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ABSTRACT 
We present an access method designed to provide a 

single integrated index structure for a versioned times- 
tamped database with a non-deletion policy. Histori- 
cal data (superceded versions) is stored separately from 
current data. Our access method is called the Time- 
Split B-tree. It is an index structure based on Malcolm 
Easton’s Write Once B-tree. 

The Write Once B-tree was developed for data 
stored entirely on a Write-Once Read-Many or WORM 
optical disk. The Time-Split B-tree differs from the 
Write Once B-tree in the following ways: 

l Current data must be stored on an erasable random- 
access device. 

l Historical data may be stored on any random-access 
device, inciuding WORMS, erasable optical disks, 
and magnetic disks. The point is to use a faster 
and more expensive device for the current data and 
a slower cheaper device for the historical data. 

l The splitting policies have been changed to reduce 
redundancy in the structure-the option of pure 
key splits as in B+-trees and a choice of split times 
for time-based splits enable this performance en- 
hancement. 

l When data is migrated from the current to the his- 
torical database, it is consolidated and appended 
to the end of the historical database, allowing for 
high space utilization in WORM disk sectors. 
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1. INTRODUCTION 

There are many database application areas where 
a policy of non-deletion is required. These include fi- 
nancial transactions, transcript archives in universities, 
multiple version histories in engineering design, legal 
records, medical records, and so forth. One usually 
wants faster access to the most recent records while tol- 
erating slower access to the older, historical records. It 
would therefore be convenient to store the most recent 
versions of records in one area, and keep this current 
database small, while storing the historical part of the 
database in a separate area, possibly on a slower more 
archival medium. 

We have developed an access method for just such 
a situation. We assume that the current database is 
stored on a random access erasable medium such as a 
magnetic disk drive. The historical database may be 
stored on any random access device, such as write-once 
optical disks, erasable optical disks or magnetic disks. 
A single unified index enables retrieval from both the 
historical and the current database. Further, data is 
written to the historical component sequentially, ap- 
pended to the end of the historical database. 

The current database, and all parts of the index 
which refer to it, must be on an erasable medium for 
two reasons. First, we must be able to change references 
to data which migrate from the current to the historical 
database. Second, we wish to be able to erase tempo- 
rary data, such as that which is created by transactions 
which abort. 

We view the current database as one which changes 
over time, with new data replacing older data. The his- 
torical database, in contrast, merely grows as records 
are added to it. No data is ever removed from the 
historical database. It is thus possible to store the his- 
torical database on a device such as a write-once optical 
disk. 

Currently available write-once optical disks have 
high storage capacity, long life and reasonable access 
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time. They can be removed from the disk drive, en- 
abling very inexpensive libraries to be created. These 
are usually served by a robot, which can mount archived 
disks on the disk drives. Further, as we shall show, the 
two characteristics of currently available optical disks 
which could limit their usefulness-slower seek times 
and a smallest writable unit-are not so limiting with 
our access method. 

The first possibly limiting characteristic is the slow 

seek time. Optical drives have longer seek times on av- 
erage (by about a factor of three) than magnetic disk 
drives. And if robot disk libraries are used, around 20 
seconds are needed to mount a disk which is not al- 
ready on line. But if these optical archiving systems 
are used only for historical data, which is accessed less 
often, these longer seek times may be tolerable, espe- 
cially when viewed as a trade-off for cheaper storage. 

Second, as with magnetic drives, when a sector or 
block is written, an error-correcting code is appended to 
the sector. On a write-once device, this error-correcting 
code is burned into the disk. Thus, even when a small 
amount of data is written, the rest of the sector is unus- 
able. This implies that small incremental changes such 
as updating an index entry will waste a large amount 
of space. Each such increment must occupy an en- 
tire sector, typically about one kilobyte (1024 bytes). 
However, since we only append data to the historical 
database after it has been organized and consolidated 
in the current database, we shall be able to write data 
to the optical disk in units which nearly approximate 
the sector size. 

In this paper, we describe a system for multiver- 
sion data which utilizes storage space and access time 
most efficiently. It takes advantage of the best aspects 
of two storage mediums: cheap, sturdy, possibly non- 
erasable, but slow-access optical disk storage, and more 
expensive but faster-access magnetic disk storage. Re- 
cent data is stored on magnetic disk where it can be up- 
dated quickly, while older data is incrementally moved 
to the slower optical disk as it matures. 

This system can be also be used for any multiver- 
sion database, even if the historical part of the database 
is also stored on a magnetic disk. That is, while pro- 
viding a method for efficient use of currently available 
storage mediums, the system is not restricted to these 
mediums. We only require that both the current and 
the historical database be stored on random-access de- 
vices. The current database must be stored on an 
erasable medium to permit it to be flexibly updated 
and reorganized. The historical portion of the database 
may be stored on a write-once medium. 

Data in the historical database is never deleted. 
Data in the current database may be deleted, allowing 
for non-permanent current entries, such as those made 
by non-committed transactions. 

POSTGRES [Ston] has done pioneering work in 
this area. We attack this problem using a variation of 

Figure 1. Stepwise constant data. The account balance remains 

constant between transactions. 

the “Write Once B-tree” [East] . We call this variation 
the Time-Split B-tree. 

Using the classification of time sequence semantics 
of [SeSh], we assume that we are dealing with step-wise 
constant data. Account balances or employee salaries 
exhibit this behavior as illustrated in Figure 1. To find 
the balance of an account at a given time T, we look 
at the last entry made before T. We assume that the 
balance is constant until another update is made. 

In addition, we assume that we have what [McKe, 
SnAh] call a rollback database. This means that records 
are stamped with the transaction commit time rather 
than with the effective time for the information. 

The rest of this paper is organized as follows. In 
section 2,.we give an explanation of the Write-Once B- 
tree. The Write-Once B-tree is for data stored entirely 
on a write-once optical disk. In section 3, we outline the 
design of the Time-Split B-tree, our new structure. The 
Time-Split B-tree is for data which is partitioned into 
an historical component, possibly stored on a write- 
once medium, and a current component, stored on an 
erasable medium. In section 4, we describe the features 
of Time-Split B-trees which support database transac- 
tion processing. In section 5, we present our conclu- 
sions. 

2. THE WOBT 

Several index structures have been suggested for 
write-once optical disks [Vitt, Chri, Rath, SaTa, East]. 
For our purposes, to obtain a single version of a record 
by time and key, to be able to access snapshots of the 
database, to retrieve all versions of a given record, we 
believe that Write Once B-trees [East, Salz (section 
8.5)] are an excellent foundation for the access method 
that we have in mind. 

The Write-Once B-tree, or WOBT, is a modifica- 
tion of the B+-tree which can be implemented com- 
pletely on a write-once medium. Basically, WOBTs do 
node splitting on a time basis as well as on a key space 
basis. This way, the most recent versions of records are 
kept in a small number of nodes, enabling search in the 
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Figure a. A WOBT index node. Entries are in insertion order. 

The same key may occur several times. 
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w 

50 Joe 60 Pete I 
current database (the database of all versions of records 
which are valid at the current time) to be efficient. 

2.1 Description of WOBT Nodes 

We first describe how WOBTs can be used to pro- 
vide single.-version B+-tree functionality on a write- 
once medium. That is, we show how to store and re- 
trieve the most recent versions of each record. 

The leaf nodes of the WOBT, like the B+-tree, con- 
tain the records. Nodes are logical constructions which 
may be implemented with a sequence of consecutive 
sectors on an optical disk. The records are in insertion 
order, with possibly many versions of the same record 
in the same leaf node. That is, an update on a record 
is treated like an insertion of a new version. The key 
will be the same as on the old version, which remains 
in the database. If the record size is smaller than the 
sector size, there is exactly one newly inserted record 
in a sector of a leaf node, even if there is room for more 
than one record in a sector. This is due to the fact that 
the sector is the smallest writable unit. That is, when 
a new record is added to the database, it cannot use 
less than one sector of space. However, when nodes are 
split, several records will be copied into the new nodes 
at the same time, so the copied-over records can be con- 
solidated. Thus a typical data node has several records 
per sector for the first few sectors, then one record per 
sector for rest of the node. 

Similarly, the contents of an index node in a WOBT 
are in insertion order. The same key may occur twice, 
with the first occurrence in the node being the earli- 
est occurrence as illustrated in Figure 2. Since new 
index entries are made one at a time, and a sector is 
the smallest writable unit, there may be only one new 
index entry in a sector. When index nodes are split, 
the copied index entries are condensed in the new in- 
dex nodes, just as when data nodes are split, copied 
records are condensed in the new data nodes. Thus, 
the older index entries in an index node are packed 
together filling the sector space while the new index 
entries are placed one to a sector, wasting most of the 
sector space. 

70 Sue 90 Alice I I 

Figure 9. Splitting data nodes by key value and current time 

in a WOBT. The old node remains in the data base. Two new data 

nodes and two new index entries are written. 

2.2 Search for Current Data 

To find the most recent version of a record, begin 
at the current root of the WOBT. Find the key-and- 
pointer pair such that the key is the largest one which 
does not exceed the search key, and the pair is the last 
one listed in that node with that key. Follow the pointer 
down the tree. Repeat this process in each WOBT node 
visited until a leaf is reached. For a given key, exactly 
one path from the root to the leaf will be followed. If 
the record is in the database, the latest version is the 
one listed last in the leaf node. 

2.3 Insertion in the WOBT 

Insertion in the WOBT is very similar to insertion 
in the B+-tree. The search process is followed to find 
the correct leaf for insertion. If there is room, the new 
record is inserted in the next available sector in that 
leaf. If there is no room, a “split” takes place and new 
leaf nodes are allocated and one or more new index 
terms are posted to the parent. Similarly, if index nodes 
are full, they too are split. 

To “split” a WOBT leaf node or index node we 
have two choices. We may split by key value and cur- 
rent time or by current time only. In both cases, only 
the most recent versions of records or index entries are 
copied to the new nodes. 

When the split is by key value (and current time), 
we create two new nodes. The two new addresses and 
the old key value and new split value are placed in the 
next available space in the parent node. Splitting data 
nodes by key value and current time is illustrated in 
Figure 3. The split value for the key determines which 
records go in which of the two new nodes. Since only 
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Figure 4. A pure time split in the WOBT. There are not enough 

current records to make two new nodes. The split is by current time. 

current versions of records are copied, this is also a split 
with respect to current time. 

If there have been many updates, the number of 
current versions may be so small that we may choose 
to split only by current time. In this case only one 
new node is constructed, consisting only of the current 
versions. This is a “split” entirely by time, not by key 
value. This type of split is illustrated in Figure 4. 

We make two observations. First, records are re- 
peated or copied several times. A version which lasts 
a long time has many copies in the database. Second, 
since we follow the same algorithm for splitting index 
nodes, the WOBT is a DAG, not a tree. Both the 
old and the new index nodes may contain copies of the 
same pointers. 

2.4 New Root Nodes 

As with the B+-tree, sometimes the root node itself 
must be split. When a root splits in the WOBT, the 
new root refers to the old root. If the split has been 
by time only, both entries in the new root node will 
have the lowest possible key value, with the first entry 
pointing to the old root and the second pointing to the 
most recent versions of the entries from the old root. 

If it has been a split by both time and keyspace, 
the new root has three entries: one with the lowest 
key value pointing to the old root, one with the lowest 
key value pointing to the most recent entries from the 
old root less than the split key, and one with the split 
key pointing to the rest of the most recent entries from 
the old root. Since this is all on optical disk, a list 
of successive addresses for the root nodes must also be 
kept. 

2.5 Using the WOBT as a Rollback Database 

The previous description of WOBTs when they 
provided single-version B+-tree functionality, did not 
require that time be stored in the database. If we are 
to use WOBTs to support rollback databases, we need 
to provide each newly inserted record with a timestamp 
indicating the commit time of the transaction that in- 
serted it. When a node split occurs, the current time 
must be used to timestamp the new index terms. 

With a WOBT providing a rollback database, we 
can find the state of the database as it was at any given 
time in the past. We can find the records with a given 
key valid at a given point in time. We can find all past 
versions of a given record. Let us look at how these 
temporal queries are supported by the WOBT. 

To find the record with a given key I< valid at time 
T, begin with the current root node. Ignore all entries 
with timestamp greater than T, then follow the algo- 
rithm for latest version of a record. That is, ignoring 
all entries with timestamps greater than T, look for 
the largest key smaller than or equal to K in the node. 
Then find the last key-and-pointer entry with that key 
value in the node, and so on. Follow the pointer down 
to the next level of the WOBT. Repeat the same search 
pattern in every node visited. You are guaranteed to 
find the record in question, if it exists, in one path down 
the WOBT, just as in the search for a current record 
by key. 

The current root node will have one pointer stored 
with the lowest key value (minus infinity) and the low- 
est time value. This is inserted into the initial root. 
The splitting and updating process assures its propa- 
gation to subsequent roots, and the pointer in the cur- 
rent root will point to the previous root, if there is one. 
The search path may take us through successively older 
roots, but this is handled by the search algorithm with- 
out making special cases. 

To obtain a snapshot of the database at any given 
past time T, begin at the root as usual. Ignore all 
entries with timestamps after T. Then working down 
the WOBT, obtain the last entries in each index node 
for each key before or at T, and finally, the last copies 
of each record before or at T. 

To find all previous versions of a given record, 
backward pointers in leaf nodes to the nodes they were 
split from are suggested. Begin at the leaf node con- 
taining the record. Follow the backwards pointers until 
a leaf node is encountered which contains no earlier 
version of the record. There will be several optical-disk 
seeks. But also several versions of the record are likely 
to be in each node accessed. 

2.6 Conclusions on the WOBT 

Search algorithms for many typical temporal queries 
are simple on the WOBT. This is an elegant, clean 
structure. Time-domain splitting concentrates the cur- 
rent data in a small number of nodes. However, this 
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Figure 6. Data node split entirely by key. Timestamp in index 

entry is the same ae the previous index entry timestamp. 

means that many records have redundant copies in the 
database. 

Further, storing a WOBT solely on a write-once 
medium means that new entries must use entire sectors, 
possibly wasting a great deal of space. Also, temporary 
data, such as that created by uncommitted transac- 
tions, cannot be discarded if a write-once medium is 
used. 

On the other hand, using the WOBT solely on 
magnetic disk loses the advantages of less expensive 
per-byte storage cost, permanence, reliability and porta- 
bility available with optical disks. One solution is to 
store current data on magnetic disk and migrate older 
permanent data to optical disk. The Time-Split B-tree 
has been developed to provide this solution. 

3. THE TIME-SPLIT B-TREE 

The Time-Split B-tree is a variant of the WOBT 
which will migrate data incrementally from a magnetic 
disk to an optical disk. In this section we shall explain 
how we change the basic WOBT structure, and then, 
in section 4, we show how this new structure can be 
used to support transaction processing. 

We modify the split algorithm of the WOBT in 
several ways. First, we only split nodes which are on 
the magnetic disk. There are again time splits and key 
splits. But the key splits on magnetic disk are more 
like those in B+-trees since we need not keep the old 
node intact. The records with keys smaller than the 
split value stay in the old node. Those with keys larger 
or equal to the split value go in the one new node. 

When we split by time, we no longer need to split 
by the current time. We may split by any convenient 
time. In this case, the “older” records are migrated 
to the optical disk and the newer records are kept on 

the magnetic disk. Migration occurs incrementally, one 
node at a time, only when nodes are time-split. In spite 
of the changes in the splitting policy, the search process 
is exactly the same as in the WOBT. 

3.1 Data Node Splitting 

Suppose that in a given data node, each record 
has only one version. This means that all changes have 
been insertions of new records, with new keys. There 
have been no updates of existing records. It does not 
make sense to make a time split in this case. In this 
case, we make a keyspace split. The timestamp in the 
new index entry is the same as the timestamp of the 
previous index entry referring to the old data node. 
This is illustrated in Figure 5. 

In case there have been a number of updates to 
existing records so that several versions of some of the 
records are in the node, we may make a time split, but 
with a twist. Instead of always splitting with respect 
to the current time, we split by a time T, depending 
on the actual timestamp values in the records in the 
node. Then the node with the older timestamp values 
is migrated to the historical database, while the node 
with the new values remains in the current database. 
Note that migration is one node at a time. 

The time-split rule is as follows: If a split is made 
with timestamp T, 

TIME-SPLIT RULE 

1. All entries with time less than T go in the 
old node. 

2. All entries with time greater or equal to T go 
in the new node. 

3. For each key used in some entry, the entry 
with the largest time smaller than or equal to T must 
be in the new node. That is, the version valid at the 
split time must be in the new node. 

This forces some redundancy, as all records which 
persist through the split time have copies in both nodes. 
However, this feature makes it possible for records valid 
at the same time to be clustered in a small number 
of nodes. If one does not have redundancy, long-lived 
records can only be stored in one place. No matter what 
strategy is chosen for storing such a long-lived record 
without redundancy, some snapshot queries will be in- 
efficient. Also, as we shall see, the ability to choose the 
split time permits optimization choices to be made. We 
give some examples of data-node time splits in Figure 
6. 
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If T = 5 is chosen as the split time, the new nodes are: 
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II 
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60 Joe T = 1 60 Pete T = 2 60 Mary T=4 

historical node 
‘I 

I 60 Mary T = 4 90 Alice T = 6 

current node 

Figure 6. Time-Split B-tree time splits. If T=4 is chosen there 

is no redundancy in this example. If T=5 is chosen, the record with 

“Mary” is in both the historical and current nodes. 

3.2 Deciding Whether to Split by Time or by 
Key 

The question to be answered is the criteria by which 
we decide whether to do a key space split or a time split. 
One object of a storage system is to try to minimize 
the total space consumed. A second one is to minimize 
storage for the current version, which is subject to up- 
dating, has the highest expectancy of reads, and will be 
stored on the more costly write-many magnetic disk. 

If total space minimization is the only goal, data 
node splitting by key space would always be favored. 
If current version space minimization is the only goal, 
time splitting would always be used. What we want is 
a storage system that does a good job for both of these 
requirements, and one that can be parameterized so as 
to be responsive to an adjustable cost function. One 
possible cost function is 

CS = SpaceM x CM + space0 x CO 

where C’S is the total storage cost, CM is the cost for 
storage on the magnetic disk and CO is the cost for 

storage on the optical disk. The goal, in splitting, is to 
minimize the cost function. 

At the same time, the kind of split used depends 
on the what is in the node to be split. As noted above, 
if only insertion has occurred in a full node requiring 
splitting, there is no reason to do time splitting. All 
data is relevant to the current version and hence must 
remain in the current node. Thus, time splitting by 
itself is useless. Key space splitting must be done. 

On the other hand, if only repeated updating of 
a single record has occurred in a full node requiring 
splitting, there is no reason to do keyspace splitting. 
All data is associated with the same key value and so 
cannot be split. Thus keyspace splitting is useless and 
time splitting must be done. 

These boundary conditions determine the kind of 
splitting that should be used. The more out-of-date 
(historical) data is on a node, the more likely it is that 
time splitting should be used while the less historical 
data there is (or the more current data there is), the 
more likely it is that key space splitting should be used. 
Let us examine some more consequences of the different 
splitting forms. 

3.3 Time Splitting 

Time splitting results in redundancy. If time split- 
ting is chosen, a further decision has to be made about 
what time value to use for the split. The WOBT always 
used the current time as the value of the split because 
the old node had already been written on the optical 
disk. With magnetic disks, this restrictive approach 
can be overcome. Any convenient time more recent 
than the last time split for the node can be chosen as 
the split value. 

As an example of using this flexibility, consider a 
situation where there are a number of insertions which 
were done after the last update of existing data. In this 
case, choosing the split time to be the same time as the 
last update avoids having to carry the final inserted 
data in the historical node. Note that the contents of 
the current version node are not affected by this choice 
of time splitting value, and remain at the minimum, 
i.e., only the current version data, and no historical 
data, is stored in the current node. 

This does not mean that there is no redundancy. 
Some of the current data persisted across the split time. 
Only if the current data had all been created at or after 
the split time is redundancy avoided. Data created be- 
fore the split time and persisting through the split time 
is in both the historical node and the current node. 

When the split time is pushed back past updates 
in addition to insertions, some historical data must be 
stored in the current version node. This can still result 
in a smaller amount of redundant data overall as more 
data may be removed from the historical node than 
must be added to the current node. But now, we are 
making a trade-off between minimizing the amount of 
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redundant data, and minimizing the space used by the 
current database. 

3.4 Size of Historical Node 

In the choice of time value on which to split, we 
have been treating the amount of data stored in the his- 
torical node as an important consideration. Note that 
in WOBTs, the historical node size is fixed, and the 
data in a node which is to be split is indelibly written 
there on the write-once optical disk. This is not the 
situation with the Time-Split B-tree. Here, currently 
updatable data is stored on magnetic disk. And the 
node size for the optical disk can easily be set to be 
different from the magnetic disk node size. Even more 
to the point, the historical data can be appended to a 
sequential file. 

The index pointer to a historical node needs only 
to record its address on the optical disk and its length. 
While there might be some minimum granularity that 
prevents us from matching precisely optical disk space 
consumed with historical data size, it is possible to 
come close. The risk of disastrously low optical disk 
storage utilization is thus entirely removed. 

3.5 Index Node Splitting 

Index nodes can always be keyspace split. To do 
this, since index nodes, unlike data nodes, reference 
entities involving a range of key values as well as a range 
of times, we must make a rule similar to the time-split 
rule. That is, record versions in data nodes have one 
key and span a time interval. Entries in index nodes 
refer to lower-level time-split B-tree nodes which span 
a keyspace interval as well as a time interval. We call a 
keyspace interval spanned by a time-split B-tree node 
a Key range. We therefore make the following rule: 

Index Node Keyspace Split Rule 
1. The split value may be any key value actually used 
in an index entry in the node. This key value and a 
copy of the time used for the previous reference to the 
node to be split are posted to the parent index node. 
2. References to key ranges where the upper bound for 
keys is less than or equal to the split value go in the 
new left node. 
3. References to key ranges where the lower bound for 
keys is greater than or equal to the split value go in the 
new right node. 
4. All others (which are guaranteed to be references 
to the historical database) are copied to both nodes. 
These reference key ranges which strictly include the 
split value. 

The references where the split value is strictly con- 
tained in the key range are guaranteed to be historical 
because key splits are successive refinements of the key 
range over time. That is, the only case where a key 
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Figure 7. Successive changes in a Time-Split B-tree index node. 

At the end, a keyspace split is made, showing the key ranges and the 

time ranges referenced. 
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Figure 13. A Time-Split B-tree index node where the time split 

is entirely local. Only one index node migrates to the optical disk. 

This can be done whenever there is a time before which all references 

are to the historical database. 

value is in an index entry X in the node to be split 
(hence a lower bound for the range referred to by X), 
and also is strictly contained in the key range referred 
to by Y (another index entry in the same node), is when 
the key range of Y was later affected by at least one 
time split, followed by at least one keyspace split. We 
show this phenomenon in figure 7. Note that, like the 
original WOBT, the Time-Split B-tree is a DAG rather 
than a tree. However, only historical nodes have more 
than one parent. 

We can also time split index nodes by finding a 
time before which only historical versions exist, i.e., no 
version with an earlier time resides on magnetic disk. 
There may be no such time, of course. But most likely, 
over ‘time’ there will be some such point. This puts an 
additional constraint on index node splitting. Not only 
must current entries be retained in the current version 
index node, but no entries that reference current nodes 
can go into the historical index node. This is so be- 
cause the current nodes can split, requiring index node 
updates, which cannot be accommodated in historical 

60 JoeT=l 60 PeteT=S 60 Alice T=7 

This data node is in the current data base. 

Figure 0. Here there is no time before which all entries of the 

index node point to the historical database. Either the index node 

must be keyspace split, or else lower nodes must also be split. 

index nodes. 
When these conditions are met, index splitting is 

local. In this case the redundant index entries are all 
pointing to historical nodes. Again, this makes the 
Time-Split B-tree a DAG rather than a tree, which, 
as we have noted, is also true of the original WOBT. 
Again, historical nodes may have more than one parent. 
This is ihustrated in Figure 8. 

When the conditions are not met, attempting to 
time split index nodes would force splitting in nodes 
lower in the tree. This would make splitting non-local. 
That is, the split cascades down the tree. A node which 
cannot be locally time split is illustrated in Figure 9. 

When an old data node which has not undergone 
a time split prevents us from doing a local time split at 
an index node higher in the tree (as illustrated in Fig- 
ure 9), this old data node could be marked to be time 
split at the next opportunity. This is just an optimiza- 
tion choice for the Time-Split B-tree. On the average, 
we should be able to do time splits with index nodes 
gradually, as there will usually be a time before which 
all entries point to historical data. There should not be 
many recalcitrant index nodes without this property. 

3.6 Secondary Indexes 

Secondary indexes can be implemented as Time- 
Split B-trees as well. Secondary indexes are modi- 
fied when a new record is created, or when the sec- 
ondary field is updated in any data record. Each entry 
inherits the timestamp from the record which caused 
the change. Secondary indexes, like the primary index 
Time-Split B-tree, span the historical (optical disk) and 
current (magnetic disk) databases. 

The secondary indexes contain records of the form 

< timestamp, secondary key, primary key > 

The primary key and the timestamp are used to 
find the primary data record being referenced. When 
splits occur to the primary data, secondary indexes 
do not change. The timestamps also serve to answer 
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queries about the secondary values which do not re- 
quire searching for primary data records. For example, 
one can answer the question of how many records had 
a given secondary key at a given time using only the 
secondary time-split B-tree. 

3.7 Summary of Time-Split B-tree Characteris- 
tics 

The Time-Split B-tree uses the best features of the 
optical disk WOBT-simple structure, easy access for 
many temporal queries and locality of access for records 
valid at a given time. It migrates data incrementally 
from the magnetic disk to the optical disk. One index- 
ing structure handles both the current and the histori- 
cal part of each relation. 

Optimization choices can be made to limit the to- 
tal space cost, the space used for current data or the 
amount of redundancy in historical data. This is all 
made possible by the flexibility for choosing whether to 
make a time split or a keyspace split, and the ability to 
choose the value for the time split. 

Historical data space use is excellent as historical 
node size can vary and many entries can be consolidated 
on one sector. This is a consequence of integrating stor- 
age on magnetic disks with storage on optical disks. No 
small incremental data need be written to large opti- 
cal disk sectors; it can be consolidated first and then 
migrated. 

4. SUPPORT FOR TRANSACTION PROCESS- 
ING 

Most concurrency methods based on versioning can 
be used with the time-split B-tree. For example, sup- 
pose that timestamps of committed transactions are 
used on records as in POSTGRES [Ston]. Records cre- 
ated by uncommitted transactions have no timestamps, 
so that they are never written to the historical database 
during a time split. This means that uncommitted data 
can always be erased. 

4.1 Read-Only Concurrency Control 

A read-only transaction, e.g., one that does file 
backup, can run without concurrency control, in terms 
of logical record [database] locks, if it is given a times- 
tamp when it is initiated, as opposed to when it com- 
mits. It will then ‘see’ only versions that are not locked 
by an updater. Thus, it will never have to wait for an 
updater to commit. 

If the latest version has a timestamp, the read- 
only transaction knows, based on its timestamp, which 
version to use. No updater can post a timestamp earlier 
than the read-only timestamp since that point in time 
has come and gone. 

Similarly, if a version exists with a timestamp later 
than that of the read-only transaction, the read-only 
transaction will read the earlier version appropriate to 

its timestamp. This will be true even if there is a non- 
timestamped version. 

This capability enables database unloading and back- 
ups to be efficient, since they do not require locks. This 
can be used in any versioning system; it is not unique 
to the Time-Split B-tree. 

5. CONCLUSIONS AND ONGOING WORK 

Space use in the WOBT on write-once disks can 
be poor when small amounts of information, such as 
index entries or delta records, occupy an entire sec- 
tor. Further, if only write-once devices are used, as in 
the WOBT, “reorganization” of information (as occurs 
in node splits even when all the entries are insertions 
rather than updates) involves duplication of all the cur- 
rent data. Also, temporary data cannot be discarded. 

By using both a magnetic disk and an optical disk, 
and the new node splitting policies, the Time-Split B- 
tree solves these problems. We can consolidate infor- 
mation before placing it on a write-once device. The 
erasability of the magnetic disk permits “normal” B- 
tree node splitting. Data can be data written by un- 
committed transactions and erased if the transaction 
aborts. The adjustable splitting policy allows for differ- 
ent space costs in the magnetic and the optical disks- 
more time splits to lower magnetic-disk space use, and 
more key splits to lower total space use and data re- 
dundancy. 

The Time-Split B-tree incrementally moves data 
from the current database stored on magnetic disk to 
the historical database on optical disk, one node at a 
time. Efficient concurrency methods based on version- 
ing can be applied to allow read-only transactions to 
run without locks. Splitting policies can be param- 
eterized to optimize for different cost formulas. The 
Time-Split B-tree should be an attractive storage op- 
tion for multiversioned historical databases where there 
is a non-deletion policy. 

We are currently in the process of implementing 
Time-Split B-trees at Northeastern University. This 
implementation effort is supported by the NSF (IRI-88- 
15707). We expect to measure total space use, space 
use in the current database, and amount of redundancy, 
under different splitting policies and with different rates 
of update versus insertion. 
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