Security Vulnerabilities and Solutions for Packet Sampling

Sharon Goldberg and Jennifer Rexford

IEEE Sarnoff Symposium Princeton, NJ, May 1, 2007

Network Measurement via Packet Sampling

Managing a network is all about measurement...

Load measurement at single node

Why? To characterize traffic mix, for billing, for intrusion detection, etc.

How? Uncoordinated sampling (each node selects packets independently)

Network Measurement via Packet Sampling

Managing a network is all about measurement...

Load measurement at single node

Why? To characterize traffic mix, for billing, for intrusion detection, etc.

How? Uncoordinated sampling (each node selects packets independently)

Load, loss, and delay measurement on a path

Why? Finding spatial paths of traffic thru network, path quality measurement How? Coordinated sampling (packet selected by one node selected by all nodes)

> **IETF PSAMP:** standardize packet sampling on linecards Sampling should be passive (not modify traffic)

Network Measurement via Packet Sampling

Managing a network is all about measurement...

Load measurement at single node

Why? To characterize traffic mix, for billing, for intrusion detection, etc.

How? Uncoordinated sampling (each node selects packets independently)

Load, loss, and delay measurement on a path

Why? Finding spatial paths of traffic thrups

Alternative to active probing ment

How Coordinated sampling (packet selected by one node selected by all nodes)

IETF PSAMP: standardize packet sampling on linecards

Sampling should be passive (not modify traffic)

Packet Sampling: The IETF PSAMP Framework

Each **Sampler** selects and stores a **p**-fraction of packets Sampling outcomes are exported from the **Samplers** to the **Collector**

Uncoordinated Sampling:

~ Each Sampler select packets independently of other Samplers

Coordinated Sampling:

- ~ A packet selected at one Sampler is selected at all Samplers
- ~ Sampling outcomes are aggregated at the Collector

Secure Packet Sampling

No adversarial host can craft a disproportionally selected packet stream

Secure Packet Sampling

No adversarial host can craft a disproportionally selected packet stream

Secure (Uncoordinated) Random Sampling

Secure against weak adversary:

Each packet sampled randomly and independently

 \Rightarrow adversary can't predict if a packet will be sampled with probability better than ${\bf p}$

Secure (Uncoordinated) Random Sampling

Secure against strong adversary:

Each packet sampled randomly and independently

 \Rightarrow adversary can't predict if a packet will be sampled with probability better than **p** even if past sampling outcomes are known

Requires a cryptographically-strong random number generator (e.g. RC4, AES in counter mode)

Hash-Based Coordinated Sampling

With an unkeyed hash function, a weak adversary can break security:

Chooses arbitrary $[S_1, S_2]$ and send packets d is such that $f(d) \in [S_1, S_2]$

With high probability, packets evade selection

PRF-Based Coordinated Sampling (1)

A PsuedoRandom Function (PRF) $f_k(d)$ is a keyed cryptographic hash

- Pseudorandom A Function
- \rightarrow Fresh pseudorandom output for each fresh input
- \rightarrow Identical output for identical input

If (uncoordinated) random sampling is secure

 \Rightarrow PRF-based sampling is secure when the adversary sends unique packets

Can use hardware implementation of pipelined, keyed MD5, SHA1, or AES in CBC mode **but not** the CRC **f_k(d) = d mod k**

But can we prevent adversary from breaking security by **replaying** packets?

PRF-Based Coordinated Sampling (1)

A PsuedoRandom Function (PRF) $f_k(d)$ is a keyed cryptographic hash

- Pseudorandom A Function
- \rightarrow Fresh pseudorandom output for each fresh input
- \rightarrow Identical output for identical input

If (uncoordinated) random sampling is secure

 \Rightarrow PRF-based sampling is secure when the adversary sends unique packets

Can use hardware implementation of pipelined, keyed MD5, SHA1, or AES in CBC mode **but not** the CRC **f_k(d) = d mod k**

But can we prevent adversary from breaking security by **replaying** packets?

PRF-Based Coordinated Sampling (2)

Samp(d) = 1 if
$$f_k(d) \in [R_1, R_2]$$

0 else

Can we prevent adversary from breaking security by **replaying** packets?

... without modifying packets at the Samplers...

Prevent adversary from using past sampling outcomes to craft new packets

- Prevent export packets from leaking sampling outcomes
 (encrypt, pad to fixed length, send at fixed rate) or (physically secure channel)
- 2. Change the PRF key frequently (each time *e.g.* billing info is leaked to hosts)

Fault Detection: Secure Path Quality Measurement

- 1. Use coordinated sampling at sender and receiver
- 2. Estimate packet loss rates at Collector by comparing records

Security: No adversarial router can bias path quality measurement

- 1. Prevent adversary from selectively dropping non-sampled packets Use PRF-based coordinated sampling
- 2. Prevent adversary from modifying the receiver's export packets Cryptographically authenticate the export packets

Conclusions

Uncoordinated sampling

Random sampling with a cryptographic random number generator

Coordinated sampling

e.g. RC4, AES in counter mode

- Unkeyed hash-based sampling vulnerable even to weak attackers!
- As is sampling with a keyed non-cryptographic hash
- Cryptographic PRF-based sampling
 - Secure when host sends unique packets
 - To prevent replay attacks,

e.g. MD5, SHA1, AES in CBC mode

... secure the export packets and frequently rekey the PRF

Path quality measurement

Cryptographic PRF-based sampling + authenticated export packets

We need cryptographic hash functions for secure packet sampling!

Secure coordinated sampling is approx as complex as random sampling