
The hB-Tree: A Multiattribute Indexing
Method with Good Guaranteed Performance

DAVID 9. LOMET
Wang Institute of Graduate Studies
and
BETTY SALZBERG
Northeastern University

A new multiattribute index structure called the hB-tree is introduced. It is derived from the K-D-B-
tree of Robinson [15] but has additional desirable properties. The hB-tree internode search and
growth processes are precisely analogous to the corresponding processes in B-trees [l]. The intranode
processes are unique. A k-d tree is used as the structure within nodes for very efficient searching.
Node splitting requires that this k-d tree be split. This produces nodes which no longer represent
brick-like regions in k-space, but that can be characterized as holey bricks, bricks in which subregions
have been extracted. We present results that guarantee hB-tree users decent storage utilization,
reasonable size index terms, and good search and insert performance. These results guarantee that
the hB-tree copes well with arbitrary distributions of keys.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management--access
methods, file organization; H.2.2 [Database Management]: Physical Design-access methods; H.3.2
[Information Storage and Retrieval]: Information Storage-j& organization

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Access methods, B-trees, dynamic files, multiattribute indexing

1. INTRODUCTION

There are a number of application areas where it is very common to perform
searches using the values of several attributes. Examples of such areas include
geographic or geometric data, VLSI design, and certain kinds of document
retrieval.

Where multiple-attribute searches are the rule and single-attributes searches
the exception, there are advantages to using one multiattribute index compared
with several single-attribute indexes. First, the clustering of index terms and
data on disk can dramatically reduce the number of I/O accesses needed for the
search. Second, when new records are inserted, a multiattribute organization

Authors’ current addresses: David Lomet, Digital Equipment Corp., Cambridge Research Laboratory,
One Kendall Square, Bldg. 700, Cambridge, MA 02139; Betty Salzberg, College of Computer Science,
Northeastern University, Boston, MA 02115.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0362-5915/90/1200-0625 $01.50

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990, Pages 625-658.

626 - D. B. Lomet and B. Salzberg

needs only a single update of its index. Multiple single-attribute indexes require
multiple updates.

Despite these two important advantages, multiattribute index organizations
have not commonly been used. One reason for this is that multiattribute orga-
nizations yield poor clustering for single attributes. A “cross section”, or “partial
match” query, where the value of only one of the attributes is specified, requires
searching all pages in the “hyperplane” of the multiattribute index. An example
would be finding all the baseball games played on a given date, in a multiattribute
file organized both by team and by date. Figure 1 illustrates this.

Of course, single-attribute secondary indexes also lose data clustering. Thus,
the choice between a multiattribute index or multiple single-attribute indexes is
application-dependent. However, multiattribute organizations are rarely used in
general-purpose database systems, even for applications which would benefit
from their use.

A substantial part of the reason for the lack of use of multiattribute index
methods is that they fail, in one way or another, to be good search structures.
Good search structures must have at least the following properties:

(1) good average storage utilization both in the index and in the data pages;
(2) large index fan-out, resulting in a small index and a small number of disk

accesses;
(3) easy incremental reorganization as the file grows;
(4) simple algorithms with an absence of special cases; and
(5) an ability to handle range searches (and partial match searches) as well as

exact match searches.

Many existing multiattribute search methods exhibit these characteristics some
of the time. However, a good search organization must guarantee these charac-
teristics all of the time in the face of arbitrary data.

In this paper we introduce a new multiattribute search structure which guar-
antees good performance in the face of any pattern of data distribution and any
pattern of insertions and deletions. This method promises good space utilization
both in the data pages and in the index.

Our point of departure is the K-D-B-tree of Robinson [El. K-D-B-tree nodes
always represent rectangular regions, or bricks. In our structure, the nodes
represent bricks from which smaller bricks have been removed, or “holey bricks.”
We call our structure the Ml-tree, or holey brick B-tree. A similar idea was used
in the one-dimensional case for DL*-trees in [9]. Holey bricks have also been
used in [5] and in [13].

We distinguish between data nodes that are pages which contain the records
of the database and index nodes that contain k-d trees. The data nodes are the
leaves of the hB-tree. The index nodes are the internal nodes of the hB-tree.
Thus, the hB-tree is similar to the B+-tree [4].

The hB-tree grows from the leaves and has all leaves at the same level, just as
a B-tree does. Since it is a B-tree-like structure, enhancements such as partial
expansions [lo] and Bounded Disorder files [7, 111 can be used to improve its
efficiency.
ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute Indexing Method 627

Team

Giants

Orioles
Red Sox

Yankees

being searched May 5 : + hyperplane
Date

,

Fig. 1. Clustering for a single attribute is compromised in any multiattribute index.

Robinson does not specify the internal structure of his K-D-B-tree nodes. In
order to present information about node utilization and average fan-out, we must
choose some specific node structure. We argue that the k-d tree is a good choice
for the internal structure of the index node of the hB-tree. That is, we use the
k-d trees within hB-tree index nodes to organize information about lower levels
of the hB-tree. The k-d tree also assists in organizing data nodes of hB-trees.

The original version of the k-d tree [2] is a binary tree which requires a fixed
alternation from one attribute to another as one descends the tree. We use a
generalization of this structure [3], which allows the dynamic insertion of data
to determine the choice of attribute. This means that some attribute identifier
(age, salary, x-coordinate) must be stored in the k-d tree node as well as the
comparison value.

In addition, in order to represent holey bricks, several leaves of the k-d tree in
an hB-tree index node may refer to the same hB-tree node at a lower level of the
hB-tree. This construction is illustrated in Figure 2.

As with the single-attribute B+-tree, when new records are added, a data node
must occasionally split, and new information is posted to its parent. When too
much information is posted to an index node, the index node must split. When
an index node splits, information about that split is posted to the parent of the
index node. Eventually, the root will split and the hB-tree will grow in height.
We shall give precise algorithms for these operations on the hB-tree and show
how these algorithms lead to node utilization that is excellent on average, and
still quite good in the worst case. We also establish bounds on the amount of
information posted to higher levels, so that we can establish a lower boucd on
hB-tree node fan-out.

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

628 - D. B. Lomet and B. Salzberg

Fig. 2. A holey brick is represented via a k-d tree. A holey brick is a
brick from which a smaller brick has been removed. Two leaves of the
k-d tree are required to reference the holey brick region denoted by B.

An overview of some of the other proposed multiattribute search structures is
given in Section 2. We then introduce the hB-tree and show how to search for
points (exact match queries) and for regions (range queries) in Section 3.

In subsequent sections we describe insertion and updating. In Section 4 we
show how the insertion process compares with that of single-attribute B+-trees;
this leads to our node utilization analysis and our guarantees on fan-out. In
Section 5 we give the details of node splitting, and in Section 6 show how to post
index information. In the last section we summarize and discuss these results. In
the appendix, we include proofs of the correctness of some of our assertions.

In sections where it is relevant, we establish worst-case results for storage
utilization and for size of index entries. These worst-case results guarantee that
the hB-tree will have good space utilization in the index and data pages. Exact
match queries are guaranteed to have good performance and the index is guar-
anteed to be significantly smaller than the data collection. These guarantees hold
for all data distributions, any order of insertion, and any query patterns.

2. OTHER MULTIATTRIBUTE SEARCH STRUCTURES

There have been many structures proposed for multiattribute searching. The
simplest idea is to concatenate the key attributes in some order, and use a single-
attribute search structure such as a B-tree. The disadvantage of this method is
that some attributes are favored over others. A partial match query specifying
the value of the first attribute will be very efficient, since the records matching
on that attribute will be clustered. A partial match query on the last attribute
will require that most, if not all, of the search structure be accessed.

2.1 Bit Interleaving

Another approach is to interleave the keys of several attributes, using first a
binary digit from one, then a binary digit from another. This method is used in
[14]. In bit interleaving, the ordering of digits from the various attributes is fixed,
and typically is the same for the entire key space. Bit interleaving guarantees
good node utilization since a single-attribute search structure with good node
utilization may be chosen once the interleaving pattern is fixed.

If the assumptions made in choosing this ordering do not apply to the entire
key space, or change over time, the only recourse is to choose a new ordering and
ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute Indexing Method 629

reorganize the file. The danger here is that skewed distributions where many
records have the same leading bits in some attribute will cause the data to be
organized on the disk by the other attributes, as if concatenation had been used.

2.2 The Grid File

The grid file [12, 191 is a good search structure for uniformly distributed
multiattribute keys. However, if the distribution of the attributes of the keys are
skewed, the index can use large amounts of space. On a single data page overflow,
it is possible that a k - 1 dimensional slice must be added to the index. This
increases the number of divisions in one of the dimensions by one. If the numbers
of value divisions in each dimension (the length of the linear scale for a given
dimension) are near some constant c, then adding this new k - 1 dimensional
slice adds ck--l new index entries.

In the worst case, the number of index entries may be 0(-nk), where n is the
number of records in the file and k is the number of attributes in the key. This
occurs when the data is correlated, for example, lying entirely on the diagonal.

We are concerned with databases for which the grid file index will not fit in
memory. In this case, the grid file requires two disk accesses for exact match
queries: one access for the index and one for the data.

For range queries a large index is especially harmful. It will take many disk
accesses just to read the index entries. In fact, the number of data pages for a
given range query might be considerably smaller than the number of index pages.
This problem is especially sensitive to the number of attributes in the key.

2.3 The K-D-B-Tree

The K-D-B-tree of Robinson [15, 181 works analogously to a B-tree but, instead
of nodes containing search values in disjoint intervals of a one-dimensional space,
each node “covers” a brick-like region of k-dimensional space. Thus, K-D-B-
trees inherit from B-trees the balanced tree property, that is, all paths to leaves
of the tree are equal in length. Further, like B+-trees, all data is stored in leaf
nodes, internal nodes containing only index entries which direct the search.

A K-D-B-tree has many of the desirable properties of a good index structure.
In particular, because its growth method is similar to that of the B-tree, it adapts
to the distribution of attribute values presented to it.

2.3.1 Splitting Nodes in the K-D-B-Tree. However, there is an implicit as-
sumption in [15] that data nodes can be split evenly using one attribute value.
Figure 3 shows an example where this assumption fails. In Section 4, we give a
mathematical analysis of this phenomenon. The even split assumption is made
not only in the K-D-B-tree algorithm, but also in many other papers on multi-
attribute structures. None provide any bounds on how bad performance can be
when the assumption is violated.

Index node splitting is more complex. Figure 4 (from [15]) illustrates how
Robinson suggests splitting an index node. Such splitting requires a series of
cascading splits of nodes in the subtree whose root is the node being split. The
problem here is that any single plane through the space represented by an index
node may split the space of one or more descendant nodes. Such cascading
splitting of descendant nodes, in addition to making the splitting process costly,
can also adversely impact storage utilization.

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

630 * D. B. Lomet and B. Salzberg

Fig. 3. In this example, one fourth of the records lie on each
half axis. No vertical or horizontal line, denoting a single value
for one of the attributes, can evenly split this data page. Thus
no one attribute value can be used to split the page.

.

.

.

.
.

.

.

.

.

before: c

splitting element

+-l

\

sP

sP

after:

e
4

sp : these pages are also

split

Fig. 4. Index node splitting in K-D-B-trees (from [X]). Here the split of one index node can
cause descendant nodes to be split as well. This may cause sparse index nodes to be created
on a lower level.

2.3.2 Internal Index Node Organization in the K-D-B-Tree. The K-D-B-tree
organization, like many file organizations, does not specify how to organize its
data within nodes. For single-attribute methods, such as the B-tree, several
successful methods exist, most involving sorting the entries and placing them in
an array to permit binary search. Such an array is also easy to deal with during
node splitting.

For k-attribute searching, however, it is not so clear how entries should be
organized within a node. Multiattribute search structures within a node may also

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hl3-Tree: A Multiattribute Indexing Method 631

make it difficult to reorganize nodes after they are split. What is desired,
obviously, is a search structure that is space efficient, and supports fast search
while being compatible with an effective splitting process.

3. THE hB-TREE

The hB-tree is a variant to Robinson’s K-D-B-tree [15]. There are two distin-
guishing features of hB-trees.

(1) Index nodes are organized as k-d trees.
(2) Splitting of a node may require the participation of more than one attribute.

The result is that nodes no longer correspond to bricks in k-space, but rather to
“holey” bricks, or bricks from which smaller bricks have been removed. Because
of this, hB-trees can avoid cascading splits. Like B-trees, however, splits can
propagate up the tree.

In B+-trees, values acting as index terms in index nodes are redundant in the
sense that these values are derived from keys stored in the leaves of the B+-tree.
This is true of hB-trees too. However, with hB-trees, the index terms must
partition a k-dimensional space, not merely a one-dimensional space.

3.1 The Advantages of k-d Trees

With K-D-B-trees, each index node represents a region or brick in k dimensional
space as in Figure 5. Each such brick is split into sub-bricks whose union is the
region represented by the node. These sub-bricks represent regions on a lower
level of the index. At the bottom level of the index the sub-bricks represent data
nodes. No indication is given in [15] as to how these sub-bricks are represented
within the index node.

In Figure 5a we show a two-dimensional space partitioned into separate regions
as in [15]. In Figure 5b we show a k-d tree which realizes this partitioning, while
Figure 5c shows another way to describe the partition, by explicitly listing the
boundaries of each brick. While there may be other ways of representing mul-
tiattribute index terms, these are two clear choices, and k-d trees have substantial
advantages in both search speed and space.

3.1.1 Intranode Search Speed. In Figure 5b, we need only make two compari-
sons to find the correct node, using the k-d tree. Figure 5c shows the same
information kept as a list of the boundaries of the bricks. Even if the point we
are searching for is in the first brick on the list, we must make four comparisons,
for the four boundary values, just to verify that this is the correct brick. If the
point we are searching for is in the last brick on the list, we would make at least
one comparison (and possibly more) in order to rule out the first three boundary
descriptions, and then make four comparisons to verify that the last brick was
correct. (This last can be avoided if we know that the bricks cover the entire
space.)

The reason for the k-d tree advantage is that bricks share boundaries. In the
boundaries representation, these are checked redundantly, while for a k-d tree, a
boundary is typically checked only once. When we deal with holey bricks, the
k-d tree retains its advantage over the boundaries representation on average, but

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

632 - D. B. Lomet and B. Salzberg

a B
Yl

k

C

yo *
xo Xl x2 x3

5 (4
5 (b) : k-d tree

A : xo xl ~0 Y, c : Xl x2 Yo Y2

B : x0 x1 y1 yz D: x2 5 Yo y2

5 (c) : Boundaries

Fig. 5. The internal representation of K-D-B-tree nodes.

loses it in the worst cases. We return to this after introducing holey bricks in
Section 3.2.

3.1.1.1 k-d Tree Representation for Bricks. Usually, searching for a correct
lower level node using a k-d tree requires order log n comparisons (i.e., if the tree
is well-balanced, where n is the number of bricks). There are n - 1 nodes in the
k-d tree with n references to the bricks. In the worst case, the nodes will all be
in a line (i.e., the k-d tree will be linear). For this tree, one needs to make an
average of (n - l)/2 comparisons. The worst-case search for this worst-case tree
requires n - 1 comparisons.

If we assume that k = 2 and that n = 100, then the costs are as follows.
For the worst-case k-d tree, when the tree is linear, the worst-case search is
n - 1 = 99 comparisons and the average search is (n - 1)/2 = 49.5 compari-
sons, since the number of k-d tree nodes is one less than the number of bricks
referenced. With an “average” tree (i.e., one that is approximately balanced)
about log,(n) = 7 comparisons are needed for all searches.

3.1.1.2 Boundaries Representation for Bricks. For the list of boundaries repre-
sentation, the search cost is higher. On average, one must reject (n - 1)/2 bricks
before finding the correct brick. At worst, one rejects n - 1 bricks. To confirm
that a brick is correct, one must make 212 comparisons, one for each of the
212 boundaries.

For each brick that does not contain the point that is the search argument,
the cost, in comparisons, is as follows. For each dimension of a rejected brick,
one boundary value must always be compared to the point’s coordinate in that
dimension. The point will satisfy the first boundary comparison half the time
before being rejected by the other boundary. Thus, assuming no optimizations
based on the point’s coordinates, to check a dimension requires an average of
1.5 comparisons. If the point survives the first dimension checked, an average
of 2 + 1.5 comparisons will be needed, and so on.

What is the probability that a brick is rejected in a check on a given dimension?
To answer this, we assume that each brick is about the same size and that each ,
of the k dimensions is subdivided into b parts (where b = n’/k) by the bricks.

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute Indexing Method 633

Then the probability that a point survives the first dimension checked is l/b.
For example, if n = 100, and k = 2, b is 10, and the probability that a given point
is within the boundaries of a given dimension for one of the bricks is l/10.

On average, the number of comparisons needed to reject a brick is

1.5 + (l/b)(2 + 1.5) + (l/b2)(4 + 1.5) + . . . =

k-1 2i + 1.5
1.5 + c 7.

i=l

In our example, this is 1.85 comparisons per rejected brick.
Since (n - 1)/2 bricks must, on average, be rejected before finding the correct

brick, and confirming the correct brick requires 2k comparisons, the average
number of comparisons needed to find the correct brick (again for k = 2 and n =
100) is 1.85(99/2) + 4 = 95.6. The worst case for this is (n - 1) X 2k = 396
comparisons, when a brick is not rejected until all boundaries have been compared
and the correct brick is the last brick examined.

3.1.2 Space Used with Intranode Representations. It should be obvious that
the k-d tree representation also takes up less space than the boundaries list
representation. We assume that pointers, both intranode pointers and external
pointers, are equal in size to attribute values. This almost surely overstates their
size and works against the k-d tree representation, which has more pointers and
fewer attribute values. Even with this handicap, the k-d tree representation is
superior.

3.1.2.1 k-d Tree Representation for Bricks. Each internal node of the k-d tree
contains only one comparison value, pointers to a left and right child, and a flag
to indicate which attribute is being compared. We assume the flag, which serves
other purposes as well, is equal to half an attribute value, again a generous
estimate. The entire collection of necessary information here is not likely to
exceed two bytes, while attribute values will frequently be longer than four bytes.
Hence, each node of the k-d tree is 3.5 attribute value equivalents. (Note that
the boundaries representation will almost surely require control information as
well, but it has been ignored here.)

For n bricks, there are n - 1 k-d tree nodes. This means (n - 1) X 3.5 attribute
value equivalents. Note that the number of dimensions of the space k does not
affect the space used, when dealing with bricks, except in the encoding of the
attribute to which each node corresponds.

3.1.2.2 Boundaries Representation for Bricks. The boundary representation
contains many duplicate attribute values. Regardless of the structure or distri-
bution of bricks or holey bricks, the amount of space consumed by the boundaries
representation is the same. There must be n x 2k attribute values in the boundary
representation as well as n pointers. Thus, the space consumed is (2k + 1) X n
attribute value equivalents. Since k >= 2, when dealing with bricks, the bound-
aries representation always requires at minimum 5 X n attribute value equivalents
of space, and this increases with k. The k-d tree is always better than this.

In our example in Figure 5, we needed 16 boundary values and four pointers
for the brick boundary representation in Figure 5c, but only three boundary

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

634 l D. B. Lomet and B. Salzberg

values and six pointers for Figure 5b. Given our assumptions, the k-d tree has
space equal to 10.5 attribute value equivalents, while the boundaries represent,a-
tion takes 20 attribute value equivalents.

3.2 Holey Bricks

3.2.1 Solving the Node Splitting Problem. As illustrated in Figure 3, splitting
data nodes using a single attribute value may present difficulties because the
resulting nodes have substantially different utilizations. In Figure 8, we show an
example where an index node cannot be split at the root of the k-d tree for the
same reason. In K-D-B-trees, an index node was split by drawing a plane through
its region, splitting subregions in the process. This technique required lower level
nodes to be split, descending down the tree, and possibly causing sparse nodes at
lower levels.

By removing the restriction that nodes must be split using only a single
attribute, these problems are avoided. The regions of h-space resulting from this
kind of splitting are no longer bricks, but rather bricks with, perhaps, smaller
bricks removed from them. We call these regions holey bricks, since the subregions
removed may be anywhere in the original region, even completely interior to the
region. We call the region removed the extracted region, and the holey region
the enclosing region.

In the Appendix, we prove that good space utilization can be guaranteed when
splitting a data node if the extracted region is a corner of the enclosing region.
Importantly, corner regions only require at most one boundary per dimension.
Our analysis below assumes this form of data node splitting. Other forms of
splitting do not necessarily have guarantees.

3.2.2 Representing Holey Bricks. Like bricks, holey bricks can be represented
either via k-d trees or using a boundaries representation. The boundaries repre-
sentation is unchanged, although we may wish to order the list of regions with
more care. The situation is somewhat different with k-d trees.

In order to represent holey bricks using k-d trees, several leaves of the k-d tree
may refer to the same node on a lower level in the hB-tree. This is illustrated in
Figure 2. One leaf refers to the extracted region (A). Two leaves refer to the
enclosing region (B).

Using holey bricks as the regions described by our hB-tree index does not
affect the search algorithm. It does, however, occasionally cause hB-tree nodes
to have more than one parent. This means that the hB-tree is not truly a tree; it
is a directed acyclic graph, or DAG. We shall continue to use tree terminology,
as levels, height, ancestors, and children are still concepts that make sense in
this context.

We use fragments of k-d trees as our index terms and compose them with
other such k-d tree fragment index terms into the k-d tree that exists within an
hB-tree index node. In addition, we can bound the size of these index terms,
which enables us to derive lower bounds on hB-tree index node fan-out.

3.2.3 Performance Impact of Holey Bricks. With the boundaries representation,
the space consumed is the same as required for bricks. The search must now find
the smallest brick that contains the argument point, since these bricks can be

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute Indexing Method 635

nested. Aside from this, however, search is the same as before, and the worst-
case bounds are the same. The average case search can be made the same as
before by ordering the boundaries list, putting enclosing brick after extracted
brick in the ordering.

With holey bricks, the k-d trees will sometimes be larger. When an index term
is posted, it can consist of as many as k k-d tree nodes when reflecting a data
node split. The k is the maximum number of boundaries for an extracted corner
region. Hence, the worst-case linear tree has (n - 1) x k k-d tree nodes. This
contrasts with (n - 1) nodes when we deal with bricks without holes.

The result of the above difference is to multiply the worst-case search cost and
the worst-case space consumption by a factor of k. (This should be regarded as
only an approximate characterization.) For the average case, we would expect
that only somewhat more than one node is actually needed in order to successfully
split a data node. Below, we assume 1.5 nodes (e.g., that half the time a data
node can be split with a single attribute value while two attribute values are
required the rest of the time).

Returning to our previous example of n = 100 nodes with k = 2, we have the
following.

The average search for the worst-case (linear) k-d tree requires (n - 1) x
k/2 = 99 comparisons. The worst-case search on the worst-case tree re-
quires (n - 1) X k = 198 comparisons. This is comparable to the average and
worst-case results for the boundaries representation. This tree consumes
3.5 x k X (n - 1) attribute value equivalents of space, which is worse than the
(2k + 1) X n attribute equivalents needed by the boundaries representation.

However, about log, (1.5 X n) comparisons are all that are needed for an
“average,” approximately balanced k-d tree with about 1.5 k-d tree nodes posted
for a split. For a balanced tree, again only about seven comparisons are all that
are needed, even in the worst case. With respect to space, this average tree
requires 5.25 x (n - 1) attribute equivalents of space, which is comparable to the
space required by the boundaries representation.

Thus, in the holey brick case, the k-d tree representation still has a decided
performance advantage compared to the boundaries representation, though it
does not perform as well as when only bricks are permitted. (Of course, with
bricks, one does not get space utilization and fan-out guarantees.) The space
required for an average tree is comparable to the boundaries representation when
k = 2, and is smaller with k > 2. For the worst-case tree, space consumption is
not good for the k-d tree representation. The internal pointers of the k-d tree
form constitute too much overhead. Fortunately, the worst-case linear tree with
k attributes per holey brick will almost never occur.

3.3 Searching Using the hB-tree

The k-d tree leaves in an hB-tree index node refer to lower level hB-tree nodes.
In each internal node of the k-d tree, there is an indicator of which attribute is
to be compared, what the comparison value is, and whether equality is on the
left branch (less than or equal) or the right branch (greater than or equal). We
cannot always have equality on the left (or always on the right) and still guarantee
even splitting (Section 4).

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

636 * D. B. Lomet and B. Salzberg

3.3.1 Exact Match Queries. To do an exact match search, one follows a unique
path from the root of the hB-tree down the hB-tree to a data page. The number
of hB-tree nodes accessed is the height of the hB-tree, which depends only on
the hB-tree fan-out. The k-d trees within hB-tree nodes should only be regarded
as directing the search to the next lower level of the hB-tree, just as index values
in B+-trees or boundary values in other hierarchical multiattribute search struc-
tures direct such a search.

3.3.2 Range Queries. A range query specifies a range of values for one or more
of the attributes. If a comparison value in a k-d-tree node is greater than all the
same attribute’s values in the search range, one goes to the left. If it is smaller,
one goes to the right. If a comparison value is in the middle of a search range,
one follows both the left and right branches. Several hB-tree nodes at each level
may be accessed. Range searching results in a similar search pattern for the one-
dimensional B+-trees as well, but it is easy to overlook this.

3.3.3 Region Data. The hB-tree can be used for region data. Brick-like regions
can be considered data points if they are described by the upper and lower
coordinates in each attribute. For example, a rectangle in two-dimensional space
can be specified by its lower y and upper y and lower x and upper x coordinates.
A rectangle is thus a point in a four-dimensional space. For regions of different
shapes, their enclosing rectangles can be used to identify candidate regions for
the search. More detailed examination of the enclosing rectangles is needed to
make a final determination. This examination is beyond the scope of this paper.

Exact match search for a region is the same as exact match for any other data
point. Values are given for all the upper and lower coordinates.

Finding all the regions D contained in a given region R is a range query. The
high x coordinate of D must be less than or equal to the high x coordinate of R.
The low x coordinate of D must be greater than or equal to the low x coordinate
of R, and so forth. Similar inequalities are needed to find all the regions
intersecting a given region.

Thus, searching for region data is similar to searching for point data. Only the
number of attributes being compared is different, that is, it is doubled.

3.3.4 Summary of Searching in hB-trees. Searching for data within an hB-tree
index node is a very straightforward process, essentially the same as searching
using a binary search tree. For exact match searches, the number of hB-tree
nodes accessed is exactly the height of the tree. As with single-attribute B-tree
indexes, the upper levels of this tree will be in memory, so that with decent node
fan-out, this should result in no more than two disk accesses for most files. We
make estimates of node fan-out in Section 4.

Range searches may require accessing several hB-tree nodes on each level.
This is also true for single-attribute B-tree indexes. Region data can be treated
like point data, but with double the number of dimensions.

4. INSERTING AND UPDATING IN hB-TREES

4.1 Commonality with B+-trees

In this section, an algorithm for updating an hB-tree is .described in general
terms. The algorithm is, at this level of description, exactly the same as the

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute Indexing Method 637

corresponding algorithm for B+-trees. The steps of the algorithm are as follows:

General Updating Algorithm

1. Search the hB-tree for the node which is to contain the record to be inserted. This
search uses k-d trees in hB-tree index nodes, as other constructs are used in
B-tree index nodes, but the end result is to have retrieved the node into which the
record is to be inserted.

2. Within this node, find the location where the new record is to be placed and insert
it there. There are two possibilities:

a. The record fits into the space available for it. In this case, the insertion is
complete.

b. The record is too large for the available space. In this case, the data node
must be split.

i. Allocate a new node and split the contents of the original node between
the original node and the new node as evenly as possible.

ii. Post an index term in the next higher level of the tree which identifies
the new key space partitioning between original node and new node. If
the higher level index node overflows, split it analogously.

iii. Reinsert the record into the resulting restructured tree.

4.2 Divergence from B+-trees

The hB-tree differs from the B+-tree algorithm in some important details,
including:

(1) How a data node is organized and how splitting is accomplished.

(2) How an index node is organized and how splitting is accomplished.

(3) What the index terms are and how they are posted to the next higher level
of the tree.

(4) What the guaranteed storage utilization is.

These details are explained in the next sections.

4.3 Data Node Splitting

We model a file with a two-attribute hB-tree using an x-y coordinate system. A
point (x0, yO) in such a space represents a record whose value in the first attribute
is x0 and whose value in the second attribute is yo.

Suppose now that half the records lie on the x-axis and half on the y-axis, as
in Figure 3. Of the records on the y-axis, half lie above the x-axis and half lie
below. A similar configuration of points is on the x-axis. In other words, each
half-axis contains one-fourth of the points. Then there is no horizontal line or
vertical line which will split the space more evenly than in a 3:l ratio, with $ of
the points on one side of the line and 5 of the points on the other side.
A horizontal line would split the data node using one value of the second
(y) attribute. A vertical line would split the data node using one value of the
first (x) attribute. This demonstrates that using one attribute value alone
will not always split a data node evenly.

This argument generalizes to k dimensions. If we have a k-dimensional space,
we can place 1/(2k) points on each of the 2k half-axes, and no one attribute value
will split the space in better than a (2k - 1):l ratio. That is, for this point

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

638 - D. B. Lomet and B. Salzberg

Fig. 6. A corner split data node. Using the values for
several of the attributes we can split any data node in at
least a 2:l ratio.

. . . . F
I l

Fig. 7. The usual case for a data node split. The data node B
is a brick, and the split is along the x attribute at xp forming
two bricks. One brick remains at disk address B while a new brick is
allocated at D.

distribution, at best, 1/(2k) of the points will be on one side of the hyperplane
determined by our single attribute value and (2k - 1)/(2k) points lie on the other
side of the hyperplane.

With at most k attribute values (in a k-dimensional space) determining a
“closed corner” as in Figure 6, we can guarantee at least a 2:l split in the data
points for any point distribution. That is, the data points can be divided so that
no more than 5 of them are in one node and no less than $ of them are in the
other. We prove this in Appendix 1. We can guarantee minimum data node
utilization of at least t. Note that we usually do much better than 2:l. In
Figure 6, we split the data described in a 1: 1 ratio using two attributes.

If the full data node represents a brick in k-dimensional space before the split.,
then there is only one reference to it in the index. In this case, we replace that
reference with the k-d tree representing the split. This will usually be a split with
only one attribute, and we will be adding only one k-d tree node to the index.
One of its pointers will refer to the original hB-tree data node while the
other will refer to the new hB-tree data node. This usual case is illustrated in
Figure 7.

In the general case, the full data node is a holey brick, and there are several
references to it in the index. Despite this, we can guarantee no more than k new

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute indexing Method 639

Xl x2 x3 I5 B before split

after split
k-d tree fragment in

Z:

A B

Fig. 8. An example where splitting an index node at the root of the k-d tree results in poor
fan-out and low node utilization.

k-d tree nodes posted to the index in the worst case, and sometimes we post no
new nodes; we only change references. Section 5 describes the general algorithm.

4.4 Index Node Splitting

Once we have decided to use k-d trees in our hB-tree index nodes, we must decide
how to split them. In [15], a split of a K-D-B-tree index nodes was made by
slicing it with a hyperplane. This necessitated changes on lower level K-D-B-
tree nodes, sometimes creating new sparse lower level nodes and sometimes
precipitating changes down the tree several levels. We use the k-d tree intranode
organization to avoid these problems.

If we always split at the root of the k-d tree, as in Figure 8, we run the risk of
creating sparse index nodes. Instead, we exact a subtree as in Figure 9.

Suppose there are N nodes in the k-d tree. We can always find some subtree
with between floor(N/3) and ceiling(2N/3) nodes. We prove this in Appendix 2.
We thus split it into an extracted subtree and an enclosing subtree. This
guarantees a minimum node utilization of $ in the index level nodes. The worst

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

640 - D. B. Lomet and B. Salzberg

D I?

after split

w:

D E

before split

x3 LP y4 Z: k-d tree fragment in
parent node

4

Fig. 9. The same example as in Figure 8, where the k-d tree of an index node is too
skewed to split at the root. We find a subtree which has between $ and 3 of the
nodes and extract that subtree.

case, then, is that in one resulting node utilization begins at .66 and in the other
at .33.

When an index node is split, we must post information in the parent to
distinguish the extracted tree from the enclosing tree. The extracted tree repre-
sents a k-dimensional brick. Thus, at worst, we need to post the 2k boundaries
to the parent. However, by using a subset of the nodes on the path from the root
of the extracted tree to the root of the enclosing tree, we can do better most of
the time. Also, in this way, the algorithm for posting information is simpler.
However, to gain these advantages, we must occasionally post one additional
node, so that in the worst case we post 2k + 1 k-d tree nodes as our hB-tree
index term. We give the details of this algorithm in Section 6.

4.5 Anticipated hB-tree Utilization

Determining storage utilization in index organizations subject to uneven splitting
was a problem faced in Digital B-trees [8]. The analysis done there used the
uniform growth assumption and involved computing recurrence relations. The
ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute Indexing Method 641

result, specialized to single bucket nodes of the sort that we have, and assuming
growth by local doubling via node splitting, is

u = s log
0
; + (1 - S)log

1

i)
-
1-s

where S is the fraction of the data going to one new node and (1 - S) is the
fraction going to the other. For our worst case 2: 1 split, S = 0.667 and U = 0.637.

While this utilization is not as good as B+-trees, recall that this is a worst-case
result. That is, under the uniform growth assumption, utilization must be at
least .637. More typically, some intermediate split factor would occur, e.g.,
1.5:1 yielding S = 0.6 and U = 0.673, which is very close to B+-tree utilization.
Partial expansions [lo] can be employed, as with Bc-trees, should higher
utilization be desirable.

We emphasize that it is this sort of analysis that is missing from most other
papers on multiattribute structures. Many structures will work well with uniformly
distributed data, or with data whose distribution can be predicted in advance.
However, real data collections have neither uniform nor predictable distributions.

The reason that B+-trees are the most popular single-attribute indexing method
in use today is their worst-case guarantees, which show that space utilization
and query time cannot be arbitrarily bad. B+-trees can handle highly skewed and
highly unpredictable dynamic data collections. Our hB-tree results provide anal-
ogous worst-case guarantees for the multiattribute case.

4.6 Fan-Out

We are interested in two results. First, we would like to estimate the fan-out for
hB-trees so as to determine the storage burden imposed by the index levels of
the tree. Second, we want to compare fan-out with IV-tree fan-out, as B+-trees
are the standard benchmark for index organizations.

Fan-out is a function of three quantities, node size ns, node utilization U, and
size of index terms t. Thus,

fanout = LZ-!Z.
t

We assume here a node size of 4K bytes and a utilization, from Section 4.5, of
0.673. We compare this to B+-tree fan-out, where we assume the same node size
and a utilization of 0.693. Both utilizations are the result of analyses. The
4K-node size is typical of large database systems.

The hard part of determining fan-out is to derive an average size for index
terms. Comparison values (keys) that appear in an index can vary widely in size.
However, eight bytes should be a fairly typical size, especially with judicious use
of key compression. Pointers to disk pages can be three bytes. An additional two
control bytes are probably required as well. In these two bytes, we keep track of
(i) which attribute is used; (ii) the “weight” of the subtree (used in splitting); and
(iii) whether equality is on the right or the left. This results in B+-tree index
terms being 11 bytes, and k-d tree nodes in hB-tree index nodes of 16 bytes
(comparison value, two control bytes, and two pointers).

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

642 - D. B. Lomet and B. Salzberg

We need to know the size of an hB-tree index term, not merely the size of a
k-d tree node. In the worst case, we need k k-d tree nodes for index terms that
reference hB-tree data nodes and 2k + 1 k-d tree nodes for index terms
that reference hB-tree index nodes. In both cases, however, we usually need
only a single k-d tree node. We assume, somewhat arbitrarily, that the average
is about 1.5 k-d tree nodes per index term. Such index terms thus average about
24 bytes.

Factoring in the small difference in storage utilization results in B+-trees with
about twice the fan-out of hB-trees. That is, B+-trees have a fan-out of 258 while
hB-tree fan-out is 115. Note that the size of all index nodes in an hB-tree is less
than one percent of the size of the data nodes, while, of course, B+-tree index
size is even smaller. However, and importantly, this demonstrates, for reasonable
size nodes, that the size of the index in hB-trees is not a significant factor.

For small values of k, e.g., k = 2, it is almost surely the case that the average
index term for hB-trees is close to one k-d tree node. In this case, fan-out is even
better, being 172, or 0.67 of the fan-out of a B+-tree. The worst case with k = 2
is a fan-out of 86 for the bottom index level. This should be exceedingly rare,
and is not a disaster in any event.

5. NODE SPLITTING

In this section we show how to use k-d trees to split holey brick nodes. The
previous split planes are used whenever possible, and each k-d tree node repre-
sents such a split plane.

Each hB-tree node has stored with it its outer boundaries. This information is
required for posting index terms, as we shall see. We have ignored the space used
for this in our fan-out analysis. This is 2k eight-byte values in each node-in our
fan-out analysis. (For k = 2, it is 32 bytes in each 4K node.) (B+-trees also
typically contain some overhead information in each node.)

Since each node represents a holey brick, the “internal” boundaries of this
brick, from which smaller bricks may have been extracted, are stored in it. These
internal boundaries are stored as a k-d tree, which represents the partitioning of
the node that was necessary to extract subregions during previous splits. It is
called the local k-d tree.

A local k-d tree contains four kinds of nodes:

(1) Internal nodes.
(2) Three kinds of leaf nodes:

(a) a leaf that references a collection of data records (in data nodes only);
(b) a leaf that references an hB-tree node on the next lower level in the

hB-tree (in internal hB-tree nodes only); and
(c) a marker that denotes that a subtree is missing (called an external

marker). Such a marker indicates that a subtree has previously been
extracted. This subtree is referenced through a different search path in
higher level hB-tree nodes.

Data nodes contain both data records and a local k-d tree, which is typically
quite small. All the information in a local k-d tree of a data node is repeated in
higher levels of the hB-tree. Index nodes contain only the local k-d tree, typically

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute Indexing Method . 643

Y2 (x 0’ x2)
data,

y,
(Yes Y,)

boundaries

‘0

X
0

x1

holey brick data node

local k-d tree

Fig. 10. Boundary and tree information stored in data nodes. The local k-d
tree references data in the node and contains “external markers” identifying
regions that have been extracted.

quite large. A small portion of the local k-d tree of an index node is repeated in
higher levels of the hB-tree. The data node configuration is shown in Figure 10.

5.1 Terminology

The subsequent discussion is simplified by the introduction of some technical
terms, which allow us to systematically distinguish between nodes of the hB-tree
and nodes of k-d trees. To emphasize the distinction between these trees, terms
referring to the hB-tree use capital letters while terms referring to the k-d tree
are in lowercase. We use the letter f to stand for the Full tree or node that is to
be split. We use n for the eNclosing tree or node and x for the extracted tree or
node. Finally, we use i for Index, when referring to levels of the hB-tree above
the node being split.

Thus, when an hB-tree node requires splitting, we need to discuss the following
items:

(1) F-NODE. The hB-tree node that requires splitting. It stores the data or
index terms of the original region.

(2) N-NODE. The hB-tree node that contains data or index terms relevant to
the enclosing region, which results from the F-NODE after the extracted
region has been removed. Typically, the N-NODE occupies the same disk
space as did the F-NODE.

(3) X-NODE. The hB-tree node that contains data or index terms relevant to
the extracted region, which is removed from the F-NODE. The X-NODE is
typically newly allocated during the splitting process.

(4) I-NODE. The hB-tree node (or nodes) that contains the fragment of the
k-d tree that indexes the regions extracted from the F-NODE and refers to
the N-NODE and the X-NODE. The I-NODE is at a higher level in the
hB-tree than the F-NODE.

(5) f-tree. The local k-d tree of the F-NODE, describing the holey brick of the
full region. It contains, as subtrees, the original forms of the n-tree and
the x-tree. Nodes of the f-tree are called f-nodes while its root is the f-root.

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

644 - D. B. Lomet and 8. Salzberg

(6) n-tree. The local k-d tree of the N-NODE, describing the holey brick of the
enclosing region. Nodes to the n-tree are called n-nodes while its root is
the n-root.

(7) x-tree. The local k-d tree of the X-NODE, describing the holey brick of the
extracted region. Nodes of the x-tree are called x-nodes while its root is
the x-root.

(8) i-tree. The k-d tree fragment in the I-NODE (or nodes), which describes
the regions extracted from an F-NODE. Nodes of the i-tree are called i-nodes
while its root is the i-root. The i-tree is the index term(s) referring to the
N-NODE and the X-NODE.

5.2 Splitting at the f-Root

If the f-root can be used to split the F-NODE into two nodes, each of which
contains between t and f of the contents (the k-d tree nodes or the data records),
we do so. In this case, we arbitrarily denote the right subtree as the basis for the
x-tree. The f-tree, with the right subtree extracted is the basis for the n-tree. We
move the right subtree (and when the F-NODE is a data node, its data records)
to the X-NODE.

We change the boundary description in the F-NODE to a boundary description
relevant to the N-NODE. The N-NODE will not in this case, nor in general,
have the same boundary as the F-NODE. The boundary for the N-NODE, and
its resulting n-tree, are formed by removing nodes from the f-tree, starting from
the f-root, and finding the smallest subtree that contains all the N-NODE leaves
referring to data or to lower levels on the hB-tree. The leaves that are markers
referring to previously extracted subtrees are not necessary, since they refer to
data or k-d trees which were not in the F-NODE. When splitting at the f-root,
we are assured that the f-root itself is always removed from the n-tree.

The right subtree becomes the basis for the x-tree. As with the n-tree, we
reduce this right subtree by removing nodes until we have found the smallest
subtree containing all the X-NODE leaves referring to data or to lower levels of
the hB-tree. The extracted region has boundaries, as always, that reflect the
x-tree that we have determined. We illustrate splitting an F-NODE using
the f-root in Figure 11.

5.3 Splitting at a Lower Subtree of the f-Tree

If the value in the f-root does not split the contents in a 1: 2 ratio or better, one
subtree refers to more than $ of the contents. Follow the arc leading to this
subtree. Applying this strategy recursively to successive f-nodes will lead either
to a subtree that corresponds to between + and $ of the contents or else it will
lead to a leaf f-node (in the case of a data node only) that refers to more than $
of the contents. We treat the subtree case first.

The contents, to which the subtree found above refers, are moved to the new
X-NODE. This subtree forms the basis for the x-tree, the local subtree for the
X-NODE. This subtree is reduced, as mentioned above, before being established
as the x-tree, and the boundary for the X-NODE is shrunk accordingly.

The boundary description in the N-NODE is inherited from the F-NODE, as
before. It too must be reduced, as mentioned above, but in this case the boundary

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hl3-Tree: A Multiattribute Indexing Method 645

f-tree
X2

(before B is split into B and C)

i-tree

Idata,))data,

n-tree x-tree

(after split)

Xl
B 43 Y

C ‘A

i-tree

Fig. 11. The F-NODE is split by the value in the f-root. No new i-nodes are
added to the i-tree. The left subtree becomes the n-tree for the N-NODE. The
right subtree, the basis for the x-tree, is reduced.

does not necessarily change. Further, in the n-tree, the extracted subtree is
replaced with a marker to note that it has been extracted. This splitting situation
is illustrated in Figure 12.

So far this process enables us to occasionally make the hB-tree nodes more
like full bricks than holey ones. That is, it reduces the number of k-d tree nodes
in the n-tree and the x-tree. If either the n-tree or the x-tree no longer contains
external markers, it represents a brick. In this case the local k-d tree of the data
node degenerates to the empty tree.

5.4 Splitting a Leaf of the f-Tree

In data nodes, the splitting process sometimes leads to a f-tree leaf corresponding
to more than $ of the contents. (Recall that the contents of the node include
both the data records and the k-d tree nodes of the local tree.) This happens, for
instance, if the data node is a brick, not a holey brick. Consider the records
corresponding to the leaf of the f-tree containing more than $ of the contents.
Call this collection of records S. Call the collection of all the records in the
F-NODE T. If the F-NODE is a brick, S = T.

We are guaranteed by the theorem in Appendix 1 to find a corner (which can
be described by at most one boundary value for each of the k attributes) with
between i and 3 of the contents in the entire F-NODE. This corner will become
the X-NODE X. And, it will contain data only from S. The N-NODE will contain
all the records not in S plus the records which are in S, but not in X. The f-tree
is extended by replacing the leaf in the f-tree corresponding to the region
representing S with the k-d tree representing this split.

An algorithm can be constructed from the proof in Appendix 1 once an ordering
for the attributes has been chosen. We attempt first to use the median of the
first attribute to split the node. If this does not produce the desired 2: 1 ratio (or
better), we attempt the second attribute, then the third, and so on. If none of the
medians work, we try the upper corner produced by the first and second attributes

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

646 l D. B. Lomet and B. Salzberg

y3

y2

1 data, 1 exiernal

f-tree
(before split)

x0 Xl X2 X3
n-tree

(after split)

i-tree

i-tree

Fig. 12. We assume here that the f-root of B does not suffice to split B evenly. However, a
lower subtree works. No new i-nodes are added to the i-tree. The subtree becomes the basis
for the x-tree. The x-tree is replaced by a marker in the n-tree.

and then the lower corner produced by the first and second attributes. If this
does not work, we try the first, second, and third attributes, and so forth. The
theorem guarantees that the ratio will be obtained by this process.

We have not specified how to order the attributes. Data node splitting does
not require that the trials described above be performed in the order specified
either. There are many potential strategies for both attribute order and compo-
sition of attributes to perform a data node split. The above sequence, together
with round-robin ordering of attributes, is but one possibility. Optimizing for
good data clustering by attribute, for even division of data and for minimizing
index term size, is a complex optimization problem that depends greatly on how
important each of the mentioned characteristics is. This is surely a topic for
further research.

The holes in the brick may cause the area of a holey brick to become
noncontiguous. This does not cause any problems with the node utilization
estimates or the search algorithms. Figure 13 illustrates both the contiguous and
the noncontiguous possibilities.

Node-Splitting Algorithm
1. Start at the f-root. While the subtree of the f-tree contains more than 3 of the

contents, proceed to its descendent node containing the larger amount of contents.
Either a leaf is reached or a subtree (the precursor for the x-tree) with between $
and 5 of the contents found.

2. If an f-leaf is reached, which references more than t of the contents (only possible
in data nodes), extend the f-tree so as to partition these records as described in
Section 4.3 above. The extended f-tree can be used in step 3. One leaf of the
extended f-tree refers to between $ and t of the contents. This leaf is the “subtree”
referred to in the following steps.

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute Indexing Method 647

f-tree
(a) (before split)

n-tree
(b) contiguous data after split

i-tree

n-tree

(c) non-contiguous data

Fig. 13. One of the leaves of the f-tree refers to more than 3 of the contents of the
F-NODE. We replace the reference to this leaf, in both the i-tree and the n-tree, with
a k-d tree describing the corner split. The local tree of the X-NODE is empty.

3. Replace the subtree with an “external” node marker. Now remove f-nodes, starting
at the f-root, until the smallest subtree is found that contains all the leaves
referring to data or to lower level hB-tree nodes. This is the n-tree. Refine the
boundary for the F-NODE to be the N-NODE boundary by restricting the
boundary to exactly that required by the new n-tree.

4. The subtree extracted is the basis for the x-tree. Move the subtree found in step 3
to the X-NODE. Reduce this subtree to the smallest subtree containing all the
leaves referring to data or to lower level hB-tree nodes. This is now the x-tree. The
boundary for the X-NODE is found by the restriction process described in step 3.

6. POSTING INDEX TERMS

When an F-NODE is split, we must post information in the parent to distinguish
the X-NODE from the N-NODE. The X-NODE represents a K-dimensional
brick. Thus, at worst, we need to post its 2k boundaries to the parent. However,

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

648 l D. B. Lomet and B. Salzberg

because some of the boundaries of the X-NODE are already in the i-tree for the
F-NODE being split, it is frequently possible to post fewer i-nodes (boundaries).
All potential boundary values are on the path from the f-root to the x-root. Thus,
our task is to choose exactly the nodes on this path required to identify the
X-NODE.

Sometimes, two f-nodes in the path will give bounds in the same direction for
the same attribute. For example, one f-node may express “salary greater than
$30,000,” while an f-node lower down the path may express “salary greater than
$40,000.” In this case, we only use the f-node with the more restrictive bound.
The more restrictive bound is always lower in the path. We thus limit ourselves
to 2112 nodes for bounding, even if the path is longer.

If another tree has previously been extracted from the same f-tree, some of
these f-nodes may have already been posted in the i-tree. Also, the path may not
contain boundaries in all directions. For instance, a “corner” (rather than a
“hole”) requires only k boundaries. For these two reasons the number of f-nodes
to be posted will usually be considerably less than 2k, frequently zero or one.

Because this information is to augment an existing i-tree, the resulting i-tree
must be a well-formed k-d tree. This sometimes requires an extra f-node to be
posted so as to permit the new i-nodes to be connected to the existing i-tree
without reordering the i-nodes. We call this extra f-node the divergence node. It
is the lowest node on the path from the f-root to the x-root, which is itself an
ancestor of a previously extracted subtree. It may or may not have already been
posted to the I-NODE(s).

We call the part of the path we post the condensed path. It contains the most
restrictive bounds in each attribute that have not previously been posted, plus
possibly one divergence node. In the worst case we post 2k + 1 f-nodes to the
I-NODE(s). We give a formal definition of condensed path.

Definition. The condensed path consists of those f-nodes on the path from the
f-root to the x-root that:

(1) have not previously been posted and
(2) satisfy one of the following:

(a) is a least upper bound or a greatest lower bound in some attribute
for the x-tree or

(b) is the divergence node.

CLAIM. The condensed path correctly determines whether or not a record is
contained in the region of an x-tree.

PROOF OF CLAIM. The full path from the f-root to the parent of the extracted
subtree correctly determines whether or not a point is in the region described by
the extracted subtree. We have only to show that, in removing an f-node from
this path, which is not a least upper bound or greatest lower bound of the
remaining attribute values on the path, this search property remains invariant.

Suppose then, without loss of generality, that there is a f-node A that contains
as comparison value “a,” which is a least upper bound for one of the attributes.
Suppose that further up the path in an f-node B there is an upper bound “b” on
the same attribute that is larger than “a.”

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute Indexing Method

x

x=

before split
after split

. 649

Fig. 14. A skewed k-d tree is flattened by the splitting process.

In a search for records that do not lie in the extracted subtree, those whose
values are greater than “b” in the given attribute will be eliminated at B. If we
remove this f-node B, those same records will be eliminated lower down the path
at f-node A. So searches for records whose values in this attribute are not in the
extracted region will still be correct. If a record is in the region, it will not be
eliminated at B or at A. Removing B will make no difference.

Thus the condensed path, if posted to the parent by including it in the i-tree,
will provide a correct determination of whether or not a record is in a region
described by an extracted subtree. The divergence node is not needed for this
determination. The divergence node is only needed to integrate a new condensed
path with already posted nodes. 0

We emphasize that no matter how “skewed” the f-tree is, only at most 2k + 1
f-nodes are posted. Skewed f-trees are “flattened” by the splitting process. This
implies that searches in an underlying large skewed k-d tree involve only a small
subset of the k-d tree nodes that would be followed if the underlying tree were
not organized as an hB-tree. A split of a highly skewed f-tree is illustrated in
Figure 14.

Thus, using the hB-tree can be regarded as a form of “rotation” for the k-d
tree, somewhat like the way that AVL trees rotate binary search trees. There is
a strictly bounded amount of repetition, which gains an overall balancing of the
tree. In many cases the hB-tree can be more efficient than a k-d tree index, even
if both the hB-tree and the k-d tree index are memory-resident. The height of
the tree and the resulting CPU search time will be shortened by the hB-tree
organization.

6.1 Algorithm for Posting Index Terms

Our algorithm makes use of two flags in each internal f-node. One flag indicates
whether or not it has already been posted to the I-NODE(s), and the other
indicates whether or not it is an ancestor of a previously extracted tree. Posted
f-nodes are always ancestors of previously extracted trees, but the reverse is not

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

650 * D. B. Lomet and B. Salzberg

true: ancestors of previously extracted trees are not always posted. These flags
are always set for internal nodes of f-trees in data nodes, since these f-nodes
always have these properties.

In addition, in each hB-tree node, we keep boundaries of the region it identifies.
We call this boundary information the region identifier. We need this to find the
i-root. We present this algorithm in detail, so that it can be easily coded. The
main idea is simple: integrate the condensed path into the i-tree.

Index Term Posting Algorithm

1. Using the region identifier of the F-NODE, we do a range search to find the i-root.
We begin at the root of the hB-tree, which is in memory. Usually, most of the
other ancestors of the F-NODE will also be in memory. When we reach a k-d tree
leaf pointing to the F-NODE, or when we reach a k-d tree node where we must
follow both branches, we have arrived at the i-root.

2. We are now ready to post the condensed path. We descend both the i-tree and the
f-tree, beginning at the i-root and f-root, respectively. We follow the path in both
trees that will lead to the x-root. Nodes in each of these trees are processed one
node at a time. A cursor is associated with each tree, which maintains a record of
what nodes in these trees have been traversed thus far. The i-tree cursor is set to
the parent of the i-root. The f-tree cursor is similarly set “above” the f-root.

a. When a previously posted f-node is encountered in the full path in the
F-NODE, it corresponds to an i-node. The f-node and the i-node share
the same attribute and attribute value. Advance the cursors in both the
i-tree and the f-tree past these nodes.

b. When an f-node on the full path is encountered that represents a redundant
bound of the extracted region, advance the F-NODE cursor past it. The
cursor for the i-tree path is not advanced.

c. When an f-node on the condensed path is encountered in traversing the full
path, post it to the i-tree. This is done by creating an i-node with the same
attribute and attribute value as the f-node. This i-node is then inserted so
that it becomes a descendent of the i-node that is currently referenced by the
i-tree cursor. The previous i-tree descendent becomes the descendent of the
newly posted i-node. The i-tree cursor is advanced to the newly posted
i-node.

3. Let P be the parent of the x-root. P is in the condensed path if it has not already
been posted, and hence is always represented in the I-NODE(s) after step 2 has
been executed. Except possibly for P in the i-tree, references to hB-tree nodes
from the posted condensed path are references to the F-NODE, and will become
references to the N-NODE (because the disk address of the F-NODE will be
inherited by the N-NODE).

4. The x-tree nodes present in the i-tree must be updated.

a. If the x-root is not an ancestor of a previously extracted tree, there are no
x-tree nodes in the i-tree. One of the leaf references of P is then to the
X-NODE. This is the only case where a leaf reference in the condensed path
is not a reference to the N-NODE. If P has previously been posted, its
reference to the N-NODE must be changed to refer to the X-NODE.

b. If the x-root is an ancestor of previously extracted trees, leaf references in
the x-tree nodes posted to the i-tree that currently reference the N-NODE
are replaced by references to the X-NODE.

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute Indexing Method 651

f-tree i-tree before split i-tree after split

A
A c

c x

(a) The f-root is not an ancestor of a previously extracted tree.

f-tree i-tree before split i-tree after split

ajfjg~~xt $FB gqp..B

A C
(b) The f-tree had previously extracted trees, but not in the x-tree

f-tree i-tree before split
a x = 100

c:

7
Al y = 10

%

a 0 y=l~~

0

cb “: ~~~~~50

A e t X

A C

i-tree after split

&I= loo
10 c

C 0 y=lOO

P
X

R

0 x=10

A X

(c) Previously extracted trees in the x-tree. Here we also show the
bounds of x and y variables in the nodes.

Fig. 15. Some examples of posting index split information. Blackened f-nodes refer to
the condensed path. Previously posted f-nodes are enclosed in a box. Ancestors of
previously extracted trees are marked with a lowercase “a”.

5. In the f-tree, all posted nodes are marked as posted. All f-nodes on the full path
from the f-root to the x-root are marked as ancestor nodes (they may be already
so marked). The f-tree is then transformed into the n-tree, as in Section 5. This
prepares the n-tree for the next application of this algorithm.

To give an idea of how this works, we illustrate several cases in Figure 15.

6.2 Posting Index Terms for Data Nodes

Posting information for splitting data nodes is an important special case of the
general case described above. We have already seen how this works in Section 5.

When we find a subtree of the f-tree representing between $ and $ of the
contents in a data node, the condensed path is trivial, since all the nodes in the
f-tree have duplicates in the i-tree. In this case, we need only concern ourselves
with step 4b, where we change the references in the x-tree part of the i-tree that
referred to the N-NODE to references to the X-NODE.

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

652 - D. B. Lomet and 6. Salzberg

When, on the other hand, we find ourselves at an f-leaf representing more
than $ of the contents, the condensed path is nontrivial and consists of the new
k-d tree nodes which are added to the f-tree. Note that we never need more than
k additional k-d tree nodes to identify a (data) X-NODE, and hence post at most
k i-nodes. Also note that it is this case which guarantees that the f-tree is
duplicated in the i-tree.

Since this is the only case where a data node split posts new i-nodes, at most
one split can be induced at the parent-of-leaf level in the hB-tree (in the one
hB-tree node containing the copy of the f-leaf representing t of the contents.)
That is, data node splits can cause at most one split at the next level.

Although it is possible that posting index terms above the parent-of-leaf level
causes two or more splits on the same hB-tree level, it is not likely. For this to
happen, several nodes from the condensed path must be posted to different
hB-tree index nodes, each of which is full and must be split. In addition, as in
the B+-tree, splits at higher levels are increasingly improbable.

7. SUMMARY AND DISCUSSION

The hB-tree is space and time efficient for any data distribution. We have shown
that, even in the worst cases, the fan-out and space utilization remain competitive
with the best single-attribute methods. An hB-tree works well for partial match,
exact match, and range searches. We have presented detailed, straightforward
algorithms.

The hB-tree has been discussed in the context of multiattribute searching. It
is worth pointing out that its performance as a single-attribute search method is
competitive with B+-tree performance. While hB-trees have more capability than
is strictly necessary for the single-attribute case, nonetheless, its use imposes
minimal extra overhead. Data nodes, in the one-dimensional case, can always be
split evenly, that is, in a 1: 1 ratio, and the resulting regions are always one-
dimensional “bricks.” Index nodes are organized as degenerate k-d trees (i.e., as
binary search trees). These trees can be searched very efficiently, typically as
efficiently as using a binary search. The biggest penalty is that the k-d tree
consumes more space than the usual vector-oriented binary search organization.

We have not described how to organize data records in data nodes of the
hB-tree. Recall that data nodes have local trees, organized as k-d trees, which
lend some structure to data nodes. But the data records are not part of the local
tree. In fact, our data node corner-splitting requires that we split the records
without regard to tree structure for the data. There are many possible organiza-
tions, for instance, an indexed heap. We do not expect performance to depend
heavily on the specific organization. The number of records is in the tens, not
the hundreds. Searches and updates involving this number of entries should not
be a large part of system cost.

Splitting index nodes may produce holey bricks, but the hB-tree remains
balanced, just as the B+-tree does, and for the same reason (i.e., the hB-tree
increases in height only when the root splits). It is worth repeating one last time
that hB-trees differ from B+-trees only in the organization of index terms into
k-d trees and in the splitting of data (or index information) between nodes during

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute Indexing Method 653

the file growth process. These are what might be called local differences or
differences in the small. Globally, hB-trees behave as B+-trees.

The full details of a deletion algorithm remain for future work. Record deletions
that do not yield underutilized nodes do not change the hB-tree structure, but
are done locally within a node. If a data node is underutilized, we reverse the
process of node splitting, combining siblings which might have previously been
paired as N-NODE and X-NODE. We then simplify the i-tree, eliminating
i-nodes which only serve to distinguish the two siblings. This is complicated, and
results in a number of different cases that need to be treated. However, it is clear
in concept what is required. Further, because hB-trees deal with holey bricks, it
is always possible to find another node in which to store the data from a node
being deleted. This is in contrast to the grid file and the K-D-B tree, which
require that nodes represent full (rectangular) bricks. At times it is impossible to
find a node to pair with the node being deleted such that the combined volumes
form a brick.

Since node splitting occurs, from the global hB-tree view, in exactly the same
manner as it occurs in B+-trees, it is possible to link together all nodes at the
same level of the tree, into what has been called a sequence set. This sequence
set is simply a linked list of the nodes. With B+-trees, the single-attribute keys
of the nodes are ordered. Thus, the keys in one node all precede or all follow all
the keys of another node. For hB-trees, we do not have this ordering relation.
With these links, however, and with a few minor adjustments to the search
algorithm, the Lehman-Yao concurrency method [6, 16, 171 could be applied to
the hB-tree.

Most important, the hB-tree is one of few multiattribute search structures that
provides an analysis of space utilization. It shares with the B+-tree a simple
node-splitting process, which occasionally proceeds up the tree to the ancestors
of the node being split and never cascades downwards. The hB-tree does not
require knowing the distribution of the data ahead of time; it, like the B+-tree,
adjusts gracefully to any pattern of incoming data.

APPENDIX 1. Proof for Data Node Split

In this appendix we show that, with at most k attribute values, we can guarantee
at least a 1:2 split in the data points. Thus, we can guarantee both data node
utilization of at least t and index terms for data nodes that do not involve more
than k attributes.

Definition. A d-dimensional closed upper corner in a finite subset of k-
dimensional space can be defined formally as the set of points (xi, x2, . . . , xk)
such that

where d 5 k and where m; is the median value for the ith coordinate for the
points in the space. A d-dimensional closed lower corner is defined similarly.

A d-dimensional closed corner is either a d-dimensional closed upper corner, or
else it is a d-dimensional closed lower corner.

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

654 l D. 6. Lomet and B. Salzberg

LEMMA. If no median hyperplane splits the space in a ratio less than or equal
to 2: 1, and if some d-dimensional closed upper corner, D contains more than f of
the points, then any (d + 1)-dimensional closed upper corner contained in D has
more than $ of the points.

PROOF. Suppose we have such a d-dimensional closed upper corner
bl, x2, * * * , xd) of points D such that

x1 2 ml, x2 2 m2, . . . , xd 2 mdt

which includes more than $ of the total points in the space.
Then the complement of D is the set of points C such that x1 < ml OR x2 <

m2 . . . OR xd < md. Since D contains more than $ of the points, C contains less
than 5 of the points.

The set of points X such that x d+l C md+l contains less than $ of the points,
since no median hyperplane splits the space in a 2: 1 ratio. (The labeling “d + 1”
of the next coordinate is arbitrary; any coordinate not already used to define D
could be used here.)

Therefore, the union of C and X contains less than 5 of the points, and its
complement, the set of points (x1, x2, . . . , xd, xd+l) such that

x1 2 ml, x2 > m2, . . . , xd+l 2 md+]

must therefore contain more than $ of the total points. Cl

THEOREM. Some d-dimensional closed corner contains between $ and $ of the
points.

PROOF. When d = 1, we are talking about splitting the space with hyperplanes.
If some median hyperplane works, we are done. If not, no median hyperplane
splits the space in a 2: 1 ratio, and all k l-dimensional closed corners must contain
more than $ of the points. (They contain more than half, since the split point is
the median value; if they also contain less than I, this hyperplane splits in a
2 : 1 ratio).

We use mathematical induction on d to show that if the theorem is not true,
then there is a d-dimensional closed upper corner with more than $ of the points
and a d-dimensional closed lower corner (which may be defined on the same
coordinates) with more than $ of the points. When d = k, we arrive at a
contradiction.

We have shown that if the theorem is not true, then the induction hypothesis
holds for d = 1.

Now suppose the induction hypothesis is true for d. That is, there is a closed
upper corner D, consisting of points (x,, x2, . . . , 3~~) such that

xl 2 ml, x2 2 m2, . . . , xd 2 md,

which contains more than 5 of the total points. The closed lower corner,
consisting of points (x, , x2, . . . , xk) such that

xl 5 ml) x2 5 m2, . . . , xd 5 md,

also contains more than $ of the points,

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990

The hB-Tree: A Multiattribute Indexing Method 655

Then, by the lemma, the set of points (xi, x2, . . . , xk) such that

xl h ml, x2 > m2, . . . , xd+l 2 md+l

contains more than $ of the total points. If it also contains less than + of the
points, then the theorem is true. Thus, it must contain more than f of the points
if the theorem is false. By symmetry, this is also true for closed lower corners.
This finishes the induction step.

So, by induction on d, we have shown that the closed upper k-dimensional
corner U and the closed lower k-dimensional corner L both contain more than
G of the points. But then the complement K of U is the set of points where
X1 < ml OR X2 < T?lz . . . OR ,& < mk.

We thus know that K has less than i of the points. Thus, the points which are
in L but not in K are more than d of the points. But this is the single point
(ml7 m2, . . . , mkh 0

The theorem establishes that any collection of points can have a subregion
extracted, which constitutes between $ and 3 of the points. To establish that it
is possible to “split” a holey brick by extracting a full brick from it, we need a
more specialized result. The following corollary accomplishes this.

COROLLARY. Suppose a finite set S of points in k-dimensional space contains
over t of the points of a larger finite set T. Then we can augment S with a new set
of points Q such that 1 S U Q 1 = 1 T 1 (Th e cardinality of S union Q is the same as
the cardinality of T), and we can find a closed corner K of S U Q such that between
$ and 3 of the points of T lie in K. (These points are also in S).

PROOF. Suppose that for the set of all points (xi, . . . , xk) in S we have upper
and lower bounds

li 5 Xi I Ui

for each 1 5 i 5 k. These upper and lower bounds define a rectangular convex
hull for S. That is, they define the boundaries of the smallest rectangular region
containing all the points of S.

Let the points of Q be defined as follows. Let 1 Q 1 = 1 T - S 1. Half of the
points of Q are to lie in the quadrant where

Xl < 11

x2 < U2

3c3 > U3

. . .

xk > uk

That is, except for the first coordinate, all the coordinates are larger than the
coordinates of any point in S. The first coordinate is smaller than the first
coordinate of any point in S. Symmetrically, the other half of the points of Q lie
in the quadrant

Xl > Ul

x2 < 12

x3 < 13

. . .

xk < lk

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

656 * D. B. Lomet and B. Salzberg

1Q.’
Fig. 16. A projection of data from Q onto “2 .

two dimensions is shown as it is placed in
.

. .
the mixed corners of imaginary region I
which includes S. This permits the splitting s l

of the set T that is comprised of both S and . .
Q in a ratio of 2:l or better while extracting .

only a subregion of S. The li are lower
.

.
bounds for coordinates of S while the u, are
upper bounds.

‘2

h :
.

‘1 “1

A projection of S and Q onto the two-dimensional space (xl, x2) is given in
Figure 16.

By the theorem, some d-dimensional closed corner K of S U Q contains less
than + and more than f of the points of S U Q. If d 12, then K does not contain
any points of Q. Thus, all of the points in K are in S, and hence also
in T.

If d = 1, then K contains all the points of S U Q whose ith coordinate is greater
than or equal to the median. Such a “closed corner” has more than half of the
points of S U Q, and contains half of the points of Q. The other half of the points
of Q are on the other side of the hyperplane defined by the median.

But the number of points in half of the points of Q is less than $ of the number
of points of T. The rest of the points are in S (and hence in T). So at least $ of
the points of T are in K. 0

We have shown above that data nodes can always be split so that the division
of data between the two resulting data nodes is better(less) than 2: 1. The method
we have employed makes use of closed corners of k-space (i.e., corners that
contain their boundaries). In the one-dimensional case, we can clearly divide the
data in close to a 1: 1 ratio. We conjecture that it should be possible to split data
more evenly in higher dimensional spaces by making use of semiclosed corners
of the space being divided. These are corners which contain some, but not
necessarily all, of the boundaries (i.e., they are closed in some dimensions and
open in others). The rationale for this conjecture is that we should be able to
pick and choose boundaries so as to balance the split ratio.

APPENDIX 2. Index Node Splitting

In this appendix, we show how an index node can be split into two index nodes
with at worst one third of the information in one node and two thirds in the
other. We can always find a subtree to extract where the number of (internal)
nodes in the extracted subtree is between one third and two thirds of the total
number of (internal) nodes. (The internal nodes are the nodes of the k-d tree
whose information is actually stored in the index. Leaf nodes are addresses of
hB-tree data nodes or index nodes on a lower level or are external markers.) We
thus guarantee worst-case node utilization of one third. Let us prove this formally.

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

The hB-Tree: A Multiattribute Indexing Method 657

Definition. Let n be the total number of internal nodes in the k-d tree to be
split. Suppose n is greater than 1. Let lb be floor(n/3). Let ub be ceiling(2n/3).
Say the node N satisfies the bound condition if

lb 5 x 5 ub

where x is the number of internal nodes in the subtree whose root is N.

CLAIM. We can always find a node satisfying the bound condition.

PROOF. Associate with each internal node N in the tree the number count(N),
the number of internal nodes in the subtree whose root is N. We begin at the
root of the k-d tree. If either child satisfies the bound condition, we are done.
Suppose neither child satisfies the bound condition. First we show that this
implies that count(C) will be greater than ub for one of the children, C.

Let cl = count(left child) and let cz = count(right child). Then

cl + c2 + 1 = n.

If both cl I ub and c2 5 ub, then since neither child satisfies the bound
condition, we have c, < lb and c2 < lb.

Thus

n = c1 + c2 + 1 < lb + lb + 1 5 n/3 + n/3 + 1.

This implies n < 3.
But a tree with only two nodes has a child of the root satisfying the bound

condition. We are not considering trees with only one node in our claim.
This shows that if there is no child satisfying the bound condition, one of the

children will be the root of a tree with more than ub nodes.
Continue descending the tree, choosing a child C of the current node such that

count(C) > ub. After a finite number of steps, less than the height of the tree,
neither of the two children will be the roots of trees with more than ub nodes.
Because the number of nodes of a tree is an integer, and this number strictly
decreases as we descend the tree.

Let p be count(parent) when we stop our descent. Sop > ub. By our assumption,
c1 = count(child 1) and c2 = count(child 2) at this point are both less than or
equal to ub. If either child satisfies the bound condition at this point, we are
done. Assume not. Then

as before. Also,

c1 < lb and c2 c lb,

Thus

cl + cq + 1 = p > ub.

This implies

ub < cl + cz + 1 < lb + lb + 1.

ceiling(2nl3) < floor(n/3) + floor(n/3) + 1.

If n is not divisible by 3, this becomes

2h + 1 < 2k + 1,

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

658 - D. B. Lomet and B. Salzberg

where n = 3k + 1, or

2k + 2 < 2k + 1,

where n = 312 + 2. If n is divisible by 3, then ci < lb implies ci I n/3 - 1. Thus

ub < cl + cz + 1 5 n/3 - 1 + n/3 - 1 + 1.

This implies 2n/3 < 2n/3 - 1. We thus have a contradiction to our assumption
that neither child satisfied the bound condition. Cl

REFERENCES

1. BAYER, R., AND MCCREIGHT, E. M. Organization and maintenance of large ordered indices.
Actu Znf. 1, 3 (1972), 173-189.

2. BENTLEY, J. L. Multidimensional binary search trees used for associative searching. Commun.
ACM 18,9 (Sept. 1975), 509-517.

3. BENTLEY, J. L. Multidimensional binary search trees in database applications. IEEE Trans.
Softw. Eng. SE-5, 4 (July, 1979), 333-340.

4. COMER, D. The ubiquitous B-tree. ACM Comput. Suru. II, 2 (June 1979), 121-138.
5. FREESTON, M. The BANG file: A new kind of grid file. In Proceedings of the ACM SZGMOD

Conference on Management of Data (San Francisco, May 1987). ACM, New York, 1987,260-269.
6. LEHMAN, P., AND YAO, S. B. Efficient locking for concurrent operations on B-trees. ACM

Trans. Database Syst. 5, 3 (Sept. 1980), 339-353.
7. LITWIN, W., AND LOMET, D. A new method for fast data searches with keys. IEEE Softw. 4, 2

(Mar. 1987), 16-24.
8. LOMET, D. Digital B-trees. In Proceedings of the 7th Conference on Very Large Dam Bases

(Cannes, Sept. 1981), 333-343.
9. LOMET, D. DL*-trees. IBM Res. Rep. RC10860, IBM Thomas J. Watson Research Center,

Yorktown Heights, N.Y., Nov. 1984.
10. LOMET, D. Partial expansions for tile organizations with an index. ACM Trans. Database Syst.

12, 1 (Mar. 1987), 65-84.
11. LOMET, D. A simple bounded disorder file organization with good performance. ACM Trans.

Database Syst. 13, 3 (Dec. 1988), 525-551.
12. NIEVERGELT, J., HINTERBERGER, H., AND SEVCIK, K. C. The grid file: An adaptable, symmetric

multikey file structure. ACM Trans. Database Syst. 9, 1 (Mar. 1984), 38-71.
13. OHSAWA, Y., AND SAKAUCHI, M. The BD-tree-A new n-dimensional data structure with highly

efficient dynamic characteristics. In Proceedings ZFZP Congress (Paris, 1983). North Holland,
1983,539-544.

14. ORENSTEIN, 3. A., AND MERRETT, T. A class of data structures for associative searching. In
Proceedings of ACM SZGACT-SZGMOD Principles of Database Systems Conference (Waterloo,
1984). ACM, New York, 1984,181-190.

15. ROBINSON, J. T. The K-D-B-tree: a search structure for large multidimensional dynamic
indexes. In Proceedings ACM SZGMOD Conference on Management of Data (Boston, June 1984).
ACM, New York, 1984, 10-18.

16. SAGIV, Y. Concurrent operations on B-trees with overtaking. In Proceedings ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems (Portland, Ore., 1985). ACM, New York,
1985,28-37.

17. SALZBERG, B. Restructuring the Lehman-Yao tree. Tech. Rep. BS-85-21, Northeastern Univ.,
Boston, 1985.

18. SALZBERG, B. Using the buddy system on the K-D-B-tree. Tech. Rep. BS-85-21, Northeastern
Univ., Boston, 1985.

19. SALZBERG, B. Grid file concurrency. Znf. Syst. 11,3 (1986), 235-244.

Received July 1987; revised July 1988; revised and accepted October 1989

ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990.

