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Abstract

Sequential aggregate signature schemes allow n signers, in order, to sign a message each, at
a lower total cost than the cost of n individual signatures. We present a sequential aggregate
signature scheme based on trapdoor permutations (e.g., RSA). Unlike prior such proposals, our
scheme does not require a signer to retrieve the keys of other signers and verify the aggregate-
so-far before adding its own signature. Indeed, we do not even require a signer to know the
public keys of other signers!

Moreover, for applications that require signers to verify the aggregate anyway, our schemes
support lazy verification: a signer can add its own signature to an unverified aggregate and
forward it along immediately, postponing verification until load permits or the necessary public
keys are obtained. This is especially important for applications where signers must maintain a
large, secure, and current cache of public keys in order to verify messages.

We report a technical analysis of our scheme (which is provably secure in the random oracle
model), a detailed implementation-level specification, and implementation results based on RSA
and OpenSSL. To evaluate the performance of our scheme, we focus on the target application of
BGPsec (formerly known as Secure BGP), a protocol designed for securing the global Internet
routing system. There is a particular need for lazy verification with BGPsec, since it is run
on routers that must process signatures extremely quickly, while maintaining a large cache of
over 36, 000 public keys. We compare our scheme to the algorithms currently proposed for use
in BGPsec, and find that our signatures are considerably shorter nonaggregate RSA (with the
same sign and verify times) and have an order of magnitude faster verification than nonaggregate
ECDSA, although ECDSA has shorter signatures when the number of signers is small.
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1 Introduction

Aggregate signatures schemes allow n signers to produce a digital signature that authenticates
n messages, one from each signer. This can be securely accomplished by simply concatenating
together n ordinary digital signatures, individually produced by each signer. An aggregate signature
is designed to maintain the security of this basic approach, while having length much shorter than
n individual signatures. To achieve this, many prior schemes e.g., [LMRS04, Nev08] relied on a
seemingly innocuous assumption; namely, that each signer needs to verify the aggregate signature
so far, before adding its own signature on a new message. In this paper, we argue that this can
make existing schemes inviable for many practical applications, (in particular, for BGPsec [Lep11]
/ Secure BGP [KLS00]) and present a new scheme based on trapdoor permutations like RSA that
avoids this assumption. In fact, our scheme remains secure even if a signer does not know the
public keys of the other signers.

1.1 Prior work on aggregate signatures

Boneh, Gentry, Lynn, and Shacham [BGLS03] introduced the notion of aggregate signatures, in
which individual signatures could be combined by any third party into a single constant-length
aggregate. The [BGLS03] scheme is based on the bilinear Diffie-Hellman assumption in the random
oracle model1 [BR93]. Subsequent schemes [LMRS04, Nev08] were designed for the more standard
assumption of trapdoor permutations (e.g., as RSA [RSA78]), but in a more restricted framework
where third-party aggregation is not possible. Instead, the signers work sequentially ; each signer
receives the aggregate-so-far from the previous signer and adds its own signature.

Lysyanskaya, Micali, Reyzin, and Shacham [LMRS04] constructed the first sequential aggregate
signature scheme from trapdoor permutation, with a proof in the random oracle model.2 However,
their scheme has two drawbacks: the trapdoor permutation must be certified (when instantiating
the trapdoor permutation with RSA, this means that each signer must either prove certain prop-
erties of the secret key or else use a long RSA verification exponent), and each signer needs to
verify the aggregate-so-far before adding its own signature. Neven [Nev08] improved on [LMRS04]
by removing the need for certified trapdoor permutations, but the need to verify before signing re-
mained. Indeed, a signer who adds its own signature to an unverified aggregate in both [LMRS04]
and [Nev08] is exposed to a devastating attack: an adversary can issue a single malformed aggre-
gate to the signer, and use the signature on that malformed message to generate a valid signature
on a message that the signer never intended to sign (Appendix A).

Thus, the advantages of basing the schemes on trapdoor permutations (particularly a more
standard security assumption and fast verification using low-exponent RSA) are offset by the dis-
advantage of requiring verification before signing. We argue below that this disadvantage is serious.

1.2 The need for lazy verification

In applications with a large number of possible signers, the need to verify before signing can
introduce a significant computational bottleneck; each signer must quickly retrieve the public keys
of the signers involved in the aggregate-so-far before it can even begin to run its signing algorithm.

1The need for the random oracle model was removed by Lu, Ostrovsky, Sahai, Shacham, and Waters [LOS+06], who
also relied on the bilinear Diffie-Hellman assumption; however, this improvement in security came at a considerable
efficiency cost—see [CHKM10] for a detailed analysis. See also [RS09, CSC09] for other proposals based on less
common assumptions.

2Bellare, Namprempre, and Neven [BNN07] showed how the schemes of [BGLS03] and [LMRS04] can be improved
through better proofs and slight modifications.
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Worse yet, signers need to keep their large caches of public keys secure and current: if a public key
is revoked and a new one is issued, the signer must first obtain the new key and verify its certificate
before signing the aggregate-so-far.

A key application: BGPsec. Sequential aggregate signatures are particularly well-suited for
the BGPsec [Lep11] (formerly known as the Secure Border Gateway Protocol (S-BGP) [KLS00]), a
protocol designed to improve the security of the global Internet routing system. (This application
was mentioned in [BGLS03, Nev08] among others, and explored further in [ZSN05]; we should
note that identity-based aggregate signatures are also being proposed for this application—see,
e.g., [BJ10, SVJR10] and references therein.) In BGPsec, autonomous systems (ASes) digitally sign
routing announcements listing the ASes on the path to a particular destination. An announcement
for a path that is n hops long will contain n digital signatures, added in sequence by each AS on
the path. BGPsec naturally requires routers to store and maintain a large local cache of public
keys; indeed, a routing announcement can contain information from any of the 36,000 ASes in the
Internet [COZ08]. Given the difficulty of storing, retrieving, and verifying certificates for > 36K
public keys, the BGPsec protocol gives routers the option to perform lazy verification: that is,
to immediately sign the routing announcement with its own public key, and to delay verification
until a later time, e.g., when (a) it has time to retrieve the public keys of the other signers, or (b)
when the router itself is less overloaded and can devote resources to verification [DHS]. Requiring
that routers delay signing and re-announcing BGPsec messages until verification is complete is a
non-starter, as it adds latency, introducing problems with router performance and global protocol
convergence. Indeed, lazy verification has been written into the BGPsec specification [Lep11]:

...it is important to note that when a BGPSEC speaker signs an outgoing update mes-
sage, it is not attesting to a belief that all signatures prior to its are valid.

There is legitimate concern that lazy verification might cause routers to temporarily adopt un-
verified paths. However, without lazy verification, incremental deployment of BGPSec becomes
infeasible, particularly because it must be run on legacy routers. Thus, any signature scheme
adopted by BGPsec must fulfill this requirement.

No public keys in the signing algorithm! Note that the primary obstacle here is not
verification time (which, with low-exponent RSA, can be considerably faster than signing time),
but the need to obtain public keys. Thus, lazy verification also requires that prior signers’ public
keys are not used in the signing algorithm (e.g., hashed with the message as in [LMRS04, Nev08]).

1.3 Overview of our contributions

We present a sequential aggregate signature scheme with lazy verification, based on any trapdoor
permutation (such as RSA). Moreover, as in the nonsequential scheme of [BGLS03], our signers do
not need to know anything about each other—not even each other’s public keys. To achieve this,
we modify Neven’s scheme [Nev08] by randomizing the H-hash function with a fresh random string
per signer, which becomes a part of the signature, similarly to Coron’s PFDH [Cor02] (Section 3).
Thus, unlike existing schemes that have constant-length aggregates, our aggregate grows linearly
with the number of signers; however, as we discuss below, this growth in length is small. Further,
we show that the length of the per-signer random string can be reduced if the randomness is
input-dependent (Section 5). This modification allows the ith signer to sign without verifying, and
without even needing to know the public keys of all the signers that came before him. We make
the following contributions:
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Generic randomized scheme. We present the basic version of our scheme, which requires each
signer to append a truly random string to the aggregate (Section 3). Our scheme is as efficient for
signing and verifying (per signer) as ordinary trapdoor-permutation based signatures, like the Full-
Domain-Hash (FDH, [BR93, Section4]). We prove security (Section 4) in the random oracle model,
based on the same assumption of trapdoor permutations (or claw-free permutations for a tighter
security reduction) as in [Nev08]. Our security proof is more involved, because the reduction cannot
know the public keys of other (adversarial) signers during the signature queries. We should note
that our proof technique also shows that Neven’s original scheme need not hash other signer’s public
keys in the signing algorithm (however, Neven’s original scheme still fails under lazy verification).

Generic input-dependent randomness scheme. Next, we use a combinatorial argument to
show the signature can be shortened if the random strings are computed as a function of the input
(Section 5).

Instantiating with RSA. Appendix G shows how to instantiate our schemes with practical
trapdoor permutations like RSA, which have slightly different domains for different signers.

Detailed specification. We provide a full, parameterized step-by-step specification of the
truly-random and input-dependent-random versions of our signature when instantiated with RSA
(Appendix H). We also provide guidelines on choosing parameters such as bit lengths (Section 6.1).

Implementation, benchmarking and practical considerations. We implement our spec-
ification as a module in OpenSSL (Section 6); the implementation is available from [BGR11]. We
compare our implementation’s performance to other potential solutions that allow for lazy verifi-
cation; namely, [BGLS03], and the “trivial” solution of using n RSA or ECDSA signatures (the
two algorithms currently proposed for use in implementations of BGPsec [DHS]). When evaluating
signatures schemes for use with BGPsec, we consider compute time as well as signature length.
Thus, we show that our signature is shorter than trivial RSA when there are n > 1 signers and
shorter than trivial ECDSA when there are n > 6 signers. (While our signature is longer than
the constant-length [BGLS03] signature, it benefits from relying on the better-understood security
assumption of RSA.) Moreover, our scheme enjoys the same extremely fast verify times as RSA,
which is crucial for applications like BGPsec, where the ith signer may need to verify i − 1 times
for each time it signs.

2 Preliminaries

Sequential aggregate signature security. The security definition for aggregate signatures
is designed to capture the following intuition: each signer is individually secure against existential
forgery following an adaptive chosen-message attack [GMR88] regardless of what all the other
signers do. In fact, we will allow the adversary to give the attacked signer arbitrary—perhaps
meaningless—aggregate-so-far signatures during the signature queries, thus making them adaptive
“chosen-message-and-aggregate” queries. We also allow the adversary, which we often refer to as
“the forger” to choose the public keys of all the other signers and to place the single signer who is
under attack anywhere in the signature chain in the attempted forgery.

Our definition, given in Appendix B, is almost verbatim from [LMRS04], with three important
differences: (i) the public keys of previous signers are not input to the signing algorithm; (ii)
the forger, in its query to ith signer, is required to supply only the aggregate-so-far, but not the
messages or public keys with respect to which this aggregate was allegedly produced; and (iii) to be
considered successful, the forger must forge a signature on a new message against an uncorrupted
signer—in other words, it is not enough to change a public key or message of someone else in the
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chain before the corrupted signer (because such public keys and messages are not even specified
during the signing query).

Cryptographic primitives. We will use pseudorandom function [GGM86] defined for the
sake of completeness in Appendix C. We denote by εPRF(q, t) the maximum advantage that an
adversary who asks q queries and runs in time t has in distinguishing the pseudorandom family PRF
from a truly random function. We assume the reader is familiar with the trapdoor and claw-free
permutations; we will denote by π the easy direction of the trapdoor permutation, by π−1 the hard
direction, and by ρ the function such that it is hard to find a “claw” x, z with π(x) = ρ(z).

3 Our basic signature scheme

We present the basic version of our signature scheme. Because sending messages in the clear is
necessary for lazy verification (i.e., to use the message before its authenticity is confirmed), we do
not consider signatures with message recovery [Nev08]. However, a version with message recovery,
which saves some space, can be constructed similarly to [Nev08]. We use the following notation:

• Let mi be the message signed by signer i.

• Let trapdoor permutation πi be the public key of signer i and π−1i be the corresponding secret
key. We assume all permutations operate on bit strings of length `π, i.e., have domain and
range {0, 1}`π . (In Appendix G we remove the assumption that all permutations operate on
the same domain. Section 6 uses this to instantiate π from the RSA assumption, where πi is
the easy direction, and π−1i is the hard direction of the RSA permutation.)

• Let H (resp. G) be a cryptographic hash function (modeled as a random oracle) that outputs
`H -bit (resp. `π-bit) strings.

• Let `r be a parameter denoting the length of the randomness appended by each signer.

• Let the notation ~ai denote a vector of values (a1, a2, ..., ai).

• Let ⊕ to denote bitwise exclusive-or. Exclusive-or is not the only operation that can be used;
any efficiently computable group operation with efficient inverse can be used here.

• ε is a special character denoting the empty string; we assume ε⊕ x = x for any x.

Algorithm 1 Sign: The ith Signer’s algorithm

Require: πi,mi, xi−1, hi−1 (where xi−1, hi−1 = ε, ε if i = 1).

1: Draw ri
R← {0, 1}`r

2: ηi ← H(πi,mi, ri, xi−1)
3: hi ← hi−1 ⊕ ηi
4: gi ← G(hi)
5: yi = gi ⊕ xi−1
6: xi ← π−1i (yi)
7: return ri, xi, hi

The ith signer’s signing algorithm (Algorithm 1) is strictly constant in the number of signers;
it takes in only the ith signers’ own public key and message and the aggregated portion of the
signature xi−1, hi−1. Moreover, the aggregated signature need not be verified before it is signed.
For verification (Algorithm 2), only a single xi and hi—namely, the one from the last signer—is
needed. However, every ri, from the first signer to the last, is needed.
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Algorithm 2 VerH,G: The Verification Algorithm

Require: ~πn, ~mn, ~rn, xn, hn
1: for i = n, n− 1, ...., 2 do
2: yi ← πi(xi)
3: gi ← G(hi)
4: xi−1 ← gi ⊕ yi
5: ηi ← H(πi,mi, ri, xi−1)
6: hi−1 ← hi ⊕ ηi
7: if h1 = H(π1, r1,m1, ε) and π1(x1) = G(h1) then
8: return 1
9: else

10: return 0

4 Security proof

We prove security for the claw-free permutation case (the more general trapdoor permutation case
results in a looser security reduction, with a multiplicative loss of qH ; since we propose to instantiate
our scheme with RSA, which is claw-free, we do not present the more general case here, but the
differences in the proof are straightforward; see, e.g., [DR02]). Our proof shows how a forger F
on the aggregate signature scheme can be used to construct a reduction R that finds a claw in
claw-free pair (π∗, ρ∗). R has F forge a signature for victim signer that uses permutation π∗, and
then uses the resulting forgery to find the claw in the claw-free pair. The structure of our reduction
is similar to [Nev08]; however, while [Nev08] constructs a “sequential forger” from forger F and
then constructs reduction R from the sequential forger, our reduction must proceed in one step
(since the notion of a sequential forger is undefined if hash queries do not include previous signers
public keys).

F ’s queries. We review what forger F expects to see on each one of its queries:

• H-Query. F asks query Q = (π,m, r, x) (where x may be ε) and expects to see H(Q) = η.

• G-query. F asks query h, and expects to see g = G(h).

• Sign Query. F asks query (m,h, x) to be signed by π∗, and expects to see h′, x′ back, where
h′ = h⊕H(π∗,m, r, x) for some (random-looking) r and π∗(x

′) = G(h′)⊕ x.

• Forgery. Finally, F outputs a forgery, σ = ~πn, ~mn, ~rn, xn, hn where πn = π∗. (Value n is
chosen by F ).

Simplifying assumptions about the forger F . The following simplifies our proof:

• We assume that the forger F forges the last signature in the signature chain; in other words,
πn = π∗ and mn is a new message never queried by F to the signing oracle (whose public
key is π∗). Indeed, any F can be easily modified to do so: if π∗ and a new message mn′

are present in ~πn but at location n′ < n, then we can run the verification algorithm loop for
n − n′ iterations to obtain xn′ , hn′ and output σ′ = ~πn′ , ~mn′ , ~rn′ , xn′ , hn′ as the new forgery,
which will be valid if an only if σ was valid. Note that we do not assume that π∗ (or any
other public key) is present in the signature chain only once.

• We assume that before forger F outputs its forgery and halts, it makes hash queries on all
the hashes that will be computed during the verification of its forgery. Moreover, we assume
that the forger does not output an invalid forgery; instead, it halts and outputs ⊥. Indeed,
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any F can be modified to do so; simply run the verification algorithm upon producing the
forgery, and check that mn is different from every message asked in a sign query.

4.1 Description of the reduction R

4.1.1 Data structures used by R

HT and GT tables. The reduction R uses ‘programmable random oracles’, i.e., it chooses
answers for random oracle queries. R keeps track of queries whose answers have already been
decided in two tables: HT for H and GT for G. We say HT(Q) = η if HT stores η as the answer to
a query Q, and HT(Q) = ⊥ if HT has no answer for Q (similar for GT).

The HTree. The key challenge for the reduction is programming G, since G-queries are made on
sums of H-query answers, rather than on individual H-query answers. Thus the reduction keeps
an additional data structure, the HTree, that records responses to H-queries that may eventually
be used as part of forger F ’s forgery. (HTree is inspired by the graph G in [Nev08, Lemma 5.3].)

The HTree is a tree of labeled nodes that stores a subset of the queries in HT. Each node in
HTree (except the root) corresponds to an H-query that could potentially appear in the forger F ’s
final forgery σ; the queries asked during verification of σ will appear on a path from one of the leaf
nodes to the root (unless a very unlikely event occurs). The HTree has a designated root node that
stores the value h0 = 0. We consider the root to be at depth 0. A node Ni at depth i > 0 stores:

• a pointer to its parent node

• a query Qi = (πi,mi, ri, xi−1) (where xi−1 = ε if and only if i = 1),

• the ‘hash-response’ values ηi and hi (hi is the XOR of the values η1, . . . , ηi on the path from
the root to the node Ni; equivalently, hi−1 ⊕ ηi, where hi−1 is stored in the parent node),

• an auxiliary value yi that is used to determine how future queries are added to the HTree,
computed as G(hi)⊕ xi−1 (note that yi is the value to which the signer would apply π−1i ),

• if πi = π∗, an auxiliary value z that may be used to find a claw in (π∗, ρ∗).

Every node at depth i = 2 or deeper satisfies the relation πi−1(xi−1) = yi−1, where πi−1 and yi−1
are stored at the node’s parent. New H-queries Q are added as nodes to the HTree if they can
satisfy this relation; we say that such a query can be tethered to an existing node in the HTree.
Intuitively, a query tethered to Ni becomes a child of Ni in the HTree:

Definition 4.1 (Tethered queries). An H-query Q containing x 6= ε is tethered to node Ni in the
HTree if Ni stores πi, yi such that πi(x) = yi. If x = ε, then Q is tethered to the root of the HTree.

The HTree’s Lookup function (Algorithm 3) determines the HTree node to which query Q can be
tethered. (Lemma D.3 argues that Lookup finds at most one node with high probability.) The
HTree is populated via the Sim-H algorithm (Algorithm 6). The reduction R adds an H-query Q
to the HTree if and only if it is tethered to some node in the HTree at the time that forger F makes
the H-query. It is possible that some query Q is not tethered at the time it is made, but becomes
tethered at at later time (after some new nodes are added to the HTree). However, Claim 4.4 shows
that this is highly unlikely.
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4.1.2 Algorithms used to answer forger’s queries

The reduction R uses the following algorithms (Algorithms 3–7) to answer each of forger F ’s queries.

G-queries. R answers these queries using a simple algorithm Sim-G (Algorithm 4). Sim-G returns
GT(h) if it is already defined, or, if not, returns a fresh random value and records it in the GT.

Sign-queries The reduction R answers queries (m,h, x) to be signed by π∗ using Sim-S (Al-
gorithm 7). Since the reduction does not know the inverse of the challenge permutation π−1∗ , it
‘fakes’ a valid signature by carefully assigning certain entries in random oracle tables HT,GT, and
ABORTS if these entries in HT,GT have been previously assigned. Later, we argue that Sim-S is
unlikely to abort, since the entries added to HT,GT by Sim-S depend on a fresh random value r
chosen as part of each signature query (Lemma D.6).

H-queries The reduction R answers these queries Q = (π,m, r, x) using the Sim-H (Algorithm 6).
If there is an entry for Q in the HT, then Sim-H returns it. Otherwise, it assigns a fresh random
value η as HT(Q). Next, Sim-H needs to prepare for the event that Q could lead to a forgery by
the forger F , and thus needs to be stored in the HTree. To do this, Sim-H uses the Lookup function
to check if Q can be tethered and thus should be added to the HTree. If Q can be tethered,
Sim-H adds a new node to the HTree containing Q, its hash response η, and an axillary value y
that is used by the Lookup function to tether future H-queries. In order to ensure that HTree
is a tree (Lemma D.3), it is important to ensure that y is a fresh random value; Sim-H aborts if
that’s not the case. Finally, if Q contains the challenge permutation π∗, Sim-H adds a value z to
the HTree node that FindClaw will use to derive a claw from a valid forgery output by the forger
F . To prepare these values, Sim-H behaves almost as if it is ‘faking’ the answer to a sign-query,
except that instead of using the usual challenge permutation π∗ (as in Sim-S), it uses the challenge
permutation ρ∗ applied to z (so as to benefit from forger F ’s forgery, which would invert π∗ on
the output of ρ∗(z), thus producing a claw). As in Sim-S, this involves carefully assigning certain
entries in GT, and aborting if these entries are already assigned. (Claim D.5 shows that Sim-H is
unlikely to abort.)

Finding a claw. Finally, forger F outputs a forgery ~πn, ~mn, ~rn, xn, hn, where πn = π∗. Recall
that our simplifying assumptions mean that the forgery is valid. The reduction R uses FindClaw
(Algorithm 5) to find a claw from the forgery. Because we assumed all the queries for verifying σ
have already been asked, the query (pi∗,mn, rn, xn−1) is in HT. Moreover, if the forgery is valid,
then with high probability it is in the HTree as a child of the node storing (πn−1,mn−1, rn−1, xn−2),
which is in turn a child of the node storing (πn−2,mn−2, rn−2, xn−3), etc.. This holds because in a
valid forgery, each H-query made during verification is tethered to the next one, and, by Claim 4.4,
all tethered queries are in the HTree with high probability. The value xn (from the forgery σ) and
value zn (from HTree node of the query Q = (π∗,mn, rn, xn−1)) constitute a claw.
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Algorithm 3 Lookup

Require: x
1: if x = ε then
2: return Root node of HTree
3: else
4: Nodelist = {all nodes N in HTree contain-

ing π, y such that π(x) = y}
5: if Nodelist contains more than one node

then
6: ABORT
7: else if Nodelist is empty then
8: return ⊥
9: else

10: return the single node in Nodelist

Algorithm 4 Sim-G: Answering a G-Query

Require: h
1: if GT(h) = ⊥ then

2: Draw g
R← {0, 1}`π

3: GT(h)← g
4: return GT(h)

Algorithm 5 FindClaw

Require: σ = ( ~πn, ~mn, ~rn, xn, hn) with πn = π∗
1: Nn ← Lookup(xn)
2: if Nn = ⊥ then
3: ABORT
4: Retrieve zn the node Nn

5: return Claw (xn, zn).

Algorithm 6 Sim-H: Answering an H-Query

Require: Q = (π,m, r, x)
1: if HT(Q) = ⊥ then

2: Draw η
R← {0, 1}`H

3: HT(Q)← η
4: Ni−1 ← Lookup(x)
5: if Ni−1 6= ⊥ then
6: Create new node Ni with parent Ni−1
7: Retrieve hi−1 from parent Ni−1
8: hi ← hi−1 ⊕ η
9: if GT(hi) 6= ⊥ then

10: ABORT
11: if π 6= π∗ then
12: gi ← Sim-G(hi)
13: yi ← gi ⊕ x
14: Populate node Ni with Q, η, hi, yi
15: else
16: Draw zi

R← {0, 1}`π
17: yi ← ρ∗(zi)
18: Populate node Ni with Q, η, hi, yi, zi
19: GT(hi)← yi ⊕ x
20: return HT(Q)

Algorithm 7 Sim-S: Answering a Sign-Query

Require: (m,h, x)

1: Draw r
R← {0, 1}`r

2: Q← (π∗,m, r, x)
3: if HT(Q) 6= ⊥ then
4: ABORT
5: else
6: Draw η

R← {0, 1}`H
7: HT(Q)← η
8: h′ ← η ⊕ h
9: Draw x′

R← {0, 1}`π
10: y′ ← π∗(x

′) .
11: if GT(h′) = ⊥ then
12: GT(h′)← y′ ⊕ x
13: else
14: ABORT
15: return r, h′, x′.

9



4.2 Analysis of the reduction

Theorem 4.2. If a forger F is such that AdvAggSigF = ε, then the reduction R finds a claw for
(π∗, ρ∗) in about the same running time as F with probability

ε− (qS + qH)(qS + qG + qH)2−`H − qS(qS + qH)2−`r − q2H2−`π (1)

where qH is the number of H-hash queries, qG is the number of G-hash queries, and qS is the
number of sign queries made by the forger F .

We prove this theorem in Appendix D. The proof hinges on two key statements about the
HTree. First, the probability that Lookup(x) finds more than one HTree node is low. Second, an
H-query that was not added to HTree is unlikely to become tethered at some later time. Both
statements rely on the fact (proven in Claim D.4) that each time a query is placed on the HTree,
its y value is random and independent of every other y value. We now present these two claims,
that are (arguably) the most interesting parts of the proof:

Lookup(x) is unlikely to find more than one node. We need to bound the probability
that there are nodes N1 and N2 in HTree storing π1, y1 and π2, y2 such that there exists x with
π1(x) = y1 and π2(x) = y2. Note that forger F can adversarially-choose π1, π2 stored in nodes N1

and N2 (since F issues a H-query that sets the πi stored at each HTree node). Indeed, we have the
following process: F chooses π1 first, and then is given a independent random y1, then chooses π2
with knowledge of π1, y1, and finally is given independent random y2 (Claim D.4). Thus, we cannot
assume that π1, π2 are permutations; however, we may assume that they are functions:

Claim 4.3. For any two functions π1, π2 with domain {0, 1}`π , and two uniformly random values
y1, y2 in {0, 1}`π , there exists x such π1(x) = y1 and π2(x) = y2 with probability at most 2−`π .

Proof. Define the set of preimages of y1 under π1 as Sy1 = {x | π1(x) = (y1)}. Suppose |Sy1 | = α.
Then there are at most α choices of y2 that will result in the event that there exists x such π1(x) = y1
and π2(x) = y2, because each element x ∈ Sy1 gives rise to at most one y2 = π2(x). Because y2 is
chosen uniformly from a set of size 2`π , the probability that x satisfying π1(x) = y1 and π2(x) = y2
exists is at most α2−`π . Thus, the desired probability is at most∑

α

α2−`π Pr
y1

[|Sy1 | = α] = 2−`π
∑
α

α · |{y1 s.t. |Sy1 | = α}|
2`π

.

Observing that
∑

α α · |{y1 s.t. |Sy1 | = α}| = |Domain(π1)| = 2`π , we get the desired bound.

H-queries are unlikely to get tethered after they are asked. Next, we prove the following:

Claim 4.4. If an H-query did not get added to HTree (equivalently, if it was untethered at the time
it was asked to Sim-H), then the probability it will ever become tethered is at most q′H2−`π , where
q′H is the number of H queries made after it.

Proof. Consider queries as they are added to HT in order. Suppose j0’th query Q = (π,m, r, x)
was added as the result of a query to Sim-H and was untethered at the time it was asked, i.e., the
HTree was such that Lookup(x) = ⊥. Now suppose that Q first becomes tethered after some j1-th
query, Q′ = (π′,m′, r′, x′), is placed in HT. From the definition of a tethered query, Q′ must have
been added to the HTree. Thus, we must have j1 > j0, because we never remove nodes from HTree
(i.e., we cannot have j1 < j0) and Q itself is not added to the HTree (thus, j1 6= j0). Since nodes
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are added to the HTree only when Sim-H is called on a new query, it follows that Q′ was added to
HTree after forger F asked a new H-query, so that the following collision occurs:

π′(x) = y′ . (2)

But, y′ is a uniform random value that is independent of π′ and x (Claim D.4), so the collision in
equation (2) occurs with probability 2−|y| = 2−`π . This holds for each of the q′H queries that could
have been asked after j0, and the claim follows by the union bound.

5 Input-dependent randomness

To shorten our signature, we now show how to reduce `r (the length of the randomness appended
by each signer). To do this, we replace the truly random r from our basic scheme with an r that
is computed as a function of the inputs to the signer, and argue that it can be made shorter than
the random r. Moreover, this input-dependent r need not be truly random; it suffices for a r to be
a psuedorandom function of the input.

5.1 Modifying the scheme

We now compute r as a pseudorandom function (PRF) over the input (mi, hi−1, xi−1) received by
that signer i. Let PRFseed : {0, 1}∗ → {0, 1}`r be a pseudorandom function with seed seed and
insecurity εPRF(q, t) against adversaries asking q queries and running in time t. Add a uniformly
chosen seed to the secret key of the signer and replace line 1 of the signing algorithm (Algorithm 1)
with r ← PRFseed(m,h, x).

5.2 Security proof

In the previous section, we found that `r must be long enough to tolerate a security loss of qS(qH +
qS)2−`r (Theorem 4.2). We now show how to reduce `r so that it need only allow for a security loss
of approximately (qG + qH + qS + `Hq

2
S)2−`r . This is an improvement if we assume that qH ≈ qG

(since both H and G are hash functions) and qS � qH (since in practice hash queries can be made
offline, while signing queries need access to an actual signer):

Theorem 5.1. If a forger F is such that AdvAggSigF = ε for the modified scheme, then the
reduction R finds a claw for (π∗, ρ∗) in about the same running time as F with probability

ε− 2(qS + qH)(qS + qG + qH)2−`H − q2H2−`π (3)

− (qG + qH + qS + (`h + 2)q2S)2−`r − εPRF(qS , t)

where qH is the number of H-hash queries, qG is the number of G-hash queries, qS is the number
of sign queries made by the forger F , and t is the running time of the forger and the reduction
combined.

The intuition behind this result is as follows. When r was truly random, as in Section 3, we had
to choose r long enough to prevent the forger from making a sign query on (π∗,mi, xi−1, hi−1) for
which Sim-S draws a random ri that collides with a previously made H-query Qi = (π∗,mi, ri, xi−1).
However, notice that a sign-query also includes the value hi−1! Thus, by computing ri as a pseu-
dorandom function of hi−1, we make it more difficult for the forger to create a collision that causes
Sim-S to abort, because now the collision must include π∗,mi, ri, xi−1 and hi−1.
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Sketch. The full proof of this theorem is in Appendix E. We modify the reduction R to replace the
ABORT on line 4 of Sim-S (Algorithm 7) with

η ← HT(Q)

(All the rest of R’s algorithms are unchanged.) As such, we must now consider a new case where
Sim-S aborts; namely, if Sim-S draws an r that defines a query Q = (π∗,m, r, x) that is already in
HT and the value h′ = η ⊕ h is already stored in the GT (where recall that η = HT(Q) and h was
given as part of the query to Sim-S). Call such r bad for m,h, x. How likely is it that Sim-S draws
a bad r?

Claim 5.2. Pr[Sim-S ever draws a bad r] ≤ (qS + qH)22−`H + (qG + qH + qS + (`h + 2)q2S)2−`r .

Proof. Consider a matrix ζ whose rows are indexed by queries (i.e., h′) in GT and whose columns are
indexed by queries in HT that start with π∗ (i.e., , there is a column for eachQ = (π∗,m, r, x) ∈ HT).
The entry in row h′ and column Q is h = h′ ⊕ η, where η = HT(Q). Sim-S draws an r that is bad
for m,h, x if and only if it (a) draws an r such that Q = (π∗,m, r, x) ∈ HT, and (b) h exists in the
Qth column of ζ.

Thus, we will say that a column Q = (π∗,m, r, x) of ζ is bad for (m,h, x) if at least one of the
entries in that column is h (denote the set of such columns BAD(m,h, x)). The number of r values
that are bad for a particular triple (m,h, x) is equal to the number of columns that are bad for
that triple, and thus the probability that a bad r is chosen by Sim-S when responding to (m,h, x)
is equal to 2−`r · |BAD(m,h, x)|. Now consider all the queries that have a given h. Note that the
bad columns do not overlap for such queries (because each column is labeled with m and x). By
the union bound, the probability that Sim-S draws a bad r during any signature query with h is
at most 2−`r ·

∑
m,x |BAD(m,h, x)|. Since the bad columns do not overlap,

∑
m,x |BAD(m,h, x)|

is bounded by the number of times h occurs in ζ. Thus, we can bound the overall probability that
Sim-S ever draws a bad r by at most:

2−`r
qS∑
i=1

# of times the ith most frequent entry appears in ζ .

Thus, we have a combinatorial problem to solve:

Combinatorial problem. Suppose β values η1, . . . , ηβ are chosen uniformly at random as `H -bit
strings and given to an adversary, who then chooses α distinct values h′1, . . . , h

′
α. The α×β-matrix

ζ is constructed by XORing the η and the h′ values. A collision in ζ is a set of entries that are all
equal. What is the total number of entries in the γ biggest collisions?

Theorem 5.3. With probability at least 1− β22`H , the total size of the γ biggest collisions in ζ is
at most α+ (`h + 2)γ2.

We can use Theorem 5.3 (proved in Appendix F) to bound the probability of choosing a bad r. α
is the size of GT, which is at most qG + qH + qS . β is the number of HT entries, which is at most
qS + qH . γ is at most qS . Then, the claim follows by observing that the probability that Sim-S ever
aborts is at most (a) the probability that the event of Theorem 5.3 doesn’t hold, which is at most
β22−`H = (qS + qH)22−`H , plus (b) the probability that, even though the event of Theorem 5.3
holds, a bad r is chosen, which is at most (α+(`h+2)γ2)2−`r ≤ (qG+qH +qS+(`h+2)q2S)2−`r .
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2048-bit RSA Our scheme 256-bit ECDSA

Signature length (bits) 2048n 2048 + 256 + (128 + 1)n 2 · 256n

Average length, n = 3.5 7168 2756 1792

Sign time 11.8 ms 11.9 ms 2.33 ms

Verify time 0.27n ms 0.30n ms 2.77n ms

Table 1: Benchmark results. Let n be the number of signers. Results were computed on a laptop
with a Core i3 processor at 2.4GHz and 2GB RAM, running Linux Ubuntu.

6 Implementation

In Section G we present technical arguments for how our schemes can be instantiated with RSA,
and present a full specification of our schemes in Section H. To evaluate the viability of our schemes,
we implemented the input-dependent-r version of our protocol as a module in OpenSSL [ope]. The
code is available from [BGR11].

Overview of our implementation. We instantiate the permutation π with 2048-bit RSA
with public exponent 65537, hash H with SHA-256, full-domain hash G with the industry-standard
Mask Generating Function (MGF) using SHA-256 [RSA02], and the pseudorandom function PRF
with HMAC-SHA-256 [BCK96]. Instead of hashing the permutation π as-is inside the hash function
H, we replace it with a short fingerprint of the RSA public key computed using SHA-256. Thus,
we have parameters `π = 2048, `h = 256, and `r = 128; the `r value is per signer, and each signer
also adds one bit of information to deal with the problem that RSA gives each signer a slightly
different domain (see Section G). Therefore, the length of the aggregate signature for n signers is
2048 + 256 + 129n bits long (see Table 1). We now present a technical justification for this choice
of parameters.

6.1 A sample set of parameter lengths

RSA modulus length. The choice of RSA modulus length is essentially orthogonal to the
choice of all the other parameters, because it depends only on one’s belief about the security of RSA.
We will use 2048-bit modulus n, which NIST recommends for use until the year 2030 [BBB+07,
Table 4]. Thus, `π is 2048 bits.

Choosing `f ,`r and `h. Once the RSA modulus length is set, security depends on the
term subtracted from ε in Theorem 4.2 (for the random-r version) or Theorem 5.1 (for the input-
dependent-r version). We will aim for 128-bit security against adversarial running time. We bound
the adversarial running time t in terms of the number of queries it issues, so that t ≥ qS + qG + qH .

We will also aim for 60-bit security against the chosen message attack against an honest signer.
This number is lower than 2128, because every signature has to be issued by the honest signer—thus,
as opposed to hash values, an adversary cannot simply marshal more computational resources in
order to get more signatures. We note that for an honest signer to issue 260 signatures, assuming
a public key is valid for one year, it would have to produce about 40 billion signatures per second.
(Our benchmarks in Section 6 indicate that consumer-grade general-purpose PCs can produce
about 100 signatures per second, so this builds in some safety margin.) Thus, we want to make
sure the term subtracted from ε is at most about t2−128 + qS2−60. In fact, for the truly-random-r
version, we will do better: we will get close to t2−128 as long as qS ≤ 260. For the input-dependent-r
version, we will also do better when qS < 260, because we will get close to t2−128 + q2S2−120. Given
this goal, we choose the following parameters:
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• Instantiate hash H() with SHA-256 [SHA08] so `h is 256 bits.

• When using the random-r version, we have `r,r 192 bits.

• Since we use HMAC instantiated with H(), the PRF key has `k = `h as 256 bits.

• When using the input-dependent-r version, we have `r,p is 128 bits.

Random-r version. Plugging these values (with `r = `r,r) into Theorem 4.2, we see that the
term subtracted from ε is about

(qS + qH)(qS + qG + qH)2−`H + qS(qS + qH)2−`r + q2H23`b−`π ≤
2128(qS + qG + qH)2−256 + 260(qS + qG + qH)2−192 + 2128(qS + qG + qH)2−2045 <

2t2−128

as desired.

Input-dependent-r version. We assume that 256-bit HMAC provides 128-bit security against
adversarial running time and 60-bit security against the number of queries as a pseudorandom
function—that is, εPRF(qS , t) ≤ t2−128 + qS2−60. We plug these these values, along with `r = `r,p,
into Theorem 4.2 to find

2(qS + qH)(qS + qG + qH)2−`H + (qG + qH + qS + (`h + 2)q2S)2−`r + q2H23`b−`π ≤
2 · 2128(qS + qG + qH)2−256 + (qG + qH + qS)2−128 + 258q2S · 2−128 + 2128(qS + qG + qH)2−2045 <

4t2−128 + 1.01q2S2−120 <

4t2−128 + 1.01qS2−60

as desired.
In both versions, if the function PKFingerPrint does not explicitly output the public key but

rather hashes it using SHA-256, then there will be an additional security loss of 2128, because a
collision of two key fingerprints will mean that the reduction R cannot deduce which π the forger
F is using in its H-query.

7 Evaluation

Desiderata. We compare the performance of our scheme relative to other signatures that allow
for lazy verification. Until this point, we have mainly been concerned with signature lengths. We
now turn our attention to other practical considerations, and thus judge our schemes on the basis
of (a) computation time, in addition to (b) signature lengths. Fast verify times are particularly
crucial, since the ith signer needs to verify i− 1 times before it can sign once.

The competition. Table 1 compares our scheme to the ‘trivial’ solutions of using n RSA or
ECDSA [Van92, IEE02] signatures, for roughly 128-bit security; namely the standard OpenSSL
implementations of 256-bit ECDSA and 2048-bit RSA using SHA-256 and public exponent 65537.
We focus on these two schemes because they are the current contenders for adoption in BGPsec
[DHS].

While [BGLS03] is another potential solution with lazy verification, we do not benchmark
it because no implementation was available to us, and implementing this scheme is outside the
scope of this work. However, we do note that [BGLS03] offers the shortest bit lengths of all the
schemes we consider. But, because [BGLS03] relies on bilinear pairing, this comes at the cost of less
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standard cryptographic assumptions and slower verification time. Verification in [BGLS03] requires
one expensive bilinear pairing per signer3; as reported in [NNS10], highly optimized software on
carefully chosen 256-bit curves would compute a pairing operation in about 2ms on hardware
roughly comparable to ours (we note that these special curves and careful optimizations, not used
in OpenSSL, could probably also improve the performance of ECDSA considerably).

Discussion. We can make the following observations:

1. ECDSA provides the shortest signature lengths of the three solutions when n < 6, while our
scheme dominates the three for n > 6. However, if we consider BGPsec as a target application, it
follows that average AS path lengths in the Internet tend to be around 3.5 hops long on average
[COZ08]. Thus, ECDSA has the shortest signatures for the average case where n = 3.5. However,
as n increases to n > 6, our scheme provides the shortest signatures; this could be advantageous
for the weaker routers in the less well-connected portions of the Internet that tend to see longer
AS-level paths with BGPsec.

2. Our scheme has computation time almost identical to trivial RSA. While ECSDA has the
fastest signing time (3x faster), the verification times for RSA and our scheme are an order of
magnitude faster than those of ECDSA, which is important when we consider BGPsec as a target
application.

Thus, while there is no clear winner on all fronts, we conclude that our scheme enjoys the (a)
more standard assumption of trapdoor permutations, and (b) fast verify times of RSA while (c)
allowing for aggregate lengths that are comparable to those of ECDSA. We are currently analyzing
the computation, communication, and storage impact of our schemes relative to RSA and ECDSA
using empirical BGP routing data, with an eye towards assessing how the differences in signature
length as well as signing/verifying times impact BGPsec performance.
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A Lazy verification and prior proposals

[LMRS04] is a sequential aggregate signature that produces a constant length aggregate xi. Using
the notation of Section 3, the signature algorithm requires the ith signer to compute the aggregate
xi from the aggregate-so-far xi−1 as follows:

xi = π−1i (xi−1 ⊕H(π1, ..., πi,m1, ...,mi)) (4)
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The security of [LMRS04] relies on the fact that the ith signer verifies xi−1 before producing xi
as above. We now show how an adversary can forge a valid signature on a message m̂i 6= mi by
adversarially malforming the aggregate-so-far.

Suppose the adversary knows that the ith signer is signing the message mi. In that case, he sets

x̂i−1 = xi−1 ⊕H(π1, ..., πi,m1, ...,mi)

⊕H(π1, ..., πi,m1, ..., m̂i)

where xi−1 is a valid signature on messages m1, ...,mi−1. If the ith signer now produces a signature
using the invalid aggregate-so-far x̂i−1, then a little algebraic manipulation shows that the adversary
now posses a valid signature on messages m1, ..., m̂i, and thus the security of [LMRS04] does not
hold under lazy verification. The analogue of this attack also works on [Nev08]. Here, the adversary
malforms only the hash value hi−1 as:

ĥi−1 = hi−1 ⊕H(πi,mi, xi−1)⊕H(πi, m̂i, xi−1)

B Definition of Sequential Aggregate Signature Schemes

As mentioned in Section 2, our definition is almost verbatim from [LMRS04], with differences to
account for the fact that public keys of other signers are not input to the signing algorithm.

The adversary F is given a single public key and access to sequential aggregate signing oracle
on the corresponding secret key. The advantage of F , AdvAggSigF , is defined to be its probability
of success in the following game.

Setup. A key pair PK ,SK is generated. The aggregate forger F is provided with PK , the
challenge key.

Queries. F requests sequential aggregate signatures to be produced with SK on messages of
its choice. For each query, it supplies an (alleged) sequential aggregate signature σ and
an additional message m to be signed by the oracle under key SK . It can be adaptive,
i.e., use the results of previous queries in order to decide on the current query.

Response. Finally, F outputs n distinct public keys PK 1, . . . ,PK n for some integer n of its
choice. One of these keys must equal PK , the challenge key. Algorithm F also outputs
messages m1, . . . ,mn, and a sequential aggregate signature σ.

The forger wins if the sequential aggregate signature σ is a valid sequential aggregate signature
on messages m1, . . . ,mn under keys PK 1, . . . ,PK n, if PK = PK i∗ for some 1 ≤ i∗ ≤ n, and
if σ is nontrivial, i.e., F never issued a query on the message mi∗ . Note that i∗ need not
equal n: the forgery can be made in the middle of the sequence. The probability is over the
coin tosses of the key-generation algorithm, the signing algorithm, and F .

In the random oracle model, F can also issue adaptive queries to the random oracle during its
attack.

C Pseudorandom Functions

A pseudorandom function family (PRF) [GGM86] is one in which a randomly chosen function is
indistinguishable from a truly random function by an observer of input-output behavior. We will
consider only PRFs with variable input lengths and a fixed output length `r. The formal definition
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we need is as follows: if PRFseed : {0, 1}∗ → {0, 1}`r is a family of functions indexed by seed and D
is an adversary that outputs a single bit (also known as distinguisher), consider the following two
experiments. In the first, seed is chosen at random (not shown to D), and D gets to ask for outputs
of PRFseed on inputs of its choice. In the second, a completely random function f : {0, 1}∗ → {0, 1}`r
is chosen at random, and D gets to ask for outputs of f on inputs of its choice. We will say the
insecurity of PRF is the absolute value of the difference between the probabilities that D outputs 1
in the two experiments. We will denote by εPRF(q, t) the maximum insecurity of PRF against any
D who asks at most q queries and runs in time t.

D Proof of Theorem 4.2

Our proof proceeds in two steps. First, we argue that with high probability forger F will not detect
that it is interacting with the reduction R rather than the real oracles. To do so, we define the
view of forger F to be everything F sees during a run, including F ’s input (the public key), F ’s
private coinflips, and the answers F receives to its H, G, and signature queries. The reduction,
unlike the real execution, may abort before F outputs its forgery, in which cases we call the view
of F “aborted.” F ’s inability to detect that it is interacting with the reduction R follows from the
following two lemmas.

Lemma D.1 (Correct Simulation). Consider a view that forger F sees during the interaction with
the reduction. Suppose it is not aborted. Then the probability that F sees that view when interacting
with the reduction is the same as the probability F sees that view in the real execution.

Lemma D.2 (Abort Probability). The reduction R aborts (either before or after the forger F
outputs the forgery) with probability at most

Pr[ABORT] ≤ (qS + qH)(qS + qG + qH)2−`H + qS(qS + qH)2−`r + q2H2−`π (5)

Thus, if forger F outputs a forgery with probability ε when interacting with the real signer, then,
by the union bound, the probability that it outputs a forgery and the reduction does not abort is
at least ε−Pr[ABORT ] (indeed, consider the union of two bad events: F doesn’t output a forgery
or the reduction aborts). But if the reduction does not abort, then it outputs a claw (xn, zn). By
Lemma D.7, π∗(xn) = yn, where yn is the value stored with the node Nn. And by construction of
yn on line 17 of Sim-H (Algorithm 6), ρ∗(zn) = yn. Hence, the reduction succeeds in finding a claw.

D.1 Proof of Correct Simulation Lemma D.1

The public key given to forger F and F ’s private coinflips are the same in the simulation and in
the real execution. Thus, it remains to show that the reduction R correctly simulates H-queries,
G-queries, and Sign-queries. Indeed, consider a not aborted view of F obtained during interaction
with reduction R.

• H-queries. For every H-query in the view, the answer was placed into HT by Sim-H (Algo-
rithm 6) or Sim-S (Algorithm 7). Each produced the HT entry by drawing an independent
uniformly random η, just like the real execution random oracle. The probability of that
particular answer is 2−`H in both cases.

• G-queries. Consider a G-query in the view. Sim-G responded to that G query by returning a
value from the GT. Values are assigned to the GT by Sim-G,Sim-H, and Sim-S, so it suffices to
show that each of these algorithms assigns a fresh uniformly random value to the GT, which
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would guarantee that the particular value seen in the view was assigned with probability 2−`π ,
just like the real execution random oracle. First, Sim-G assigns values g to GT by choosing
them uniformly at random (Algorithm 4). Next, Sim-H assigns the value g(hi) = ρ∗(zi) ⊕ x
to the GT, where zi is a fresh random value, and ρ∗ is a permutation (Algorithm 6). Since
the domain of ρ∗ is equal to the range of G, and ρ∗ is a permutation, it follows that ρ∗(zi) is
uniformly random in the range of G. It therefore follows that g is a uniform random value.
Similarly, Sim-S assigns the value g(h′) = π∗(x

′) ⊕ x, for a fresh random value x′ and a
permutation π∗, so g(h′) is also a uniform random value.

• Sign-queries. Observe that, given the answers to the relevant H and G queries and the
input (m,h, x), there is a unique correct pair h′, x′ for every r. The value r appears in the
view as the result of a uniformly random choice in both the simulated execution and the
real one. The answers to the relevant H and G queries are also results of uniformly random
choices in both cases, by the arguments made for H- and G-queries. And h′, x′ are the unique
correct values in both cases.

D.2 Proof of Abort Probability Lemma D.2

It suffices to compute the probability that Lookup, Sim-H, Sim-G, Sim-S, and FindClaw abort and
to add them up by union bound. Sim-G never aborts. The following four lemmas address the
remaining four algorithms, in order.

Lemma D.3. The probability that Lookup ever aborts during the whole execution is at most

q2H
2

2−`π . (6)

Proof. Lookup(x) aborts when the HTree contains two nodes, N1 and N2, such that a Lookup
collision occurs, i.e.,

π1(x) = y1 and π2(x) = y2 . (7)

Because the size of the HTree is bounded by qH , it suffices to show that, for every pair of nodes
N1, N2, the probability that there exists x such that Equation 7 holds is at most 2−`π . We will do
so by proving two claims.

Claim D.4. When a node Ni storing πi, yi is added to the HTree, then yi is chosen uniformly at
random and independent of all prior choices made in the interaction between the forger F and the
reduction R.

Proof. Recall that nodes are added to the HTree by Sim-H. From Sim-H, if πi = π∗, then we can
think of yi as fresh random value, since yi ← ρ∗(zi), where zi is a fresh random value and ρ∗ is a
permutation. If πi 6= π∗, then yi is chosen in a slightly more complex manner. Note from Sim-H
that yi ← Sim-G(hi) ⊕ x. Sim-G returns a uniform random value for each new input, and so it
follows that yi will be a fresh random value as long as GT is not defined on hi. But if GT is defined
on hi, then Sim-H will abort, so Ni will not be added to the tree, anyway.

Next, we need to show that the probability that there exists an x such that Equation 7 holds is
small. To do this, we need to bound the probability that there are nodes N1 and N2 in HTree storing
π1, y1 and π2, y2 such that π1(x1) = π2(x2). In Section 4.2, we presented Claim 4.3 that showed this
can occur with probability at most 2−`π . The lemma follows by combining Claims D.4 and 4.3.
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Lemma D.5. A single invocation of Sim-H aborts on line 10 with probability at most (qS + qG +
qH)2−`H .

Proof. From Algorithm 6, we see that Sim-H aborts only if GT already stores some value for hi.
First observe that there are at most qG+qS +qH queries stored in the GT. (There are qG G-queries,
and every signing and H-query query adds at most one additional entry to GT.) Next, observe that
hi = hi−1 ⊕ η where η is a fresh random value. Thus, the probability that hi collides with a value
already in GT is bounded by (qG + qS + qH)2−`H .

Lemma D.6. A single invocation of Sim-S aborts with probability at most (qH + qS)2−`r + (qS +
qG + qH)2−`H .

Proof. There are two cases in which Sim-S aborts.

Abort due to H-collision. Sim-S on input (m,h, x) will abort on line 4 if it draws a random value
r such that Q = (π∗,m, r, x) exists in the HT. The number of entries in HT cannot exceed qH + qS ,
because those are the only queries that add entries (at most one each) to HT. Because ri is a fresh
random value, the probability it collides with one of these entries is bounded by (qH + qS)2−`r .

Abort due to G-collision. Sim-S will abort on line 14 if GT already stores some value for h′. The
same argument as in Lemma D.5 shows that this happens with probability at most (qS + qG +
qH)2−`H .

Lemma D.7. The probability of abort on line 3 of FindClaw is at most
q2H
2 2−`π . And if the abort

does not happen, then π∗(xn) = yn, where yn is stored with Nn.

Proof. Suppose the forger F outputs a forgery σ = ( ~πn, ~mn, ~rn, hn, xn) with πn = π∗ that is valid
relative to HT,GT, which means that FindClaw is invoked.

Consider running VerHT,GT(σ) (Algorithm 2) to verify the forgery σ. The verification algorithm
asks a sequence of H-queries Qn, ..., Q1, where Q1 = (π1, r1,m1, ε) and Qi = (πi,mi, ri, xi−1) for
every i = 2...n. We know that all these queries have been asked by forger F and are therefore in
HT. Let ηn, . . . , η1 be the answers to these queries. Note that these queries could not have been
placed into HT by Sim-S, because mn is different from every message queried to Sim-S with π∗.
Thus, they were asked by the forger to Sim-H.

The verification algorithm also asks a sequence of G-queries hn, . . . , h1, where hn−1 = hn⊕ηn−1,
hn−2 = hn−1 ⊕ ηn−1, . . . , h1 = h2 ⊕ η2. Because the forgery is valid, h1 = η1, and therefore
hi =

⊕i
j=1 ηj . Note that all these G queries are in GT.

Note that Q1 is tethered to the root of the HTree by Definition 4.1, and will therefore be placed
in the HTree by Sim-H with the value h1 = η1. Because the forgery is valid, the x1 value in Q2

must satisfy π1(x1) = y1, where y1 = G(h1). Thus, Q2 is tethered to Q1. That does not necessarily
mean that Q2 itself is in the HTree. However, if it is, then it has the values h2 = h1 ⊕ η2 and
y2 = G(h2 ⊕ x1) stored in it. Thus, if Q2 is in the HTree, then Q3 is tethered to Q2, because
x2 in Q3 must satisfy π2(x2) = y2, because that condition on Q3 is necessary in order for the
verification algorithm to query Q2. Similarly, if Q3 is in the HTree, then Q4 must be tethered
to it. By induction, either there exists i > 1 such that Qi is tethered to Qi−1 but is not in the
HTree, or all Q1, . . . , Qn are in the HTree. In the latter case, Lookup(xn), if it does not abort, will
return the node for the query Qn (because Qn was asked during verification, which happens only
if πn(xn) = yn), and thus FindClaw will not abort.

Thus, we have shown that, if FindClaw doesn’t abort, then πn(xn) = yn (note that πn = π∗), and
that FindClaw will never abort unless there exists a query Q that was asked to Sim-H, is tethered
to another query in HTree, but is not in the HTree. In Section 4.2, we presented Claim 4.4 that
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shows that this occurs with probability most q′H2−`π , where q′H is the number of H queries made
after query Q. To bound the probability that a tethered H-query exists outside the HTree, we add

up over all qH queries, to obtain
q2H
2 2−`π by the union bound.

Finally, Sim-H is called at most qH times, Sim-S is called at most qS times, FindClaw is called
once and thus Lemma D.2 holds by a union bound. .

E Proof of Theorem 5.1

We present only on the parts of the proof that are different from Theorem 4.2.

Changes to the reduction R. We will assume that forger F never makes the same signature
query twice, because it would get the same result, anyway (formally, we can always modify F not
to ask the same signature query twice by keeping a table of previously requested signature queries).
Reduction R uses the same algorithms as before, except that we replace the ABORT on line 4 of
Sim-S (Algorithm 7) with η ← HT(Q).

Changes to Lemma D.1. Because Line 1 of Sim-S uses a truly random rather than a pseudo-
random r, the probabilities of non-aborting views are no longer the same. However, by a standard
reduction to the security of the PRF, the probability that forger F produces a forgery from a
nonaborting view in the simulation must be at least ε− εPRF.

Changes to Lemma D.2. This lemma changes only in Lemma D.6. The new version is:

Lemma E.1. The probability that, during any of the qS queries, Sim-S aborts is at most

qS(qS + qG + qH)2−`H + (qS + qH)22−`H + (qG + qH + qS + (`h + 2)q2S)2−`r .

Proof. When does the modified Sim-S abort? When h′ = η⊕h is in GT. There are two cases. First,
if η (and thus h′) is a fresh random value, then the same argument used in Lemma D.6 holds, so
abort probability is at most (qS + qG + qH)2−`H .

However, we must now consider a new case where Sim-S aborts; namely, if η is not a fresh
random value. η will not be a fresh random value if Sim-S is given a sign query (π∗,m, x, h) and
draws an r that defines a query Q = (π∗,m, r, x) that is (a) already in HT and (b) the value
h′ = η⊕h is already stored in the GT (where recall that η = HT(Q) and h was given as part of the
query to Sim-S). Call such r bad for the sign-query’s m,h, x. In Claim 5.2 we argued that Sim-S
draws a bad r with probability at most (qG + qH + qS + (`h + 2)q2S)2−`r

F Combinatorial interlude: A proof of Theorem 5.3

Here we solve the combinatorial problem of Section 5. We start with a prelude problem:

A Prelude Problem. Suppose β values η1, . . . , ηβ are chosen uniformly at random as `H -bit
strings and the β × β matrix θ is computed as θij = ηi ⊕ ηj . The diagonal of θ has all zero entries.
Can we bound the size Cθ of the biggest nonzero collision within θ?

Lemma F.1. With probability at least 1− β22−`H , all the ηj values are distinct and Cθ ≤ 2`h + 4.

Proof. Since we are not considering the 0 collision, we can remove the diagonal from our consider-
ation and, in fact, focus only on the upper triangle of elements above the diagonal (the elements
below the diagonal are equal to them, so we will get a nonzero collision of size 2k in θ if and only
if we have k elements colliding in the upper triangle). Note that entries in a given row or given
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column are always distinct, unless ηi = ηj for some i 6= j, which happens with probability no more

than β2

2 2−`H . Consider the event that there is a collision of size k in the upper triangle or the ηj
values are not distinct; let pk be its probability. We can consider all subsets of k entries of the
upper triangle in two parts: those subsets in which at least two elements share a row or a column
(which, taken altogether, are covered by the case of nondistinct ηj values), and those in which all
columns are distinct and all rows are distinct. Taking a union bound over all k-element subsets
then gives us

pk ≤
β2

2
2−`H +

∑
0≤j1<···<jk≤β;

distinct i1<j1,...,ik<jk

Pr[ηi1 ⊕ ηj1 = · · · = ηik ⊕ ηjk ] . (8)

The constraint i1 < j1, . . . , ik < jk comes from the fact that we are only considering the upper
triangle. Because, for every a, the index ja is greater than j1, . . . , ja−1 and therefore also greater
than i1, . . . , ia, and the value ηja was chosen uniformly at random, we get that the value ηja is
independent of ηi1 ⊕ ηj1 = · · · = ηia−1 ⊕ ηja−1 , and of ηia , and therefore the ath element ηia ⊕ ηja of
the subset is independent of all the previous elements of the subset. This implies that (subject to
the distinctness requirement on the ias and jas), Pr[ηi1 ⊕ ηj1 = · · · = ηik ⊕ ηjk ] = 2−`H(k−1).

We have thus bounded the probability that a given k-element subset with distinct rows and
distinct columns is a collision. That is, we bounded each addend of the sum in Equation 8. How
many such subsets are there? There are β rows, β columns, and we are choosing k distinct rows
and k distinct columns, so there are at most

(
2β
2k

)
of them. Thus, the sum has at most

(
2β
2k

)
addends.

Substituting into the above formula, we get

pk ≤ β2

2
2−`H +

(
2β

2k

)
2−`H(k−1)

≤ β2

2`H+1
+

(
βe

k

)2k

2−`H(k−1)

=
β2

2`H+1
+

(
β2e2

k22`H

)k−1
β2e2

k2

=
β2

2`H+1

(
1 +

(
β2e2

k22`H

)k−1
e22`H+1

k2

)

Observe that we can assume β2/2`H < 1 (otherwise, the statement of the lemma is vacuous).

So if k ≥ 4, then k2 > 2e2 and thus β2e2

k22`H
< 1

2 . So set k = `H + 2 ≥ 4. We get

pk <
β2

2`H+1

(
1 +

(
1

2

)`H+1 e22`H+1

k2

)
<

β2

2`H+1
· 2 =

β2

2`H
.

Thus we have that with probability < β2

2`H
, we have a collision in the upper triangle of size `H + 2.

The lemma follows because of the symmetry of the matrix.

We are now ready to solve the combinatorial problem of Section 5:

Proof of Theorem 5.3. Assume the event of Lemma F.1 happens (it happens with probability 1−
β22−`H ). Consider the largest collision in ζ; suppose its size is c1 and its value is v1. It has all
distinct rows (because ηj values are distinct by the assumption that Lemma F.1 holds). Therefore,
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without loss of generality, we can assume that the collision occurs in rows 1, . . . , c1 of ζ (this is
just for convenience of notation). Call rows 1, . . . , c1 the first layer of ζ. Consider the ith row of
the first layer and the entry in that row that participates in the collision. That entry has value
v1, and therefore h′i = ηj ⊕ v1 for some ηj . Thus, each of the values h′1, . . . , h

′
c1 is simply some η

value shifted by v1, and therefore the first layer of ζ corresponds to some c1 distinct rows of the
matrix θ from the prelude problem (distinct because the problem statement requires the h′ values
to be distinct), except with v1 added to all values. Therefore, every collision that does not have
value v1 in the first layer of ζ is also a nonzero collision in θ; by the assumption that the event of
Lemma F.1 holds, it has size at most Cθ.

Consider now the second largest collision in ζ, of size c2 and value v2. By the same argument
as before, it has c2 distinct rows. This time, some of these rows may be in the first layer of ζ;
however, there are no than Cθ such rows, because the first layer of ζ has no collisions with value
not equal to v1 of size greater than Cθ. Let c′2 be the remaining rows; we know c2 ≤ c′2 + Cθ and
can assume without loss of generality that these rows are c1 + 1, . . . , c1 + c′2 (again, this is just
for convenience of notation). Call these rows the second layer of ζ. Suppose some other collisions
occur in the second layer of ζ. Using the same argument we made for the first layer, it follows that
these collisions correspond to nonzero collisions in θ (obtained by adding v2 to all the values) and
thus have size at most Cθ.

In general, if we consider the ith largest collision in ζ of size ci, up to Cθ(i− 1) of its rows can
be from previous layers (i.e., up to Cθ from each of the previous layers). Let c′i be the remaining
rows (call them the ith layer); we have ci ≤ c′i + Cθ(i− 1). No other collision in the ith layer is of
size more than Cθ.

Thus, the total size of γ collisions is at most c1+· · ·+cγ ≤ c1+c′2+· · ·+c′γ+Cθ(1+2+· · ·+γ−1).
Because c1, c

′
2, . . . , c

′
γ refer to sizes of nonoverlapping layers, their sum is at most α. The theorem

follows by observing that 1 + 2 + · · · + γ − 1 < γ2/2 and by substituting Cθ ≤ `h + 2 from
Lemma F.1.

G Handling Permutations with Different Domains, such as RSA

Similarly to the schemes of [LMRS04] and [Nev08], our scheme extends to the case when each
signer’s permutation has its own domain, as long as no domain is much larger than the intersection
of all the domains. For instance, if we instantiate our scheme with RSA using 2048-bit moduli, then
each signer’s permutation domain will be a subset of {0, 1}2048. The intersection of all the domains,
however, will be at least the set of all 2048-bit strings that begin with 0, and thus no domain is more
than twice the intersection of all the domains. (Following ideas of Zhu, Bao and Deng [ZBD05], the
scheme can also be generalized to the case of domains of very different sizes, such as when different
signers use RSA moduli of different lengths; we do not present this generalization here, because we
expect all the moduli to be of the same standardized length in a typical deployment.)

Changes to the Scheme To explain how we modify the scheme, we need to fix some notation. We
will assume that the domains of all permutations are subsets of {0, 1}`π , and that the intersection
of all the domains contains some set D closed under ⊕ (recall that the operation does not have
to be exclusive-or—any group operation over D will do). Furthermore, we will assume that there
is an efficient and efficiently invertible bijection SPLIT that takes an element X of {0, 1}`π and
produces two values b, x, with x ∈ D and b ∈ {0, 1}`b with `b close to `π − log2 |D|. (For the case
of RSA described above, `b = 1. The function SPLIT sets b = 1, x = X − 22047 if X ≥ 22047, and
b = 0, x = X otherwise.)

We will change G to output elements of D instead of {0, 1}`π . We will change Step 6 of the
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signing algorithm (Algorithm 1) as follows:

Xi ← π−1i (yi); (bi, xi)← SPLIT(Xi)

The signing algorithm will output bi in addition to xi. The entire vector ~bn will be input to the
verifying algorithm (Algorithm 2), which will be modified as follows: Step 2 will be replaced with

Xi ← SPLIT−1(bi, xi); yi ← πi(Xi) .

Changes to the Reduction The security reduction needs to modified as follows. Recall that the
reduction relies on the HTree, which is built up so that a child node is always tethered to a parent
node. We will change the definition of “tethered” (Definition 4.1): an H-query Q containing x 6= ε
will be tethered to some node Ni in the HTree if that node contains πi, yi such that there exists
b ∈ {0, 1}`b for which πi(SPLIT−1(b, x)) = yi.

Lookup (Algorithm 3) and FindClaw (Algorithm 5) will need to try all possible values of b to
combine with the given x in order to find X to which π can be applied. Thus Step 4 of Lookup
becomes

Nodelist = {all nodes N in HTree containing π, y
such that ∃b ∈ {0, 1}`b such that π(SPLIT−1(b, x)) = y} .

Step 5 of FindClaw becomes

Find b ∈ {0, 1}`b such that π∗(SPLIT−1(b, xn)) = ρ∗(zn)};
return claw (SPLIT−1(b, xn), zn).

Sim-H and Sim-S (Algorithms 6 and 7) need to search for yi and y′, respectively, that are in
D. Thus, Steps 16 and 17 in Sim-H need to be repeated until yi ∈ D (also, zi should be drawn

from Domain(π∗) rather than {0, 1}`π). Similarly, Steps 9 and 10 need to repeatedly draw X ′
R←

Domain(π∗) until y′ = π∗(X
′) is in D; the output of Sim-S should include (b′, x′) = SPLIT(X ′).

Finally, Step 2 of Sim-G (Algorithm 4) should draw g from D rather than {0, 1}`π .

Changes to the Analysis The above changes to the reduction will cause it to run 2`b times
slower (thus, twice as slow for the RSA example).

The analysis undergoes the following changes. Lemma D.1 remains true, but the proof is a bit
more delicate: when arguing about the correct simulation of G queries, we need to rely on the fact
that the new procedures in Sim-H and Sim-S still produce an output for G that is uniform in D,
because yi in Sim-H and y′ in Sim-S are uniform in D, because they are produced by sampling a
uniform distribution until an element of D is found. Claim D.4 also remains true, using the same
argument.

Equation 7 and Claim 4.3 change as follows.

Claim G.1. Given two functions π1, π2 whose domains are subsets of {0, 1}`π = SPLIT−1({0, 1}`b×
D) and two uniformly chosen random values y1, y2 in D, the probability that there exists x, b1, b2
such that

π1(SPLIT−1(b1, x)) = y1 and π2(SPLIT−1(b2, x)) = y2 (9)

holds is at most 23`b−`π .

Proof. Define the set of preimages of y1 as Sy1 = {(b1, x) such that π1(SPLIT−1(b1, x)) = y1}.
Suppose |Sy1 | = α. Then there are at most 2`b · α choices of y2 for which there exist x, b1, b2
satisfying Equation 9, because each triple in (x, b1, b2) with b2 ∈ {0, 1}`b and (b1, x) ∈ Sy1 gives rise
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to at most one y2 = π2(SPLIT−1(b2, x)). Because y2 is chosen uniformly from a set of size |D|, the

probability that x, b1, b2 satisfying Equation 9 exist is at most 2`b ·α
|D| . Thus, the desired probability

is at most ∑
α

2`b · α
|D|

Pr
y1

[|Sy1 | = α] =
2`b

|D|
∑
α

α · |{y1 s.t. |Sy1 | = α}|
|D|

.

Observing that
∑

α α·|{y1 s.t. |Sy1 | = α}| =
∑

y1
|Sy1 | = |Domain(π1)|, and that |Domain(π1)|/|D| ≤

2`b , we get that the probability is at most 22`b/|D|. Further observing that |D| ≥ 2`π−`b , we get
the desired bound.

This change results in the corresponding change in Lemma D.3: the
q2H
2 2−`π probability gets

replaced by
q2H
2 23`b−`π .

Finally, Claim 4.4 needs modification. Equation 2 gets replaced with

∃b ∈ {0, 1}`b such that π′(SPLIT−1(b, x)) = y′,

which is satisfied with probability 2`b−`π . Thus, the probability in the statement of Claim 4.4
changes to q′H2`b−`π and the probability that FindClaw aborts (bounded in Lemma D.7) changes to
q2H
2 2`b−`π

The above changes result in the the qH2−`π term in the formulas of Lemma D.2 and Theorems 4.2
and 5.1 being replaced with qH23`b−`π . Because `b is much smaller than `π, this change has no
material impact on the security of the scheme.

H A Detailed Specification of the Signature Scheme

In this section we instantiate our signature scheme with RSA and describe implementation details.
The following issues, in particular, need to be decided.

• How to encode multiple arguments to a hash function into a single string? We use simple
concatenation; to provide for unique parsing (which is needed for the security proof), we
ensure that there is at most one variable-length value in the concatenation.

• How to encode the empty string ε? We use zero strings of the appropriate length, because it
causes no difficulty for our scheme.

• How to convert integers to bit strings and back? We use standardized conversion routines.

• What to use for the long-output hash function G? We use an industry-standard “mask
generation function.”

• How to represent the permutation πi as input to the hash function? Any fixed-length encoding
than unambiguously specifies the RSA modulus N and exponent E will be fine. However,
there may be situations in which a more convenient public-key “fingerprint”—such as the hash
value of the certificate—may be more readily available. Such a fingerprint is also acceptable,
as long as it is computed by applying some cryptographic hash function to an unambiguous
encoding of the public key (in the proof, the hash function would have to be modeled as
a random oracle, and the reduction would know the value of the public key by looking at
queries to this hash function).
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We simultaneously specify two versions of our scheme: the version with random r of length `r,r
(as described in Section 3) and the version with shorter input-dependent pseudorandom r of length
`r,p (as described in Section 5). Because most the steps are the same, we combine the two versions
into one specification.

H.1 Parameters, notations, and primitives

We specify our protocol in terms of bit strings; lengths are bit lengths. However, if all lengths are
multiples of eight, then the protocol can be implemented in terms of octet strings; the specification
does not convert lengths that are multiples of eight into lengths that are not multiples of eight.
The following bit lengths are fixed:

• Length `h of the hash output

• Length `π of the RSA modulus

• Length `b = 1 (see Section G)

• Length `r,r of the per-signature randomness r (needed only if the random-r version of the
protocol is used—see Section 3)

• Length `k of a pseudorandom function key (needed only if the input-dependent-r version of
the protocol is used—see Section 5)

• Length `r,p of the pseudorandom function output (needed only if the input-dependent-r ver-
sion of the protocol is used—see Section 5)

• Length `f of the fingerprint (as discussed in the last bullet of this Section, `f ≥ `h)

We provide some guidelines on choosing these parameters in Section 6.1. Notation and primitives
used in our specification are as follows:

• The notation ⊕ is the bitwise XOR function.

• The notation x||y means x concatenated with y.

• BS2IP(m) converts bit strings to non-negative integers. For example, see Section 5.5.1 of
IEEE Std 1363-2000 [IEE02]. We use bit strings rather than octet strings only for nota-
tional convenience; if octet strings are preferred, the primitive may be instantiated using the
OS2IP(m) primitive from PKCS #1 v2.1 [RSA02] or, equivalently, [IEE02, Section 5.5.3].

• I2BSP(m, `) converts integers between 0 and 2` − 1 to bit string of length `. For example,
see Section 5.5.1 of IEEE Std 1363-2000 [IEE02]. If octet strings are preferred and ` is a
multiple of 8, this primitive may be instantiated using the OS2IP(m) primitive from PKCS
#1 v2.1 [RSA02] or, equivalently, [IEE02, Section 5.5.3].

• RAND(`) is a cryptographically-strong random bit generator that generates ` fresh random
bits each time it is invoked. Implementation of RAND() is system-dependent. In some
systems, it may be implemented using pseudorandom bit generation.

• H(m) is a cryptographic hash function that takes in variable length strings m and produces
outputs of bit length `h.
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• PRF(k,m) is a pseudorandom function taking in a key k of length `k and an input m of
variable length, and producing an output of length `r,p.

The PRF(k,m) may be instantiated with the function HMAC(k,m), where HMAC is as
specified in RFC 2104 [KBC97] (see also [BCK96]). If HMAC is implemented with H() as
the cryptographic hash function, then key k should have length at least `h, and the output
of HMAC(k,m) will be of length `h, which should then be truncated to `r,p bits.

• MGF(m) is a mask generation function, taking in an input m of variable length, and produce
an output bit string of length `π bits. MGF() may be implemented using the MGF1 algorithm
(see Appendix B of PKCS #1 v2.1 [RSA02]) using H() as the cryptographic hash function.

• RSAGEN(`π) is any secure RSA Key Generation function that produces an integer public
exponent ei, an integer RSA modulus Ni of length `π such that the RSA modulus Ni ∈
[2`π−1, 2`π −1], as well as a corresponding RSA secret key RSASK. For example, see [IEE02,
Appendix A.16.11]. Note that we do not specify the exact format of the secret key; in
particular, either of the formats in [IEE02] is fine.

• RSASP1(RSASK,m) is the RSA signature primitive from PKCS #1 v2.1 [RSA02] that takes
in an RSA secret key RSASK, and a integer message m in the range [0, n− 1], and produces
a integer s in the range [0, n − 1]. Recall that n is the integer RSA modulus obtained from
RSAGEN.

• RSAVP1((N,E),m) is the RSA verification primitive from PKCS #1 v1.2 [RSA02], that
takes in an integer RSA public key (N,E), and an integer message m in the range [0, N − 1]
and produces a integer in the range [0, N − 1]. Note that N is the integer RSA modulus
obtained from RSAGEN.

• PKFingerPrint(PKi) produces a length `f bit string which is a fingerprint of the public key
PKi = (Ni, Ei) obtained from RSAGEN. This may be any fixed-length encoding from which
Ni and Ei can be unambiguously obtained, such as the DER encoding [ITU02] of PKi, or the
string I2BSP(n, `π)||I2BSP(e, `π) (in which case `f = 2`π). It may also be the cryptographic
hash function H applied to any unambiguous (not necessarily fixed-length) encoding of N,E.
For example, a certificate fingerprint computed with the hash function H will work. Whatever
option is chosen, it is important that the length `f should be fixed and at least `h.

H.2 Algorithms

Key generation, signing, and verifying are specified in Algorithms 8, 9, and 10. There are switches
in the algorithms to indicate which version (random-r or input-dependent-r) is being run. To help
with implementation, we also specify the types and/or bit lengths for each value of the protocol.
We do not specify how to encode the keys and the signatures that are output by our algorithms, as
this choice depends on the interoperability requirements of the application. DER encoding [ITU02]
is one possible choice; simpler encodings—for instance, concatenation when all the lengths are
unambiguously known—may also be a valid choice.
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Algorithm 8 Gen: Key generation algorithm for the ith Signer

1: Let ((Ni, Ei), RSASKi) = RSAGEN(`π). This produces an RSA modulus Ni which is an
integer in the range [0, 2π − 1], a integer public exponent Ei, and an RSA secret key SKRSAi.

2: Ensure that the RSA modulus Ni ∈ [2`π−1, 2`π − 1]).
3: if Input-Dependent-r Version then
4: Let ki be a random bit string of length `k, obtained by running RAND(`k).
5: return Public Key PKi = (Ni, Ei) and Secret Key SKi = (RSASKi, ki).
6: else
7: return Public Key PKi = (Ni, Ei) and Secret Key SKi = RSASKi.

Algorithm 9 Sign: The ith Signer’s algorithm.

Require: PKi, SKi, the key of the ith signer. These should be valid keys obtained from the Gen
algorithm.

Require: fi where fi is the fingerprint of PKi. This should be a valid fingerprint obtained from
PKFingerPrint(PKi) and should be a bit string of length `f .

Require: mi the message bit string to be signed by the ith signer
Require: xi−1, hi−1 are obtained from the i− 1th signer, if i > 1. If i = 1, then xi−1 is the string

of `π zero bits and hi−1 is the string of `h zero bits.
1: Check that xi−1 is a bit string of length `π and hi−1 is a bit string of length `h. If not, output

“Sign Fail” and exit.
2: if Input-Dependent-r Version then
3: Let ri = PRF (ki,mi||xi−1||hi−1). This produces an output bit string of length `r,p bits.
4: else
5: Let ri = RAND(`r,r). This produces an output bit string of length `r,r bits.
6: Let ηi = H(fi||mi||xi−1||ri). This produces an output bit string of length `h.
7: Let hi = hi−1 ⊕ ηi. This produces an output bit string of length `h.
8: Let gi = MGF (hi). This produces a bit string of length `π.
9: Let yi = gi ⊕ xi−1. This produces a bit string of length `π.

10: Set the most significant bit of yi to 0.
11: Let Yi = BS2IP(yi). This produces an integer in the range [0, Ni − 1] (more precisely, this

integer lies in the smaller range [0, 2`π−1 − 1]).
12: Let Xi = RSASIG(SKi, yi). This produces an integer in the range [0, Ni − 1]
13: Let xi = I2BSP(Xi, `π). This produces an output bit string of length `π.
14: Let bi be the most significant bit of xi.
15: Set the most significant bit of xi to 0.
16: return mi, ri, bi, xi, hi
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Algorithm 10 Ver: The Verification Algorithm

Require: ~PKn (a vector of n RSA public keys), ~mn (a vector of n messages), ~rn (a vector of n
strings of length `r,r in the random-r version or `r,p in the input-dependent-r version), ~bn (a
vector of n bits), xn (a bit string of length `π bits), hn (a bit string of length `h bits)

1: for i = n, n− 1, ...., 1 do
2: Set the most significant bit of xi to bi.
3: Let Xi = BS2IP(xi).
4: if Xi ≥ Ni then
5: return 0
6: Let Yi = RSAV ER(PKi, Xi). This produces an integer between 0 and Ni − 1.
7: Let yi = I2BSP(Yi, `π). This produces an output of length `π.
8: Let gi = MGF (hi). This produces an output of length `π.
9: Let xi−1 = gi ⊕ yi. Set the most significant bit of xi−1 to 0.

10: Let ηi = H(fi||mi||xi−1||ri). This produces an output of length `h.
11: Let hi−1 = hi ⊕ ηi. This produces an output of length `h.
12: if h0 is the string of `h zero bits and x0 is the string of `π zero bits then
13: return 1
14: else
15: return 0
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