosing this ordering do not apply to the entire 
key space, or change over time, the only recourse is to choose a new ordering and 
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reorganize the file. The danger here is that skewed distributions where many 
records have the same leading bits in some attribute will cause the data to be 
organized on the disk by the other attributes, as if concatenation had been used. 

2.2 The Grid File 

The grid file [12, 191 is a good search structure for uniformly distributed 
multiattribute keys. However, if the distribution of the attributes of the keys are 
skewed, the index can use large amounts of space. On a single data page overflow, 
it is possible that a k - 1 dimensional slice must be added to the index. This 
increases the number of divisions in one of the dimensions by one. If the numbers 
of value divisions in each dimension (the length of the linear scale for a given 
dimension) are near some constant c, then adding this new k - 1 dimensional 
slice adds ck--l new index entries. 

In the worst case, the number of index entries may be 0(-nk), where n is the 
number of records in the file and k is the number of attributes in the key. This 
occurs when the data is correlated, for example, lying entirely on the diagonal. 

We are concerned with databases for which the grid file index will not fit in 
memory. In this case, the grid file requires two disk accesses for exact match 
queries: one access for the index and one for the data. 

For range queries a large index is especially harmful. It will take many disk 
accesses just to read the index entries. In fact, the number of data pages for a 
given range query might be considerably smaller than the number of index pages. 
This problem is especially sensitive to the number of attributes in the key. 

2.3 The K-D-B-Tree 

The K-D-B-tree of Robinson [15, 181 works analogously to a B-tree but, instead 
of nodes containing search values in disjoint intervals of a one-dimensional space, 
each node “covers” a brick-like region of k-dimensional space. Thus, K-D-B- 
trees inherit from B-trees the balanced tree property, that is, all paths to leaves 
of the tree are equal in length. Further, like B+-trees, all data is stored in leaf 
nodes, internal nodes containing only index entries which direct the search. 

A K-D-B-tree has many of the desirable properties of a good index structure. 
In particular, because its growth method is similar to that of the B-tree, it adapts 
to the distribution of attribute values presented to it. 

2.3.1 Splitting Nodes in the K-D-B-Tree. However, there is an implicit as- 
sumption in [15] that data nodes can be split evenly using one attribute value. 
Figure 3 shows an example where this assumption fails. In Section 4, we give a 
mathematical analysis of this phenomenon. The even split assumption is made 
not only in the K-D-B-tree algorithm, but also in many other papers on multi- 
attribute structures. None provide any bounds on how bad performance can be 
when the assumption is violated. 

Index node splitting is more complex. Figure 4 (from [15]) illustrates how 
Robinson suggests splitting an index node. Such splitting requires a series of 
cascading splits of nodes in the subtree whose root is the node being split. The 
problem here is that any single plane through the space represented by an index 
node may split the space of one or more descendant nodes. Such cascading 
splitting of descendant nodes, in addition to making the splitting process costly, 
can also adversely impact storage utilization. 
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Fig. 3. In this example, one fourth of the records lie on each 
half axis. No vertical or horizontal line, denoting a single value 
for one of the attributes, can evenly split this data page. Thus 
no one attribute value can be used to split the page. 
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Fig. 4. Index node splitting in K-D-B-trees (from [X]). Here the split of one index node can 
cause descendant nodes to be split as well. This may cause sparse index nodes to be created 
on a lower level. 

2.3.2 Internal Index Node Organization in the K-D-B-Tree. The K-D-B-tree 
organization, like many file organizations, does not specify how to organize its 
data within nodes. For single-attribute methods, such as the B-tree, several 
successful methods exist, most involving sorting the entries and placing them in 
an array to permit binary search. Such an array is also easy to deal with during 
node splitting. 

For k-attribute searching, however, it is not so clear how entries should be 
organized within a node. Multiattribute search structures within a node may also 
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make it difficult to reorganize nodes after they are split. What is desired, 
obviously, is a search structure that is space efficient, and supports fast search 
while being compatible with an effective splitting process. 

3. THE hB-TREE 

The hB-tree is a variant to Robinson’s K-D-B-tree [15]. There are two distin- 
guishing features of hB-trees. 

(1) Index nodes are organized as k-d trees. 
(2) Splitting of a node may require the participation of more than one attribute. 

The result is that nodes no longer correspond to bricks in k-space, but rather to 
“holey” bricks, or bricks from which smaller bricks have been removed. Because 
of this, hB-trees can avoid cascading splits. Like B-trees, however, splits can 
propagate up the tree. 

In B+-trees, values acting as index terms in index nodes are redundant in the 
sense that these values are derived from keys stored in the leaves of the B+-tree. 
This is true of hB-trees too. However, with hB-trees, the index terms must 
partition a k-dimensional space, not merely a one-dimensional space. 

3.1 The Advantages of k-d Trees 

With K-D-B-trees, each index node represents a region or brick in k dimensional 
space as in Figure 5. Each such brick is split into sub-bricks whose union is the 
region represented by the node. These sub-bricks represent regions on a lower 
level of the index. At the bottom level of the index the sub-bricks represent data 
nodes. No indication is given in [15] as to how these sub-bricks are represented 
within the index node. 

In Figure 5a we show a two-dimensional space partitioned into separate regions 
as in [15]. In Figure 5b we show a k-d tree which realizes this partitioning, while 
Figure 5c shows another way to describe the partition, by explicitly listing the 
boundaries of each brick. While there may be other ways of representing mul- 
tiattribute index terms, these are two clear choices, and k-d trees have substantial 
advantages in both search speed and space. 

3.1.1 Intranode Search Speed. In Figure 5b, we need only make two compari- 
sons to find the correct node, using the k-d tree. Figure 5c shows the same 
information kept as a list of the boundaries of the bricks. Even if the point we 
are searching for is in the first brick on the list, we must make four comparisons, 
for the four boundary values, just to verify that this is the correct brick. If the 
point we are searching for is in the last brick on the list, we would make at least 
one comparison (and possibly more) in order to rule out the first three boundary 
descriptions, and then make four comparisons to verify that the last brick was 
correct. (This last can be avoided if we know that the bricks cover the entire 
space.) 

The reason for the k-d tree advantage is that bricks share boundaries. In the 
boundaries representation, these are checked redundantly, while for a k-d tree, a 
boundary is typically checked only once. When we deal with holey bricks, the 
k-d tree retains its advantage over the boundaries representation on average, but 
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Fig. 5. The internal representation of K-D-B-tree nodes. 

loses it in the worst cases. We return to this after introducing holey bricks in 
Section 3.2. 

3.1.1.1 k-d Tree Representation for Bricks. Usually, searching for a correct 
lower level node using a k-d tree requires order log n comparisons (i.e., if the tree 
is well-balanced, where n is the number of bricks). There are n - 1 nodes in the 
k-d tree with n references to the bricks. In the worst case, the nodes will all be 
in a line (i.e., the k-d tree will be linear). For this tree, one needs to make an 
average of (n - l)/2 comparisons. The worst-case search for this worst-case tree 
requires n - 1 comparisons. 

If we assume that k = 2 and that n = 100, then the costs are as follows. 
For the worst-case k-d tree, when the tree is linear, the worst-case search is 
n - 1 = 99 comparisons and the average search is (n - 1)/2 = 49.5 compari- 
sons, since the number of k-d tree nodes is one less than the number of bricks 
referenced. With an “average” tree (i.e., one that is approximately balanced) 
about log,(n) = 7 comparisons are needed for all searches. 

3.1.1.2 Boundaries Representation for Bricks. For the list of boundaries repre- 
sentation, the search cost is higher. On average, one must reject (n - 1)/2 bricks 
before finding the correct brick. At worst, one rejects n - 1 bricks. To confirm 
that a brick is correct, one must make 212 comparisons, one for each of the 
212 boundaries. 

For each brick that does not contain the point that is the search argument, 
the cost, in comparisons, is as follows. For each dimension of a rejected brick, 
one boundary value must always be compared to the point’s coordinate in that 
dimension. The point will satisfy the first boundary comparison half the time 
before being rejected by the other boundary. Thus, assuming no optimizations 
based on the point’s coordinates, to check a dimension requires an average of 
1.5 comparisons. If the point survives the first dimension checked, an average 
of 2 + 1.5 comparisons will be needed, and so on. 

What is the probability that a brick is rejected in a check on a given dimension? 
To answer this, we assume that each brick is about the same size and that each , 
of the k dimensions is subdivided into b parts (where b = n’/k) by the bricks. 
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Then the probability that a point survives the first dimension checked is l/b. 
For example, if n = 100, and k = 2, b is 10, and the probability that a given point 
is within the boundaries of a given dimension for one of the bricks is l/10. 

On average, the number of comparisons needed to reject a brick is 

1.5 + (l/b)(2 + 1.5) + (l/b2)(4 + 1.5) + . . . = 

k-1 2i + 1.5 
1.5 + c 7. 

i=l 

In our example, this is 1.85 comparisons per rejected brick. 
Since (n - 1)/2 bricks must, on average, be rejected before finding the correct 

brick, and confirming the correct brick requires 2k comparisons, the average 
number of comparisons needed to find the correct brick (again for k = 2 and n = 
100) is 1.85(99/2) + 4 = 95.6. The worst case for this is (n - 1) X 2k = 396 
comparisons, when a brick is not rejected until all boundaries have been compared 
and the correct brick is the last brick examined. 

3.1.2 Space Used with Intranode Representations. It should be obvious that 
the k-d tree representation also takes up less space than the boundaries list 
representation. We assume that pointers, both intranode pointers and external 
pointers, are equal in size to attribute values. This almost surely overstates their 
size and works against the k-d tree representation, which has more pointers and 
fewer attribute values. Even with this handicap, the k-d tree representation is 
superior. 

3.1.2.1 k-d Tree Representation for Bricks. Each internal node of the k-d tree 
contains only one comparison value, pointers to a left and right child, and a flag 
to indicate which attribute is being compared. We assume the flag, which serves 
other purposes as well, is equal to half an attribute value, again a generous 
estimate. The entire collection of necessary information here is not likely to 
exceed two bytes, while attribute values will frequently be longer than four bytes. 
Hence, each node of the k-d tree is 3.5 attribute value equivalents. (Note that 
the boundaries representation will almost surely require control information as 
well, but it has been ignored here.) 

For n bricks, there are n - 1 k-d tree nodes. This means (n - 1) X 3.5 attribute 
value equivalents. Note that the number of dimensions of the space k does not 
affect the space used, when dealing with bricks, except in the encoding of the 
attribute to which each node corresponds. 

3.1.2.2 Boundaries Representation for Bricks. The boundary representation 
contains many duplicate attribute values. Regardless of the structure or distri- 
bution of bricks or holey bricks, the amount of space consumed by the boundaries 
representation is the same. There must be n x 2k attribute values in the boundary 
representation as well as n pointers. Thus, the space consumed is (2k + 1) X n 
attribute value equivalents. Since k >= 2, when dealing with bricks, the bound- 
aries representation always requires at minimum 5 X n attribute value equivalents 
of space, and this increases with k. The k-d tree is always better than this. 

In our example in Figure 5, we needed 16 boundary values and four pointers 
for the brick boundary representation in Figure 5c, but only three boundary 
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values and six pointers for Figure 5b. Given our assumptions, the k-d tree has 
space equal to 10.5 attribute value equivalents, while the boundaries represent,a- 
tion takes 20 attribute value equivalents. 

3.2 Holey Bricks 

3.2.1 Solving the Node Splitting Problem. As illustrated in Figure 3, splitting 
data nodes using a single attribute value may present difficulties because the 
resulting nodes have substantially different utilizations. In Figure 8, we show an 
example where an index node cannot be split at the root of the k-d tree for the 
same reason. In K-D-B-trees, an index node was split by drawing a plane through 
its region, splitting subregions in the process. This technique required lower level 
nodes to be split, descending down the tree, and possibly causing sparse nodes at 
lower levels. 

By removing the restriction that nodes must be split using only a single 
attribute, these problems are avoided. The regions of h-space resulting from this 
kind of splitting are no longer bricks, but rather bricks with, perhaps, smaller 
bricks removed from them. We call these regions holey bricks, since the subregions 
removed may be anywhere in the original region, even completely interior to the 
region. We call the region removed the extracted region, and the holey region 
the enclosing region. 

In the Appendix, we prove that good space utilization can be guaranteed when 
splitting a data node if the extracted region is a corner of the enclosing region. 
Importantly, corner regions only require at most one boundary per dimension. 
Our analysis below assumes this form of data node splitting. Other forms of 
splitting do not necessarily have guarantees. 

3.2.2 Representing Holey Bricks. Like bricks, holey bricks can be represented 
either via k-d trees or using a boundaries representation. The boundaries repre- 
sentation is unchanged, although we may wish to order the list of regions with 
more care. The situation is somewhat different with k-d trees. 

In order to represent holey bricks using k-d trees, several leaves of the k-d tree 
may refer to the same node on a lower level in the hB-tree. This is illustrated in 
Figure 2. One leaf refers to the extracted region (A). Two leaves refer to the 
enclosing region (B). 

Using holey bricks as the regions described by our hB-tree index does not 
affect the search algorithm. It does, however, occasionally cause hB-tree nodes 
to have more than one parent. This means that the hB-tree is not truly a tree; it 
is a directed acyclic graph, or DAG. We shall continue to use tree terminology, 
as levels, height, ancestors, and children are still concepts that make sense in 
this context. 

We use fragments of k-d trees as our index terms and compose them with 
other such k-d tree fragment index terms into the k-d tree that exists within an 
hB-tree index node. In addition, we can bound the size of these index terms, 
which enables us to derive lower bounds on hB-tree index node fan-out. 

3.2.3 Performance Impact of Holey Bricks. With the boundaries representation, 
the space consumed is the same as required for bricks. The search must now find 
the smallest brick that contains the argument point, since these bricks can be 
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nested. Aside from this, however, search is the same as before, and the worst- 
case bounds are the same. The average case search can be made the same as 
before by ordering the boundaries list, putting enclosing brick after extracted 
brick in the ordering. 

With holey bricks, the k-d trees will sometimes be larger. When an index term 
is posted, it can consist of as many as k k-d tree nodes when reflecting a data 
node split. The k is the maximum number of boundaries for an extracted corner 
region. Hence, the worst-case linear tree has (n - 1) x k k-d tree nodes. This 
contrasts with (n - 1) nodes when we deal with bricks without holes. 

The result of the above difference is to multiply the worst-case search cost and 
the worst-case space consumption by a factor of k. (This should be regarded as 
only an approximate characterization.) For the average case, we would expect 
that only somewhat more than one node is actually needed in order to successfully 
split a data node. Below, we assume 1.5 nodes (e.g., that half the time a data 
node can be split with a single attribute value while two attribute values are 
required the rest of the time). 

Returning to our previous example of n = 100 nodes with k = 2, we have the 
following. 

The average search for the worst-case (linear) k-d tree requires (n - 1) x 
k/2 = 99 comparisons. The worst-case search on the worst-case tree re- 
quires (n - 1) X k = 198 comparisons. This is comparable to the average and 
worst-case results for the boundaries representation. This tree consumes 
3.5 x k X (n - 1) attribute value equivalents of space, which is worse than the 
(2k + 1) X n attribute equivalents needed by the boundaries representation. 

However, about log, (1.5 X n) comparisons are all that are needed for an 
“average,” approximately balanced k-d tree with about 1.5 k-d tree nodes posted 
for a split. For a balanced tree, again only about seven comparisons are all that 
are needed, even in the worst case. With respect to space, this average tree 
requires 5.25 x (n - 1) attribute equivalents of space, which is comparable to the 
space required by the boundaries representation. 

Thus, in the holey brick case, the k-d tree representation still has a decided 
performance advantage compared to the boundaries representation, though it 
does not perform as well as when only bricks are permitted. (Of course, with 
bricks, one does not get space utilization and fan-out guarantees.) The space 
required for an average tree is comparable to the boundaries representation when 
k = 2, and is smaller with k > 2. For the worst-case tree, space consumption is 
not good for the k-d tree representation. The internal pointers of the k-d tree 
form constitute too much overhead. Fortunately, the worst-case linear tree with 
k attributes per holey brick will almost never occur. 

3.3 Searching Using the hB-tree 

The k-d tree leaves in an hB-tree index node refer to lower level hB-tree nodes. 
In each internal node of the k-d tree, there is an indicator of which attribute is 
to be compared, what the comparison value is, and whether equality is on the 
left branch (less than or equal) or the right branch (greater than or equal). We 
cannot always have equality on the left (or always on the right) and still guarantee 
even splitting (Section 4). 
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3.3.1 Exact Match Queries. To do an exact match search, one follows a unique 
path from the root of the hB-tree down the hB-tree to a data page. The number 
of hB-tree nodes accessed is the height of the hB-tree, which depends only on 
the hB-tree fan-out. The k-d trees within hB-tree nodes should only be regarded 
as directing the search to the next lower level of the hB-tree, just as index values 
in B+-trees or boundary values in other hierarchical multiattribute search struc- 
tures direct such a search. 

3.3.2 Range Queries. A range query specifies a range of values for one or more 
of the attributes. If a comparison value in a k-d-tree node is greater than all the 
same attribute’s values in the search range, one goes to the left. If it is smaller, 
one goes to the right. If a comparison value is in the middle of a search range, 
one follows both the left and right branches. Several hB-tree nodes at each level 
may be accessed. Range searching results in a similar search pattern for the one- 
dimensional B+-trees as well, but it is easy to overlook this. 

3.3.3 Region Data. The hB-tree can be used for region data. Brick-like regions 
can be considered data points if they are described by the upper and lower 
coordinates in each attribute. For example, a rectangle in two-dimensional space 
can be specified by its lower y and upper y and lower x and upper x coordinates. 
A rectangle is thus a point in a four-dimensional space. For regions of different 
shapes, their enclosing rectangles can be used to identify candidate regions for 
the search. More detailed examination of the enclosing rectangles is needed to 
make a final determination. This examination is beyond the scope of this paper. 

Exact match search for a region is the same as exact match for any other data 
point. Values are given for all the upper and lower coordinates. 

Finding all the regions D contained in a given region R is a range query. The 
high x coordinate of D must be less than or equal to the high x coordinate of R. 
The low x coordinate of D must be greater than or equal to the low x coordinate 
of R, and so forth. Similar inequalities are needed to find all the regions 
intersecting a given region. 

Thus, searching for region data is similar to searching for point data. Only the 
number of attributes being compared is different, that is, it is doubled. 

3.3.4 Summary of Searching in hB-trees. Searching for data within an hB-tree 
index node is a very straightforward process, essentially the same as searching 
using a binary search tree. For exact match searches, the number of hB-tree 
nodes accessed is exactly the height of the tree. As with single-attribute B-tree 
indexes, the upper levels of this tree will be in memory, so that with decent node 
fan-out, this should result in no more than two disk accesses for most files. We 
make estimates of node fan-out in Section 4. 

Range searches may require accessing several hB-tree nodes on each level. 
This is also true for single-attribute B-tree indexes. Region data can be treated 
like point data, but with double the number of dimensions. 

4. INSERTING AND UPDATING IN hB-TREES 

4.1 Commonality with B+-trees 

In this section, an algorithm for updating an hB-tree is .described in general 
terms. The algorithm is, at this level of description, exactly the same as the 
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corresponding algorithm for B+-trees. The steps of the algorithm are as follows: 

General Updating Algorithm 

1. Search the hB-tree for the node which is to contain the record to be inserted. This 
search uses k-d trees in hB-tree index nodes, as other constructs are used in 
B-tree index nodes, but the end result is to have retrieved the node into which the 
record is to be inserted. 

2. Within this node, find the location where the new record is to be placed and insert 
it there. There are two possibilities: 

a. The record fits into the space available for it. In this case, the insertion is 
complete. 

b. The record is too large for the available space. In this case, the data node 
must be split. 

i. Allocate a new node and split the contents of the original node between 
the original node and the new node as evenly as possible. 

ii. Post an index term in the next higher level of the tree which identifies 
the new key space partitioning between original node and new node. If 
the higher level index node overflows, split it analogously. 

iii. Reinsert the record into the resulting restructured tree. 

4.2 Divergence from B+-trees 

The hB-tree differs from the B+-tree algorithm in some important details, 
including: 

(1) How a data node is organized and how splitting is accomplished. 

(2) How an index node is organized and how splitting is accomplished. 

(3) What the index terms are and how they are posted to the next higher level 
of the tree. 

(4) What the guaranteed storage utilization is. 

These details are explained in the next sections. 

4.3 Data Node Splitting 

We model a file with a two-attribute hB-tree using an x-y coordinate system. A 
point (x0, yO) in such a space represents a record whose value in the first attribute 
is x0 and whose value in the second attribute is yo. 

Suppose now that half the records lie on the x-axis and half on the y-axis, as 
in Figure 3. Of the records on the y-axis, half lie above the x-axis and half lie 
below. A similar configuration of points is on the x-axis. In other words, each 
half-axis contains one-fourth of the points. Then there is no horizontal line or 
vertical line which will split the space more evenly than in a 3:l ratio, with $ of 
the points on one side of the line and 5 of the points on the other side. 
A horizontal line would split the data node using one value of the second 
(y) attribute. A vertical line would split the data node using one value of the 
first (x) attribute. This demonstrates that using one attribute value alone 
will not always split a data node evenly. 

This argument generalizes to k dimensions. If we have a k-dimensional space, 
we can place 1/(2k) points on each of the 2k half-axes, and no one attribute value 
will split the space in better than a (2k - 1):l ratio. That is, for this point 
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Fig. 6. A corner split data node. Using the values for 
several of the attributes we can split any data node in at 
least a 2:l ratio. 

. . . . F . . . . . . . . . . 
I l 

Fig. 7. The usual case for a data node split. The data node B 
is a brick, and the split is along the x attribute at xp forming 
two bricks. One brick remains at disk address B while a new brick is 
allocated at D. 

distribution, at best, 1/(2k) of the points will be on one side of the hyperplane 
determined by our single attribute value and (2k - 1)/(2k) points lie on the other 
side of the hyperplane. 

With at most k attribute values (in a k-dimensional space) determining a 
“closed corner” as in Figure 6, we can guarantee at least a 2:l split in the data 
points for any point distribution. That is, the data points can be divided so that 
no more than 5 of them are in one node and no less than $ of them are in the 
other. We prove this in Appendix 1. We can guarantee minimum data node 
utilization of at least t. Note that we usually do much better than 2:l. In 
Figure 6, we split the data described in a 1: 1 ratio using two attributes. 

If the full data node represents a brick in k-dimensional space before the split., 
then there is only one reference to it in the index. In this case, we replace that 
reference with the k-d tree representing the split. This will usually be a split with 
only one attribute, and we will be adding only one k-d tree node to the index. 
One of its pointers will refer to the original hB-tree data node while the 
other will refer to the new hB-tree data node. This usual case is illustrated in 
Figure 7. 

In the general case, the full data node is a holey brick, and there are several 
references to it in the index. Despite this, we can guarantee no more than k new 
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Xl x2 x3 I5 B before split 

after split 
k-d tree fragment in 

Z: 

A B 

Fig. 8. An example where splitting an index node at the root of the k-d tree results in poor 
fan-out and low node utilization. 

k-d tree nodes posted to the index in the worst case, and sometimes we post no 
new nodes; we only change references. Section 5 describes the general algorithm. 

4.4 Index Node Splitting 

Once we have decided to use k-d trees in our hB-tree index nodes, we must decide 
how to split them. In [15], a split of a K-D-B-tree index nodes was made by 
slicing it with a hyperplane. This necessitated changes on lower level K-D-B- 
tree nodes, sometimes creating new sparse lower level nodes and sometimes 
precipitating changes down the tree several levels. We use the k-d tree intranode 
organization to avoid these problems. 

If we always split at the root of the k-d tree, as in Figure 8, we run the risk of 
creating sparse index nodes. Instead, we exact a subtree as in Figure 9. 

Suppose there are N nodes in the k-d tree. We can always find some subtree 
with between floor(N/3) and ceiling(2N/3) nodes. We prove this in Appendix 2. 
We thus split it into an extracted subtree and an enclosing subtree. This 
guarantees a minimum node utilization of $ in the index level nodes. The worst 
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D I? 

after split 

w: 

D E 

before split 

x3 LP y4 Z: k-d tree fragment in 
parent node 

4 

Fig. 9. The same example as in Figure 8, where the k-d tree of an index node is too 
skewed to split at the root. We find a subtree which has between $ and 3 of the 
nodes and extract that subtree. 

case, then, is that in one resulting node utilization begins at .66 and in the other 
at .33. 

When an index node is split, we must post information in the parent to 
distinguish the extracted tree from the enclosing tree. The extracted tree repre- 
sents a k-dimensional brick. Thus, at worst, we need to post the 2k boundaries 
to the parent. However, by using a subset of the nodes on the path from the root 
of the extracted tree to the root of the enclosing tree, we can do better most of 
the time. Also, in this way, the algorithm for posting information is simpler. 
However, to gain these advantages, we must occasionally post one additional 
node, so that in the worst case we post 2k + 1 k-d tree nodes as our hB-tree 
index term. We give the details of this algorithm in Section 6. 

4.5 Anticipated hB-tree Utilization 

Determining storage utilization in index organizations subject to uneven splitting 
was a problem faced in Digital B-trees [8]. The analysis done there used the 
uniform growth assumption and involved computing recurrence relations. The 
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result, specialized to single bucket nodes of the sort that we have, and assuming 
growth by local doubling via node splitting, is 

u = s log 
0 
; + (1 - S)log 

1 

i ) 
- 
1-s 

where S is the fraction of the data going to one new node and (1 - S) is the 
fraction going to the other. For our worst case 2: 1 split, S = 0.667 and U = 0.637. 

While this utilization is not as good as B+-trees, recall that this is a worst-case 
result. That is, under the uniform growth assumption, utilization must be at 
least .637. More typically, some intermediate split factor would occur, e.g., 
1.5:1 yielding S = 0.6 and U = 0.673, which is very close to B+-tree utilization. 
Partial expansions [lo] can be employed, as with Bc-trees, should higher 
utilization be desirable. 

We emphasize that it is this sort of analysis that is missing from most other 
papers on multiattribute structures. Many structures will work well with uniformly 
distributed data, or with data whose distribution can be predicted in advance. 
However, real data collections have neither uniform nor predictable distributions. 

The reason that B+-trees are the most popular single-attribute indexing method 
in use today is their worst-case guarantees, which show that space utilization 
and query time cannot be arbitrarily bad. B+-trees can handle highly skewed and 
highly unpredictable dynamic data collections. Our hB-tree results provide anal- 
ogous worst-case guarantees for the multiattribute case. 

4.6 Fan-Out 

We are interested in two results. First, we would like to estimate the fan-out for 
hB-trees so as to determine the storage burden imposed by the index levels of 
the tree. Second, we want to compare fan-out with IV-tree fan-out, as B+-trees 
are the standard benchmark for index organizations. 

Fan-out is a function of three quantities, node size ns, node utilization U, and 
size of index terms t. Thus, 

fanout = LZ-!Z. 
t 

We assume here a node size of 4K bytes and a utilization, from Section 4.5, of 
0.673. We compare this to B+-tree fan-out, where we assume the same node size 
and a utilization of 0.693. Both utilizations are the result of analyses. The 
4K-node size is typical of large database systems. 

The hard part of determining fan-out is to derive an average size for index 
terms. Comparison values (keys) that appear in an index can vary widely in size. 
However, eight bytes should be a fairly typical size, especially with judicious use 
of key compression. Pointers to disk pages can be three bytes. An additional two 
control bytes are probably required as well. In these two bytes, we keep track of 
(i) which attribute is used; (ii) the “weight” of the subtree (used in splitting); and 
(iii) whether equality is on the right or the left. This results in B+-tree index 
terms being 11 bytes, and k-d tree nodes in hB-tree index nodes of 16 bytes 
(comparison value, two control bytes, and two pointers). 
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We need to know the size of an hB-tree index term, not merely the size of a 
k-d tree node. In the worst case, we need k k-d tree nodes for index terms that 
reference hB-tree data nodes and 2k + 1 k-d tree nodes for index terms 
that reference hB-tree index nodes. In both cases, however, we usually need 
only a single k-d tree node. We assume, somewhat arbitrarily, that the average 
is about 1.5 k-d tree nodes per index term. Such index terms thus average about 
24 bytes. 

Factoring in the small difference in storage utilization results in B+-trees with 
about twice the fan-out of hB-trees. That is, B+-trees have a fan-out of 258 while 
hB-tree fan-out is 115. Note that the size of all index nodes in an hB-tree is less 
than one percent of the size of the data nodes, while, of course, B+-tree index 
size is even smaller. However, and importantly, this demonstrates, for reasonable 
size nodes, that the size of the index in hB-trees is not a significant factor. 

For small values of k, e.g., k = 2, it is almost surely the case that the average 
index term for hB-trees is close to one k-d tree node. In this case, fan-out is even 
better, being 172, or 0.67 of the fan-out of a B+-tree. The worst case with k = 2 
is a fan-out of 86 for the bottom index level. This should be exceedingly rare, 
and is not a disaster in any event. 

5. NODE SPLITTING 

In this section we show how to use k-d trees to split holey brick nodes. The 
previous split planes are used whenever possible, and each k-d tree node repre- 
sents such a split plane. 

Each hB-tree node has stored with it its outer boundaries. This information is 
required for posting index terms, as we shall see. We have ignored the space used 
for this in our fan-out analysis. This is 2k eight-byte values in each node-in our 
fan-out analysis. (For k = 2, it is 32 bytes in each 4K node.) (B+-trees also 
typically contain some overhead information in each node.) 

Since each node represents a holey brick, the “internal” boundaries of this 
brick, from which smaller bricks may have been extracted, are stored in it. These 
internal boundaries are stored as a k-d tree, which represents the partitioning of 
the node that was necessary to extract subregions during previous splits. It is 
called the local k-d tree. 

A local k-d tree contains four kinds of nodes: 

(1) Internal nodes. 
(2) Three kinds of leaf nodes: 

(a) a leaf that references a collection of data records (in data nodes only); 
(b) a leaf that references an hB-tree node on the next lower level in the 

hB-tree (in internal hB-tree nodes only); and 
(c) a marker that denotes that a subtree is missing (called an external 

marker). Such a marker indicates that a subtree has previously been 
extracted. This subtree is referenced through a different search path in 
higher level hB-tree nodes. 

Data nodes contain both data records and a local k-d tree, which is typically 
quite small. All the information in a local k-d tree of a data node is repeated in 
higher levels of the hB-tree. Index nodes contain only the local k-d tree, typically 
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Fig. 10. Boundary and tree information stored in data nodes. The local k-d 
tree references data in the node and contains “external markers” identifying 
regions that have been extracted. 

quite large. A small portion of the local k-d tree of an index node is repeated in 
higher levels of the hB-tree. The data node configuration is shown in Figure 10. 

5.1 Terminology 

The subsequent discussion is simplified by the introduction of some technical 
terms, which allow us to systematically distinguish between nodes of the hB-tree 
and nodes of k-d trees. To emphasize the distinction between these trees, terms 
referring to the hB-tree use capital letters while terms referring to the k-d tree 
are in lowercase. We use the letter f to stand for the Full tree or node that is to 
be split. We use n for the eNclosing tree or node and x for the extracted tree or 
node. Finally, we use i for Index, when referring to levels of the hB-tree above 
the node being split. 

Thus, when an hB-tree node requires splitting, we need to discuss the following 
items: 

(1) F-NODE. The hB-tree node that requires splitting. It stores the data or 
index terms of the original region. 

(2) N-NODE. The hB-tree node that contains data or index terms relevant to 
the enclosing region, which results from the F-NODE after the extracted 
region has been removed. Typically, the N-NODE occupies the same disk 
space as did the F-NODE. 

(3) X-NODE. The hB-tree node that contains data or index terms relevant to 
the extracted region, which is removed from the F-NODE. The X-NODE is 
typically newly allocated during the splitting process. 

(4) I-NODE. The hB-tree node (or nodes) that contains the fragment of the 
k-d tree that indexes the regions extracted from the F-NODE and refers to 
the N-NODE and the X-NODE. The I-NODE is at a higher level in the 
hB-tree than the F-NODE. 

(5) f-tree. The local k-d tree of the F-NODE, describing the holey brick of the 
full region. It contains, as subtrees, the original forms of the n-tree and 
the x-tree. Nodes of the f-tree are called f-nodes while its root is the f-root. 
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(6) n-tree. The local k-d tree of the N-NODE, describing the holey brick of the 
enclosing region. Nodes to the n-tree are called n-nodes while its root is 
the n-root. 

(7) x-tree. The local k-d tree of the X-NODE, describing the holey brick of the 
extracted region. Nodes of the x-tree are called x-nodes while its root is 
the x-root. 

(8) i-tree. The k-d tree fragment in the I-NODE (or nodes), which describes 
the regions extracted from an F-NODE. Nodes of the i-tree are called i-nodes 
while its root is the i-root. The i-tree is the index term(s) referring to the 
N-NODE and the X-NODE. 

5.2 Splitting at the f-Root 

If the f-root can be used to split the F-NODE into two nodes, each of which 
contains between t and f of the contents (the k-d tree nodes or the data records), 
we do so. In this case, we arbitrarily denote the right subtree as the basis for the 
x-tree. The f-tree, with the right subtree extracted is the basis for the n-tree. We 
move the right subtree (and when the F-NODE is a data node, its data records) 
to the X-NODE. 

We change the boundary description in the F-NODE to a boundary description 
relevant to the N-NODE. The N-NODE will not in this case, nor in general, 
have the same boundary as the F-NODE. The boundary for the N-NODE, and 
its resulting n-tree, are formed by removing nodes from the f-tree, starting from 
the f-root, and finding the smallest subtree that contains all the N-NODE leaves 
referring to data or to lower levels on the hB-tree. The leaves that are markers 
referring to previously extracted subtrees are not necessary, since they refer to 
data or k-d trees which were not in the F-NODE. When splitting at the f-root, 
we are assured that the f-root itself is always removed from the n-tree. 

The right subtree becomes the basis for the x-tree. As with the n-tree, we 
reduce this right subtree by removing nodes until we have found the smallest 
subtree containing all the X-NODE leaves referring to data or to lower levels of 
the hB-tree. The extracted region has boundaries, as always, that reflect the 
x-tree that we have determined. We illustrate splitting an F-NODE using 
the f-root in Figure 11. 

5.3 Splitting at a Lower Subtree of the f-Tree 

If the value in the f-root does not split the contents in a 1: 2 ratio or better, one 
subtree refers to more than $ of the contents. Follow the arc leading to this 
subtree. Applying this strategy recursively to successive f-nodes will lead either 
to a subtree that corresponds to between + and $ of the contents or else it will 
lead to a leaf f-node (in the case of a data node only) that refers to more than $ 
of the contents. We treat the subtree case first. 

The contents, to which the subtree found above refers, are moved to the new 
X-NODE. This subtree forms the basis for the x-tree, the local subtree for the 
X-NODE. This subtree is reduced, as mentioned above, before being established 
as the x-tree, and the boundary for the X-NODE is shrunk accordingly. 

The boundary description in the N-NODE is inherited from the F-NODE, as 
before. It too must be reduced, as mentioned above, but in this case the boundary 
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Fig. 11. The F-NODE is split by the value in the f-root. No new i-nodes are 
added to the i-tree. The left subtree becomes the n-tree for the N-NODE. The 
right subtree, the basis for the x-tree, is reduced. 

does not necessarily change. Further, in the n-tree, the extracted subtree is 
replaced with a marker to note that it has been extracted. This splitting situation 
is illustrated in Figure 12. 

So far this process enables us to occasionally make the hB-tree nodes more 
like full bricks than holey ones. That is, it reduces the number of k-d tree nodes 
in the n-tree and the x-tree. If either the n-tree or the x-tree no longer contains 
external markers, it represents a brick. In this case the local k-d tree of the data 
node degenerates to the empty tree. 

5.4 Splitting a Leaf of the f-Tree 

In data nodes, the splitting process sometimes leads to a f-tree leaf corresponding 
to more than $ of the contents. (Recall that the contents of the node include 
both the data records and the k-d tree nodes of the local tree.) This happens, for 
instance, if the data node is a brick, not a holey brick. Consider the records 
corresponding to the leaf of the f-tree containing more than $ of the contents. 
Call this collection of records S. Call the collection of all the records in the 
F-NODE T. If the F-NODE is a brick, S = T. 

We are guaranteed by the theorem in Appendix 1 to find a corner (which can 
be described by at most one boundary value for each of the k attributes) with 
between i and 3 of the contents in the entire F-NODE. This corner will become 
the X-NODE X. And, it will contain data only from S. The N-NODE will contain 
all the records not in S plus the records which are in S, but not in X. The f-tree 
is extended by replacing the leaf in the f-tree corresponding to the region 
representing S with the k-d tree representing this split. 

An algorithm can be constructed from the proof in Appendix 1 once an ordering 
for the attributes has been chosen. We attempt first to use the median of the 
first attribute to split the node. If this does not produce the desired 2: 1 ratio (or 
better), we attempt the second attribute, then the third, and so on. If none of the 
medians work, we try the upper corner produced by the first and second attributes 
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Fig. 12. We assume here that the f-root of B does not suffice to split B evenly. However, a 
lower subtree works. No new i-nodes are added to the i-tree. The subtree becomes the basis 
for the x-tree. The x-tree is replaced by a marker in the n-tree. 

and then the lower corner produced by the first and second attributes. If this 
does not work, we try the first, second, and third attributes, and so forth. The 
theorem guarantees that the ratio will be obtained by this process. 

We have not specified how to order the attributes. Data node splitting does 
not require that the trials described above be performed in the order specified 
either. There are many potential strategies for both attribute order and compo- 
sition of attributes to perform a data node split. The above sequence, together 
with round-robin ordering of attributes, is but one possibility. Optimizing for 
good data clustering by attribute, for even division of data and for minimizing 
index term size, is a complex optimization problem that depends greatly on how 
important each of the mentioned characteristics is. This is surely a topic for 
further research. 

The holes in the brick may cause the area of a holey brick to become 
noncontiguous. This does not cause any problems with the node utilization 
estimates or the search algorithms. Figure 13 illustrates both the contiguous and 
the noncontiguous possibilities. 

Node-Splitting Algorithm 
1. Start at the f-root. While the subtree of the f-tree contains more than 3 of the 

contents, proceed to its descendent node containing the larger amount of contents. 
Either a leaf is reached or a subtree (the precursor for the x-tree) with between $ 
and 5 of the contents found. 

2. If an f-leaf is reached, which references more than t of the contents (only possible 
in data nodes), extend the f-tree so as to partition these records as described in 
Section 4.3 above. The extended f-tree can be used in step 3. One leaf of the 
extended f-tree refers to between $ and t of the contents. This leaf is the “subtree” 
referred to in the following steps. 
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Fig. 13. One of the leaves of the f-tree refers to more than 3 of the contents of the 
F-NODE. We replace the reference to this leaf, in both the i-tree and the n-tree, with 
a k-d tree describing the corner split. The local tree of the X-NODE is empty. 

3. Replace the subtree with an “external” node marker. Now remove f-nodes, starting 
at the f-root, until the smallest subtree is found that contains all the leaves 
referring to data or to lower level hB-tree nodes. This is the n-tree. Refine the 
boundary for the F-NODE to be the N-NODE boundary by restricting the 
boundary to exactly that required by the new n-tree. 

4. The subtree extracted is the basis for the x-tree. Move the subtree found in step 3 
to the X-NODE. Reduce this subtree to the smallest subtree containing all the 
leaves referring to data or to lower level hB-tree nodes. This is now the x-tree. The 
boundary for the X-NODE is found by the restriction process described in step 3. 

6. POSTING INDEX TERMS 

When an F-NODE is split, we must post information in the parent to distinguish 
the X-NODE from the N-NODE. The X-NODE represents a K-dimensional 
brick. Thus, at worst, we need to post its 2k boundaries to the parent. However, 
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because some of the boundaries of the X-NODE are already in the i-tree for the 
F-NODE being split, it is frequently possible to post fewer i-nodes (boundaries). 
All potential boundary values are on the path from the f-root to the x-root. Thus, 
our task is to choose exactly the nodes on this path required to identify the 
X-NODE. 

Sometimes, two f-nodes in the path will give bounds in the same direction for 
the same attribute. For example, one f-node may express “salary greater than 
$30,000,” while an f-node lower down the path may express “salary greater than 
$40,000.” In this case, we only use the f-node with the more restrictive bound. 
The more restrictive bound is always lower in the path. We thus limit ourselves 
to 2112 nodes for bounding, even if the path is longer. 

If another tree has previously been extracted from the same f-tree, some of 
these f-nodes may have already been posted in the i-tree. Also, the path may not 
contain boundaries in all directions. For instance, a “corner” (rather than a 
“hole”) requires only k boundaries. For these two reasons the number of f-nodes 
to be posted will usually be considerably less than 2k, frequently zero or one. 

Because this information is to augment an existing i-tree, the resulting i-tree 
must be a well-formed k-d tree. This sometimes requires an extra f-node to be 
posted so as to permit the new i-nodes to be connected to the existing i-tree 
without reordering the i-nodes. We call this extra f-node the divergence node. It 
is the lowest node on the path from the f-root to the x-root, which is itself an 
ancestor of a previously extracted subtree. It may or may not have already been 
posted to the I-NODE(s). 

We call the part of the path we post the condensed path. It contains the most 
restrictive bounds in each attribute that have not previously been posted, plus 
possibly one divergence node. In the worst case we post 2k + 1 f-nodes to the 
I-NODE(s). We give a formal definition of condensed path. 

Definition. The condensed path consists of those f-nodes on the path from the 
f-root to the x-root that: 

(1) have not previously been posted and 
(2) satisfy one of the following: 

(a) is a least upper bound or a greatest lower bound in some attribute 
for the x-tree or 

(b) is the divergence node. 

CLAIM. The condensed path correctly determines whether or not a record is 
contained in the region of an x-tree. 

PROOF OF CLAIM. The full path from the f-root to the parent of the extracted 
subtree correctly determines whether or not a point is in the region described by 
the extracted subtree. We have only to show that, in removing an f-node from 
this path, which is not a least upper bound or greatest lower bound of the 
remaining attribute values on the path, this search property remains invariant. 

Suppose then, without loss of generality, that there is a f-node A that contains 
as comparison value “a,” which is a least upper bound for one of the attributes. 
Suppose that further up the path in an f-node B there is an upper bound “b” on 
the same attribute that is larger than “a.” 
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Fig. 14. A skewed k-d tree is flattened by the splitting process. 

In a search for records that do not lie in the extracted subtree, those whose 
values are greater than “b” in the given attribute will be eliminated at B. If we 
remove this f-node B, those same records will be eliminated lower down the path 
at f-node A. So searches for records whose values in this attribute are not in the 
extracted region will still be correct. If a record is in the region, it will not be 
eliminated at B or at A. Removing B will make no difference. 

Thus the condensed path, if posted to the parent by including it in the i-tree, 
will provide a correct determination of whether or not a record is in a region 
described by an extracted subtree. The divergence node is not needed for this 
determination. The divergence node is only needed to integrate a new condensed 
path with already posted nodes. 0 

We emphasize that no matter how “skewed” the f-tree is, only at most 2k + 1 
f-nodes are posted. Skewed f-trees are “flattened” by the splitting process. This 
implies that searches in an underlying large skewed k-d tree involve only a small 
subset of the k-d tree nodes that would be followed if the underlying tree were 
not organized as an hB-tree. A split of a highly skewed f-tree is illustrated in 
Figure 14. 

Thus, using the hB-tree can be regarded as a form of “rotation” for the k-d 
tree, somewhat like the way that AVL trees rotate binary search trees. There is 
a strictly bounded amount of repetition, which gains an overall balancing of the 
tree. In many cases the hB-tree can be more efficient than a k-d tree index, even 
if both the hB-tree and the k-d tree index are memory-resident. The height of 
the tree and the resulting CPU search time will be shortened by the hB-tree 
organization. 

6.1 Algorithm for Posting Index Terms 

Our algorithm makes use of two flags in each internal f-node. One flag indicates 
whether or not it has already been posted to the I-NODE(s), and the other 
indicates whether or not it is an ancestor of a previously extracted tree. Posted 
f-nodes are always ancestors of previously extracted trees, but the reverse is not 
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true: ancestors of previously extracted trees are not always posted. These flags 
are always set for internal nodes of f-trees in data nodes, since these f-nodes 
always have these properties. 

In addition, in each hB-tree node, we keep boundaries of the region it identifies. 
We call this boundary information the region identifier. We need this to find the 
i-root. We present this algorithm in detail, so that it can be easily coded. The 
main idea is simple: integrate the condensed path into the i-tree. 

Index Term Posting Algorithm 

1. Using the region identifier of the F-NODE, we do a range search to find the i-root. 
We begin at the root of the hB-tree, which is in memory. Usually, most of the 
other ancestors of the F-NODE will also be in memory. When we reach a k-d tree 
leaf pointing to the F-NODE, or when we reach a k-d tree node where we must 
follow both branches, we have arrived at the i-root. 

2. We are now ready to post the condensed path. We descend both the i-tree and the 
f-tree, beginning at the i-root and f-root, respectively. We follow the path in both 
trees that will lead to the x-root. Nodes in each of these trees are processed one 
node at a time. A cursor is associated with each tree, which maintains a record of 
what nodes in these trees have been traversed thus far. The i-tree cursor is set to 
the parent of the i-root. The f-tree cursor is similarly set “above” the f-root. 

a. When a previously posted f-node is encountered in the full path in the 
F-NODE, it corresponds to an i-node. The f-node and the i-node share 
the same attribute and attribute value. Advance the cursors in both the 
i-tree and the f-tree past these nodes. 

b. When an f-node on the full path is encountered that represents a redundant 
bound of the extracted region, advance the F-NODE cursor past it. The 
cursor for the i-tree path is not advanced. 

c. When an f-node on the condensed path is encountered in traversing the full 
path, post it to the i-tree. This is done by creating an i-node with the same 
attribute and attribute value as the f-node. This i-node is then inserted so 
that it becomes a descendent of the i-node that is currently referenced by the 
i-tree cursor. The previous i-tree descendent becomes the descendent of the 
newly posted i-node. The i-tree cursor is advanced to the newly posted 
i-node. 

3. Let P be the parent of the x-root. P is in the condensed path if it has not already 
been posted, and hence is always represented in the I-NODE(s) after step 2 has 
been executed. Except possibly for P in the i-tree, references to hB-tree nodes 
from the posted condensed path are references to the F-NODE, and will become 
references to the N-NODE (because the disk address of the F-NODE will be 
inherited by the N-NODE). 

4. The x-tree nodes present in the i-tree must be updated. 

a. If the x-root is not an ancestor of a previously extracted tree, there are no 
x-tree nodes in the i-tree. One of the leaf references of P is then to the 
X-NODE. This is the only case where a leaf reference in the condensed path 
is not a reference to the N-NODE. If P has previously been posted, its 
reference to the N-NODE must be changed to refer to the X-NODE. 

b. If the x-root is an ancestor of previously extracted trees, leaf references in 
the x-tree nodes posted to the i-tree that currently reference the N-NODE 
are replaced by references to the X-NODE. 
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(c) Previously extracted trees in the x-tree. Here we also show the 
bounds of x and y variables in the nodes. 

Fig. 15. Some examples of posting index split information. Blackened f-nodes refer to 
the condensed path. Previously posted f-nodes are enclosed in a box. Ancestors of 
previously extracted trees are marked with a lowercase “a”. 

5. In the f-tree, all posted nodes are marked as posted. All f-nodes on the full path 
from the f-root to the x-root are marked as ancestor nodes (they may be already 
so marked). The f-tree is then transformed into the n-tree, as in Section 5. This 
prepares the n-tree for the next application of this algorithm. 

To give an idea of how this works, we illustrate several cases in Figure 15. 

6.2 Posting Index Terms for Data Nodes 

Posting information for splitting data nodes is an important special case of the 
general case described above. We have already seen how this works in Section 5. 

When we find a subtree of the f-tree representing between $ and $ of the 
contents in a data node, the condensed path is trivial, since all the nodes in the 
f-tree have duplicates in the i-tree. In this case, we need only concern ourselves 
with step 4b, where we change the references in the x-tree part of the i-tree that 
referred to the N-NODE to references to the X-NODE. 

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990. 



652 - D. B. Lomet and 6. Salzberg 

When, on the other hand, we find ourselves at an f-leaf representing more 
than $ of the contents, the condensed path is nontrivial and consists of the new 
k-d tree nodes which are added to the f-tree. Note that we never need more than 
k additional k-d tree nodes to identify a (data) X-NODE, and hence post at most 
k i-nodes. Also note that it is this case which guarantees that the f-tree is 
duplicated in the i-tree. 

Since this is the only case where a data node split posts new i-nodes, at most 
one split can be induced at the parent-of-leaf level in the hB-tree (in the one 
hB-tree node containing the copy of the f-leaf representing t of the contents.) 
That is, data node splits can cause at most one split at the next level. 

Although it is possible that posting index terms above the parent-of-leaf level 
causes two or more splits on the same hB-tree level, it is not likely. For this to 
happen, several nodes from the condensed path must be posted to different 
hB-tree index nodes, each of which is full and must be split. In addition, as in 
the B+-tree, splits at higher levels are increasingly improbable. 

7. SUMMARY AND DISCUSSION 

The hB-tree is space and time efficient for any data distribution. We have shown 
that, even in the worst cases, the fan-out and space utilization remain competitive 
with the best single-attribute methods. An hB-tree works well for partial match, 
exact match, and range searches. We have presented detailed, straightforward 
algorithms. 

The hB-tree has been discussed in the context of multiattribute searching. It 
is worth pointing out that its performance as a single-attribute search method is 
competitive with B+-tree performance. While hB-trees have more capability than 
is strictly necessary for the single-attribute case, nonetheless, its use imposes 
minimal extra overhead. Data nodes, in the one-dimensional case, can always be 
split evenly, that is, in a 1: 1 ratio, and the resulting regions are always one- 
dimensional “bricks.” Index nodes are organized as degenerate k-d trees (i.e., as 
binary search trees). These trees can be searched very efficiently, typically as 
efficiently as using a binary search. The biggest penalty is that the k-d tree 
consumes more space than the usual vector-oriented binary search organization. 

We have not described how to organize data records in data nodes of the 
hB-tree. Recall that data nodes have local trees, organized as k-d trees, which 
lend some structure to data nodes. But the data records are not part of the local 
tree. In fact, our data node corner-splitting requires that we split the records 
without regard to tree structure for the data. There are many possible organiza- 
tions, for instance, an indexed heap. We do not expect performance to depend 
heavily on the specific organization. The number of records is in the tens, not 
the hundreds. Searches and updates involving this number of entries should not 
be a large part of system cost. 

Splitting index nodes may produce holey bricks, but the hB-tree remains 
balanced, just as the B+-tree does, and for the same reason (i.e., the hB-tree 
increases in height only when the root splits). It is worth repeating one last time 
that hB-trees differ from B+-trees only in the organization of index terms into 
k-d trees and in the splitting of data (or index information) between nodes during 
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the file growth process. These are what might be called local differences or 
differences in the small. Globally, hB-trees behave as B+-trees. 

The full details of a deletion algorithm remain for future work. Record deletions 
that do not yield underutilized nodes do not change the hB-tree structure, but 
are done locally within a node. If a data node is underutilized, we reverse the 
process of node splitting, combining siblings which might have previously been 
paired as N-NODE and X-NODE. We then simplify the i-tree, eliminating 
i-nodes which only serve to distinguish the two siblings. This is complicated, and 
results in a number of different cases that need to be treated. However, it is clear 
in concept what is required. Further, because hB-trees deal with holey bricks, it 
is always possible to find another node in which to store the data from a node 
being deleted. This is in contrast to the grid file and the K-D-B tree, which 
require that nodes represent full (rectangular) bricks. At times it is impossible to 
find a node to pair with the node being deleted such that the combined volumes 
form a brick. 

Since node splitting occurs, from the global hB-tree view, in exactly the same 
manner as it occurs in B+-trees, it is possible to link together all nodes at the 
same level of the tree, into what has been called a sequence set. This sequence 
set is simply a linked list of the nodes. With B+-trees, the single-attribute keys 
of the nodes are ordered. Thus, the keys in one node all precede or all follow all 
the keys of another node. For hB-trees, we do not have this ordering relation. 
With these links, however, and with a few minor adjustments to the search 
algorithm, the Lehman-Yao concurrency method [6, 16, 171 could be applied to 
the hB-tree. 

Most important, the hB-tree is one of few multiattribute search structures that 
provides an analysis of space utilization. It shares with the B+-tree a simple 
node-splitting process, which occasionally proceeds up the tree to the ancestors 
of the node being split and never cascades downwards. The hB-tree does not 
require knowing the distribution of the data ahead of time; it, like the B+-tree, 
adjusts gracefully to any pattern of incoming data. 

APPENDIX 1. Proof for Data Node Split 

In this appendix we show that, with at most k attribute values, we can guarantee 
at least a 1:2 split in the data points. Thus, we can guarantee both data node 
utilization of at least t and index terms for data nodes that do not involve more 
than k attributes. 

Definition. A d-dimensional closed upper corner in a finite subset of k- 
dimensional space can be defined formally as the set of points (xi, x2, . . . , xk) 
such that 

where d 5 k and where m; is the median value for the ith coordinate for the 
points in the space. A d-dimensional closed lower corner is defined similarly. 

A d-dimensional closed corner is either a d-dimensional closed upper corner, or 
else it is a d-dimensional closed lower corner. 

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990. 



654 l D. 6. Lomet and B. Salzberg 

LEMMA. If no median hyperplane splits the space in a ratio less than or equal 
to 2: 1, and if some d-dimensional closed upper corner, D contains more than f of 
the points, then any (d + 1)-dimensional closed upper corner contained in D has 
more than $ of the points. 

PROOF. Suppose we have such a d-dimensional closed upper corner 
bl, x2, * * * , xd) of points D such that 

x1 2 ml, x2 2 m2, . . . , xd 2 mdt 

which includes more than $ of the total points in the space. 
Then the complement of D is the set of points C such that x1 < ml OR x2 < 

m2 . . . OR xd < md. Since D contains more than $ of the points, C contains less 
than 5 of the points. 

The set of points X such that x d+l C md+l contains less than $ of the points, 
since no median hyperplane splits the space in a 2: 1 ratio. (The labeling “d + 1” 
of the next coordinate is arbitrary; any coordinate not already used to define D 
could be used here.) 

Therefore, the union of C and X contains less than 5 of the points, and its 
complement, the set of points (x1, x2, . . . , xd, xd+l) such that 

x1 2 ml, x2 > m2, . . . , xd+l 2 md+] 

must therefore contain more than $ of the total points. Cl 

THEOREM. Some d-dimensional closed corner contains between $ and $ of the 
points. 

PROOF. When d = 1, we are talking about splitting the space with hyperplanes. 
If some median hyperplane works, we are done. If not, no median hyperplane 
splits the space in a 2: 1 ratio, and all k l-dimensional closed corners must contain 
more than $ of the points. (They contain more than half, since the split point is 
the median value; if they also contain less than I, this hyperplane splits in a 
2 : 1 ratio). 

We use mathematical induction on d to show that if the theorem is not true, 
then there is a d-dimensional closed upper corner with more than $ of the points 
and a d-dimensional closed lower corner (which may be defined on the same 
coordinates) with more than $ of the points. When d = k, we arrive at a 
contradiction. 

We have shown that if the theorem is not true, then the induction hypothesis 
holds for d = 1. 

Now suppose the induction hypothesis is true for d. That is, there is a closed 
upper corner D, consisting of points (x,, x2, . . . , 3~~) such that 

xl 2 ml, x2 2 m2, . . . , xd 2 md, 

which contains more than 5 of the total points. The closed lower corner, 
consisting of points (x, , x2, . . . , xk) such that 

xl 5 ml) x2 5 m2, . . . , xd 5 md, 

also contains more than $ of the points, 
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Then, by the lemma, the set of points (xi, x2, . . . , xk) such that 

xl h ml, x2 > m2, . . . , xd+l 2 md+l 

contains more than $ of the total points. If it also contains less than + of the 
points, then the theorem is true. Thus, it must contain more than f of the points 
if the theorem is false. By symmetry, this is also true for closed lower corners. 
This finishes the induction step. 

So, by induction on d, we have shown that the closed upper k-dimensional 
corner U and the closed lower k-dimensional corner L both contain more than 
G of the points. But then the complement K of U is the set of points where 
X1 < ml OR X2 < T?lz . . . OR ,& < mk. 

We thus know that K has less than i of the points. Thus, the points which are 
in L but not in K are more than d of the points. But this is the single point 
(ml7 m2, . . . , mkh 0 

The theorem establishes that any collection of points can have a subregion 
extracted, which constitutes between $ and 3 of the points. To establish that it 
is possible to “split” a holey brick by extracting a full brick from it, we need a 
more specialized result. The following corollary accomplishes this. 

COROLLARY. Suppose a finite set S of points in k-dimensional space contains 
over t of the points of a larger finite set T. Then we can augment S with a new set 
of points Q such that 1 S U Q 1 = 1 T 1 (Th e cardinality of S union Q is the same as 
the cardinality of T), and we can find a closed corner K of S U Q such that between 
$ and 3 of the points of T lie in K. (These points are also in S ). 

PROOF. Suppose that for the set of all points (xi, . . . , xk) in S we have upper 
and lower bounds 

li 5 Xi I Ui 

for each 1 5 i 5 k. These upper and lower bounds define a rectangular convex 
hull for S. That is, they define the boundaries of the smallest rectangular region 
containing all the points of S. 

Let the points of Q be defined as follows. Let 1 Q 1 = 1 T - S 1. Half of the 
points of Q are to lie in the quadrant where 

Xl < 11 

x2 < U2 

3c3 > U3 

. . . 

xk > uk 

That is, except for the first coordinate, all the coordinates are larger than the 
coordinates of any point in S. The first coordinate is smaller than the first 
coordinate of any point in S. Symmetrically, the other half of the points of Q lie 
in the quadrant 

Xl > Ul 

x2 < 12 

x3 < 13 

. . . 

xk < lk 
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A projection of S and Q onto the two-dimensional space (xl, x2) is given in 
Figure 16. 

By the theorem, some d-dimensional closed corner K of S U Q contains less 
than + and more than f of the points of S U Q. If d 12, then K does not contain 
any points of Q. Thus, all of the points in K are in S, and hence also 
in T. 

If d = 1, then K contains all the points of S U Q whose ith coordinate is greater 
than or equal to the median. Such a “closed corner” has more than half of the 
points of S U Q, and contains half of the points of Q. The other half of the points 
of Q are on the other side of the hyperplane defined by the median. 

But the number of points in half of the points of Q is less than $ of the number 
of points of T. The rest of the points are in S (and hence in T). So at least $ of 
the points of T are in K. 0 

We have shown above that data nodes can always be split so that the division 
of data between the two resulting data nodes is better(less) than 2: 1. The method 
we have employed makes use of closed corners of k-space (i.e., corners that 
contain their boundaries). In the one-dimensional case, we can clearly divide the 
data in close to a 1: 1 ratio. We conjecture that it should be possible to split data 
more evenly in higher dimensional spaces by making use of semiclosed corners 
of the space being divided. These are corners which contain some, but not 
necessarily all, of the boundaries (i.e., they are closed in some dimensions and 
open in others). The rationale for this conjecture is that we should be able to 
pick and choose boundaries so as to balance the split ratio. 

APPENDIX 2. Index Node Splitting 

In this appendix, we show how an index node can be split into two index nodes 
with at worst one third of the information in one node and two thirds in the 
other. We can always find a subtree to extract where the number of (internal) 
nodes in the extracted subtree is between one third and two thirds of the total 
number of (internal) nodes. (The internal nodes are the nodes of the k-d tree 
whose information is actually stored in the index. Leaf nodes are addresses of 
hB-tree data nodes or index nodes on a lower level or are external markers.) We 
thus guarantee worst-case node utilization of one third. Let us prove this formally. 
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Definition. Let n be the total number of internal nodes in the k-d tree to be 
split. Suppose n is greater than 1. Let lb be floor(n/3). Let ub be ceiling(2n/3). 
Say the node N satisfies the bound condition if 

lb 5 x 5 ub 

where x is the number of internal nodes in the subtree whose root is N. 

CLAIM. We can always find a node satisfying the bound condition. 

PROOF. Associate with each internal node N in the tree the number count(N), 
the number of internal nodes in the subtree whose root is N. We begin at the 
root of the k-d tree. If either child satisfies the bound condition, we are done. 
Suppose neither child satisfies the bound condition. First we show that this 
implies that count(C) will be greater than ub for one of the children, C. 

Let cl = count(left child) and let cz = count(right child). Then 

cl + c2 + 1 = n. 

If both cl I ub and c2 5 ub, then since neither child satisfies the bound 
condition, we have c, < lb and c2 < lb. 

Thus 

n = c1 + c2 + 1 < lb + lb + 1 5 n/3 + n/3 + 1. 

This implies n < 3. 
But a tree with only two nodes has a child of the root satisfying the bound 

condition. We are not considering trees with only one node in our claim. 
This shows that if there is no child satisfying the bound condition, one of the 

children will be the root of a tree with more than ub nodes. 
Continue descending the tree, choosing a child C of the current node such that 

count(C) > ub. After a finite number of steps, less than the height of the tree, 
neither of the two children will be the roots of trees with more than ub nodes. 
Because the number of nodes of a tree is an integer, and this number strictly 
decreases as we descend the tree. 

Let p be count(parent) when we stop our descent. Sop > ub. By our assumption, 
c1 = count(child 1) and c2 = count(child 2) at this point are both less than or 
equal to ub. If either child satisfies the bound condition at this point, we are 
done. Assume not. Then 

as before. Also, 

c1 < lb and c2 c lb, 

Thus 

cl + cq + 1 = p > ub. 

This implies 

ub < cl + cz + 1 < lb + lb + 1. 

ceiling(2nl3) < floor(n/3) + floor(n/3) + 1. 

If n is not divisible by 3, this becomes 

2h + 1 < 2k + 1, 
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where n = 3k + 1, or 

2k + 2 < 2k + 1, 

where n = 312 + 2. If n is divisible by 3, then ci < lb implies ci I n/3 - 1. Thus 

ub < cl + cz + 1 5 n/3 - 1 + n/3 - 1 + 1. 

This implies 2n/3 < 2n/3 - 1. We thus have a contradiction to our assumption 
that neither child satisfied the bound condition. Cl 
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