
Protocols and Lower Bounds for Failure
Localization in the Internet

Boaz Barak, Sharon Goldberg, and David Xiao

Princeton University, Princeton, NJ 08544

Abstract. A secure failure-localization path-quality-monitoring (FL-
PQM) protocols allows a sender to localize faulty links on a single path
through a network to a receiver, even when intermediate nodes on the
path behave adversarially. Such protocols were proposed as tools that en-
able Internet service providers to select high-performance paths through
the Internet, or to enforce contractual obligations. We give the first for-
mal definitions of security for FL-PQM protocols and construct:
1. A simple FL-PQM protocol that can localize a faulty link every

time a packet is not correctly delivered. This protocol’s communica-
tion overhead is O(1) additional messages of length O(n) per packet
(where n is the security parameter).

2. A more efficient FL-PQM protocol that can localize a faulty link
when a noticeable fraction of the packets sent during some time pe-
riod are not correctly delivered. The number of additional messages
is an arbitrarily small fraction of the total number of packets.

We also prove lower bounds for such protocols:
1. Every secure FL-PQM protocol requires each intermediate node on

the path to have some shared secret information (e.g. keys).
2. If secure FL-PQM protocols exist then so do one-way functions.
3. Every black-box construction of a FL-PQM protocol from a random

oracle that securely localizes every packet and adds at most O(log n)
messages overhead per packet requires each intermediate node to
invoke the oracle.

These results show that implementing FL-PQM requires active coop-
eration (i.e. maintaining keys and agreeing on, and performing, crypto-
graphic protocols) from all of the intermediate nodes along the path.
This may be problematic in the Internet, where links operate at ex-
tremely high speeds, and intermediate nodes are owned by competing
business entities with little incentive to cooperate.

Keywords: Failure localization, secure routing, black-box separation.

1 Introduction

The Internet is an indispensable part of our society, and yet its basic founda-
tions remain vulnerable to attack. Secure routing protocols seek to remedy this
by not only providing guarantees on the correct setup of paths from sender to
receiver through a network (e.g. secure BGP [16]), but also by verifying that
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data packets are actually delivered correctly along these paths. Packet deliv-
ery is surprisingly susceptible to simple attacks; in the current Internet, packets
are typically sent along a single path from sender to receiver, and so a mali-
cious node along the data path can easily drop or modify packets before they
reach their destination. To detect and respond to such attacks, the networking
community has recently been studying monitoring and measurement protocols
that are used to obtain information about packet loss events on a data path
(e.g. [2, 3, 4, 5, 7, 18, 19, 21, 23, 24]). The motivation for such protocols is twofold.
First, they provide the sender with information that he can use during path
setup to select a single, high-performance path to the receiver from the multi-
ple available paths through the network [11]. Second, since Internet service is
a contractual business, where senders pay nodes along the data path to carry
their packets, information from Internet measurement protocols is highly valu-
able for enforcing contractual obligations between nodes. In fact, Laskowski and
Chuang [17] recently argued that this information is not only valuable, but also
necessary to counter the Internet industry’s growing trend towards degraded
path performance. Note that if monitoring protocols are used to enforce contrac-
tual obligations, nodes may have an economic incentive to bias the information
obtained from these protocols.

In this work we provide a rigorous cryptographic examination of secure mon-
itoring protocols that are robust even in the presence of malicious nodes on the
data path. In particular, we study techniques that allow a sender to localize the
specific links along the data path where packets were dropped or modified— a
task that we call failure-localization path-quality monitoring. While some proto-
cols for this task are deployed in the Internet today (e.g. traceroute [1]), they are
not robust to nodes that behave adversarially in order to bias measurements.

1.1 Our Results

We make the following contributions to the study of secure failure-localization
path-quality monitoring protocols (in the rest of the paper we call these simply
failure localization or FL protocols). Throughout the paper, we use the word
“packet” to denote data that the sender wishes to transmit, and “message” to
refer to both data packets and FL-protocol-related messages.

Definition. In Section 2, we give the first formal definition of security for
failure localization protocols. We note that some of the previous FL protocols
suggested in the literature, such as [21, 4, 2], do not satisfy our definition. (We
sketch attacks in Appendix A.)

We give two variants of the definition— per-packet security requires localizing
a link each time a packet is not delivered, while statistical security only requires
this when a noticeable fraction of packets fail to arrive. An important feature of
our definition is that it accounts for the fact that messages can be dropped in
the Internet for benign reasons like congestion. We note that care must be taken
to design protocols that are simultaneously robust to both adversarial behaviour
and benign congestion. We discuss the effect of this assumption on some previous
work [4] in Appendix A.
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Protocols. We present two simple protocols satisfying our per-packet (Sec-
tion 3.1) and statistical (Section 3.2) security definitions. Both of these protocols
do not modify the packets sent on the path; instead, they add additional mes-
sages. Thus our protocols have the important advantage of allowing backwards
compatibility with the current techniques for processing packets in a router,
minimizing latency in the router, and not increasing packet size.

Our main measure of efficiency for such protocols is communication overhead—
the number and size of messages added by the protocols. The per-packet protocol
adds a single O(n)-length message to every packet sent (n is the security param-
eter), and O(K) additional O(n)-length messages when a failure occurs (where
K is the number of nodes on the path). The statistical protocol only needs O(K)
additional O(n)-length messages per T packets sent. In our setting K is constant,
while T could be poly(n), which implies the statements in the abstract.

Lower bounds. Like many of the protocols in the literature [3, 4, 21, 19, 2],
both of our protocols require cryptographic keys and computations at each node.
These requirements are considered severe in the networking literature; setting
up a key infrastructure and agreeing on cryptographic primitives is challenging
in the distributed world of the Internet, where each node is owned by a different
entity with sometimes incompatible incentives. However, in Section 4 we show
that these requirements are to some degree inherent by:

1. Proving that every secure (per-packet or statistical) FL protocol requires a
key infrastructure, or more precisely, that intermediate nodes and Alice and
Bob must all share some secret information between each other.

2. Proving that a one-way function can be constructed from any secure FL
protocol.

3. Giving evidence that any practical per-packet secure FL protocol must use
these keys in a cryptographic way at every node (e.g. , it does not suffice
to use the secret information with some simple, non-cryptographic, hash
functions as in [7]). We show that in every black-box construction of such
a protocol from a random oracle, where at most O(log n) protocol messages
are added per packet, then every intermediate node must query the random
oracle. We note that known protocols designed for Internet routers currently
avoid using public-key operations, non-black-box constructions, or adding
more than a constant number of protocol messages per packet. We also show
that for statistically-secure FL, or FL protocols adding ω(log n) messages
per packet, the necessity of cryptography depends on subtle variations in
the security definition.

Implications of our results. Our lower bounds raise questions about the prac-
ticality of deploying FL protocols. In small highly-secure networks or for certain
classes of traffic, the high key-management and cryptographic overhead required
for FL protocols may be tolerable. However, FL protocols may be impractical for
widespread deployment in the Internet; firstly because intermediate nodes are
owned by competing business entities that may have little incentive to set up a
key infrastructure and agree on cryptographic protocols, and secondly because
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cryptographic computations are expensive in the core of the Internet, where
packets must be processed at extremely high speeds (about 2 ns per packet).
Thus, our work can be seen as a motivation for finding security functionalities
for the Internet that are more practical than failure localization.

1.2 Related Work

Some of this work (in particular, the results of Section 3 and a weaker version
of Theorem 5) appeared in our earlier technical report [8]. We built on [8] in
[9], where, together with Jennifer Rexford and Eran Tromer, we gave formal
definitions, constructions, and lower bounds for the simpler task of path-quality
monitoring (PQM). In a PQM protocol the sender only wishes to detect if a
failure occurred, rather than localize the specific faulty link along the path. We
use the results from [9, 8] in Section 3.2 to show how a PQM protocol can be
composed to obtain a statistical FL protocol, and in Section 4.2 to argue that
FL protocols need cryptographic computations.

In addition to the FL protocols from the networking literature [3,4,21,19,2,24],
our work is also related to the work on secure message transmission (SMT) be-
gun by Dolev, Dwork, Waart, and Yung in [6]. In SMT, a sender and receiver
are connected by a multiple parallel wires, any of which can be corrupted by an
adversary. Here, we consider a single path with a series of nodes that can be cor-
rupted by an adversary, instead of multiple parallel paths. Furthermore, while
multiple parallel paths allow SMT protocols to prevent failures, in our single
path setting, an adversarial intermediate node can always block the communi-
cation between sender and receiver. As such, here we only consider techniques
for detecting and localizing failures.

2 Our Model

In a failure localization (FL) protocol, a sender Alice wants to know whether
the packets she sends to receiver Bob arrive unmodified, and if not, to find the
link along the path where the failure occurred (see Figure 1). We say a failure or
fault occurs when a data packet that was sent by Alice fails to arrive unmodified
at Bob. Following the literature, we assume that Alice knows the identities of
all the nodes of the data path. We work in the setting where all traffic travels
on symmetric paths (i.e. intermediate nodes have bi-directional communication
links with their neighbors, and messages that sender Alice sends to receiver
Bob traverse the same path as the messages that Bob sends back to Alice). We
say that messages travelling towards Alice are going upstream, and messages
travelling towards Bob are going downstream. An adversary Eve can occupy any
set of nodes on the path between Alice and Bob, and can add, drop, or modify
messages sent on the links adjacent to any of the nodes she controls. She can
also use timing information to attack the protocol.

Localizing links, not nodes. It is well known that an FL protocol can only
pinpoint a link where a failure occurred, rather than the node responsible for
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the failure. To see why, refer to Figure 1, and suppose that (a) Eve controlling
node R2 becomes unresponsive by ignoring all the messages she receives from R1.
Now suppose that (b) Eve controls node R1 and pretends that R2 is unresponsive
by dropping all communication to and from R2. Because cases (a) and (b) are
completely indistinguishable from Alice’s point of view, at best Alice can localize
the failure to link (1, 2).

RA (Alice) � R1 � R2 � . . . � RK � RB (Bob)

Fig. 1. A path from Alice to Bob via K intermediate nodes

Congestion. Congestion-related packet loss is widespread on the current In-
ternet, caused by protocols like TCP [15] that naturally drive the network into
a state of congestion. Our definition accounts for congestion by assuming links
can drop each message independently with some probability. One could come up
with other models for congestion (e.g. allowing Eve to specify the distribution
of congestion-related packet loss), and for some plausible choices our positive re-
sults will still hold. However, we use independent drops for the sake of simplicity.
Furthermore, assuming that congestion is not controlled by the adversary only
strengthens our negative results and makes our model more realistic.

2.1 Security Definition

Let n be the security parameter. A failure localization protocol consists of an
efficient initialization algorithm Init taking n uniformly random bits and gen-
erating keys for each node, and efficient node algorithms Alice, Bob, R1, . . . , RK

which take in a key and communicate with each other as in Figure 1. We always
fix K = O(1) independent of n.1 The Alice algorithm takes in a packet that she
wants to send to Bob. If communication is successful, then the Bob algorithm
outputs the packet that Alice sent. Our security definitions are game-based:

Definition 1 (Security game for FL). The game begins when Eve chooses
a subset of nodes E ⊆ {1, . . . , K} that she will occupy for the duration of the
game. The Init algorithm is then used to generate keys for each node, and Eve is
given the keys for the nodes i ∈ E that she controls. We define an oracle Source
that generates data packets d for the Alice algorithm to send. We allow Eve to
choose the packets that the Source oracle generates, subject to the condition
that she may not choose the same packet more than once during the game.2 We
1 Typically in the Internet, the path length K is less than 20 when nodes represent

individual routers, and when nodes represent Internet Service Providers (ISPs) then
there are on average K ≈ 4, and no more 7 nodes on a typical path [16].

2 We make this assumption because there is natural entropy in packet contents, due to
TCP sequence numbers and IP ID fields [7]. To enforce this assumption in practice,
protocol messages can be timestamped with with an expiry time, such that with
high probability (over the entropy in the packet contents), no repeated packets are
sent for the duration of the time interval for which the protocol messages are valid.
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allow Eve to add, drop, or modify any of the messages sent on the links adjacent
to the nodes she occupies. We include congestion in our model by requiring that,
for each message sent on each link on the path, the link goes down or drops the
message with some constant probability ρ > 0. Notice that this means that a
failure can happen at links not adjacent to a node occupied by Eve.

We introduce the notion of time into our model by assuming that the game
proceeds in discrete timesteps; in each timestep, a node can take in an input and
produce an output, and each link can transmit a single message. (Thus, each
timestep represents an event occurring on the network.) Because it is expensive
to have securely synchronized clocks in a distributed system like the Internet,3

we do not allow the honest algorithms to take timing information as an input.
However, to model timing attacks, we assume that Eve knows which timestep
that the game is in.

Then, our per-packet security definition uses the the game defined in Definition 1:

Definition 2 (Per-packet security for FL). In the per-packet security game,
Eve gets to interact with the Source oracle and the “honest” node algorithms as
in Definition 1, until she decides to stop. For each packet sent, Alice must output
either

√
(i.e. not raise an alarm) or a link � (i.e. raise an alarm and localize

a failure to �). We assume that the game is sequential: Alice must output a
decision for each data packet before starting to transmit the next data packet
(see remarks below). We say that an FL protocol is per-packet secure if the
following hold:

1. (Secure localization). For every packet d sent by the Source oracle that is
not successfully output by Bob, then Alice outputs a link � such that either
(a) link � is adjacent to a node occupied by Eve, or (b) link � went down
due to congestion for one of the messages (including FL protocol messages)
associated with sending packet d from Alice to Bob.

2. (No false positives). For every packet d sent by the Source oracle that is
successfully output by Bob, for which there was no congestion, and for which
Eve does not deviate from the protocol, Alice outputs

√
.

We need to introduce a few new concepts for our statistical security defini-
tion. First, we define an interval as a sequence of T packets (and associated FL
protocol messages) that Alice sends to Bob.4 Next, we use the following param-
eters: a false alarm threshold α, a detection threshold for the path β (where
0 < α < β < 1) and an error parameter δ ∈ {0, 1}. Usually, we will set α such
that congestion alone almost never causes the failure rate on a path to exceed
the false alarm threshold.

Definition 3 ((α, β, δ)-Statistical security for FL). In the statistical secu-
rity game, Eve is allowed to choose the number of intervals for which she wants
3 Indeed, the NTP protocol used for clock synchronization on the Internet is not

secure [12], and thus should not be used as an input to a secure FL protocol.
4 We can think of an interval as all the packets sent in some time period (e.g. approx-

imately 107 packets are sent 100 msec over a 5 Gbps Internet path).
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to interact with the Source oracle and the honest nodes as in Definition 1. The
number of packets per interval T may grow with n, but is always at least some
minimum number depending α, β, δ, K. At the end of each interval, Alice needs
to output either

√
(i.e. not raise an alarm) or a link � (i.e. raise an alarm and

localize a link). The game is sequential; Alice must output a decision for each
interval before starting the next interval. Then, an FL protocol is statistically
secure if the following hold:

1. (Secure localization). For any interval in the security game where Eve causes
the failure rate on the path to exceed the detection threshold β, then with
probability 1 − δ Alice raises alarm for a link � that is adjacent to Eve, or a
link � whose failure rate exceeds α

K+1 .
2. (Few false positives). For any interval in the security game where Eve does

not deviate from the correct algorithm Ri of any of the nodes i ∈ E that she
controls and the failure rate on each link is below the (per-link) false alarm
threshold α

K+1 , then the probability that Alice outputs
√

is at least 1 − δ.

We now discuss some properties of our security definition.

Benign and malicious failures. Our security definitions require Alice to
accurately localize failures, but these failures may be caused by Eve, or may
be the result of benign causes, such as congestion. We do not require Alice to
distinguish between benign or malicious (i.e. due to Eve) failures, because Eve
can always drop packets in a way that “looks like” congestion.

Sequential games. For simplicity, in our per-packet security game we required
Alice to make FL decisions before she sends a new data packet. This is to capture
the fact that such protocols should provide “real-time” information about the
quality of the paths she uses, and so we did not allow Alice in the per-packet
case to make decisions only after sending many packets (as is done in the sta-
tistical security case). We note that while our negative results (i.e. attacks) are
sequential, our positive results (i.e. , protocols) do not use the assumption of
sequential execution in any way, and are secure in a more general setting where
Eve can choose when Alice needs to output an FL decision each packet. We
emphasize that the sequential assumption does not prevent Alice from keeping
state and using information from past packets in order to make FL decisions.
(Though none of our positive results require that Alice does this.)

Movements of the adversary. Our model does not allow Eve to move from
node to node in a single security game. This assumption makes sense when Eve
models a Internet service provider that tries, for business reasons, to bias the
results of FL protocol. Furthermore, when Eve is an external attacker or virus
that compromises a router, “leaving” a router means that the legitimate owner
of the router removed the attacker from the router, e.g. by refreshing its keys. We
model this key refresh process as a re-start of the security game. Furthermore,
in practice “movements” to a new router happen infrequently, since an external
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attacker typically needs a different strategy each time it compromises a router
owned by a different business entity.

Generalizations. All our results generalize to the setting where congestion
rates, false alarm thresholds, and detection thresholds are different per link; we
set them all equal here for simplicity. Our negative results also hold for the
weaker adversary model where Eve can occupy only one node and the Source
oracle generates independent (efficiently-samplable) packets from a distribution
that is not controlled by Eve.

3 Protocols

We now present protocols for secure per-packet and statistical FL. Our protocols
are related, though not identical to those of [2, 3, 4]. (In Appendix A we show
that the protocols in [2, 4] do not satisfy our security definitions.)

We use the notation [m]k to denote a message m authenticated by a key k
using a message authentication code (MAC); such schemes can be constructed
from any one-way function [10, 22]. We’ll often use the well-known notion of
an onion report : if every node Ri wants to transmit a report τi to Alice in an
authenticated way, then we define inductively θK+1 = [(K + 1, τBob)]kBob and
for 1 ≤ i ≤ K, θi = [(i, τi, θi+1)]ki . That is, each Ri’s report is appended
with its downstream neighbors’ reports before being authenticated and passed
upstream. Onion reports prevent Eve from selectively dropping reports — if Eve
occupies Rj and wants to drop the report τi of Ri for some i > j then, under the
assumption that Eve cannot forge MACs, Alice will discover that Rj tampered
with the onion report. We also note that every time we send or store a packet
d in acknowledgments and reports, we could save space by replacing d with an
O(n)-length hash of d via some collision-resistant hash function, where n is the
security parameter.

3.1 Optimistic Per-Packet FL Protocol

We assume that each node Ri shares a symmetric key ki with Alice. For each
packet that Alice sends, the protocol proceeds in two phases:

The detect phase. Alice stores each packet d that she sends to Bob. When
Bob receives the packet d, he responds with an ack of the form a = [d]kB .
Alice removes the the packet d from storage when she receives a validly MAC’ed
corresponding ack, and raises an alarm if a valid ack is not received.5 We also
require each intermediate node to store each data packet and corresponding ack.

The localize phase. This phase is run only if Alice raises an alarm for a packet
d. Alice sends an onion report request q = (report, d) downstream towards Bob.
To respond to the request, each node Ri checks if he stored data packet d; if he

5 In practice, each packet d should be stored along with a local timeout at Alice. If
the ack does not arrive before the timeout expires, then Alice should raise an alarm.
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did, Ri sets τi = (q, i, d, a) where a is the ack he saw corresponding to packet
d, and substituting the symbol ⊥ for d and/or a if he failed to to receive that
packet or an ack. Ri then creates an onion report θi using τi as described above.
In the onion report, Ri can substitute the symbol θi+1 = ⊥ if he fails to receive
a θi+1 from Ri+1.

To localize the failure, Alice classifies the onion reports that she received in
response to her onion report request q. An onion report θi = [q′, i′, d′, a′, θi+1]ki

is “consistent” if it is present, i.e. θi �= ⊥, and all of the following four conditions
hold. Otherwise, an onion report is “inconsistent”.

1. q′ = q sent out by Alice.
2. The MAC on θi is valid.
3. d′ = d, where d is the packet queried in q.
4. a′ is not a valid ack for packet d.

Alice localizes then localizes the upstream-most link (i, i + 1) where the onion
reports transition from consistent to inconsistent.

Theorem 1. The optimistic FL protocol is per-packet secure.

The proof follows via a simple reduction to the security of the MAC, and is
defered to the full version. We remark that the detect phase of this protocol
requires a large amount of storage and communication overhead at each node.
This high overhead makes this protocol impractical for regular Internet traffic;
however, it might be useful for specialized highly-secure networks, or for certain
classes of traffic e.g. network management traffic.

3.2 A Composition Technique for Statistical FL

We now consider statistical security protocols, that apply results from our pre-
vious work on statistical PQM [8,9] to obtain statistical FL protocols with much
lower overhead. In a statistical PQM protocol, Alice detects whenever the aver-
age failure rate exceeds a threshold β (but she need not localize a link).

Here we show how to compose the lightweight PQM protocols we presented
in [9] to obtain a statistical FL protocol. While it is possible to give a very
general composition theorem, for clarity and concreteness in this version we
describe only how to compose the simpler symmetric secure sampling (SSS)
protocol of [9]. We defer our more general composition result to the full version
of this paper. In particular, we can compose the secure sketch protocol of [9] that
has a communication overhead of only a single O(log T + n) length packet for
every interval, thus yielding the result stated in Section 1.1.

Symmetric Secure Sampling (SSS), a statistical PQM protocol from
[9,8]. SSS requires Alice and Bob to securely designate a random p fraction of
the data packets that Alice sends to Bob as “probes”, and require that Bob send
MAC’d acknowledgments for all the probes. We call p the probe frequency. To
do this, Alice and Bob share a secret k = (k1, k2). For each packet d that Alice
sends to Bob, they use k1 to compute a function Probe that determines whether
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or not a packet d is a probe and should therefore be stored, and acknowledged.
To acknowledge a probe, Bob sends Alice an ack [d]k2 that is MAC’ed using
k2. The Probe function is implemented using a pseudorandom function (PRF)
f keyed with k1, that we think of as mapping strings to integers in [0, 2n−1];
we define Probek1(d) output “Yes” if fk1(d) < p2n and output “No” otherwise.
For each interval, Alice stores each probe packet (i.e. each packet d such that
Probek1(d) =Yes). At the end of the interval, after T packets are sent, Alice
computes V , a count of the number of stored (probe) packets for which she
failed to receive a valid ack. She computes the average failure rate as V

pT .

A composition that does not work. Perhaps the most natural approach to
construct a statistical FL protocol is to have Alice run K simultaneous PQM
protocols with each of the intermediate nodes, and use the statistics from each
protocol to infer behaviour at each link (similar to [21,4,24]). However, we now
show that this composition is vulnerable to the following timing attack : Suppose
a packet d that Alice sends to Bob is ack’d by innocent node Rj with message a.
Then, if Eve occupies node Ri for i < j−1, she can determine that Rj originated
the ack a by counting the timesteps that elapsed between the timestep in which
she saw d and timestep in which she saw a. Then, Eve can implicate Rj by
selectively dropping every ack that originates at Rj . Notice that this attack
results from the structure of this composition, and cannot be prevented even
when acks are encrypted.6 In practice, this attack can be launched when isolated
burst of packets triggers a separate burst of acks at each intermediate node.

Composing PQM to statistical FL. We require that every node Ri shares
pairwise keys kA

i , kB
i with Alice and Bob respectively. Using kB

i , each interme-
diate node runs a statistical PQM protocol with Bob with the following modifi-
cation: whenever Bob decides to send an ack for a packet d to an intermediate
node Ri, Bob will (1) always address the ack to Alice and (2) MAC the ack in
onion fashion, starting with kB

Alice (on the inside of the onion) and ending with
kB

K (on the outside of the onion). Each node forwards all acks upstream, and
processes only the ack he expects. At the end of the interval u, Alice will send
an onion report request q = (report, u) to all the intermediate nodes. Each in-
termediate node produces a MAC’d onion report θi = [q, i, Vi, θi+1]kA

i
where Vi

is his estimate of the average failure rate on the path between himself and Bob.
Letting α, β be the false alarm and detection thresholds, when Alice receives the
final onion report θ1, she computes F� = Vi −Vi+1 for each link � = (i, i+1), and
outputs � if F� > α+β

2(K+1) , or if � = (i, i + 1) is the upstream-most link when the
onion report θi+1 refers to the wrong interval, is missing, or is invalidly MAC’ed.
We prove that this scheme is secure provided that the interval length T is long
enough and the congestion rate ρ is small enough.

Theorem 2. The composition of SSS described above with probe frequency p
satisfies (α, β, δ)-strong statistical security when each interval contains at least
T = O( K2

p(β−α)2 ln K
δ ) packets and the congestion rate satisfies β − α � Kρ.

6 [24] deals with this by randomizing the sending time of acks.
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Alice Eve Bob

PQM

ack

PQM

ackAlice Bob

Fig. 2. On the left an insecure composition, on the right our secure composition

Proof. First, observe that the probability that any efficient adversary Eve suc-
cessfully forges an ack for a dropped packet by forging a MAC used in SSS is
negligible. As in the Optimistic Protocol, the probability that any efficient ad-
versary Eve successfully forges the onion report of an honest node (by forging
the MAC on the onion report) is negligible as well. Hence, for the rest of this
proof assume that Eve does not forge an ack to a dropped packet or validly forge
the onion report of an honest node. Moreover, we can assume that Eve does not
tamper with the onion report, or else she will implicate a link adjacent to one
of the nodes she controls. We now work within a single interval:

– Let Vi be Ri’s estimate of the failure rate between Ri and Bob.
– Let Di be a count of the number of packets that were dropped or modified

on the path between Ri and Bob.
– Let Ci be the number of acks intended for any node that were dropped or

modified on the path between Bob and Ri.
– Let p′ = p

1−(1−p)K+1 be the probability that a node Ri expects an ack to a
packet d (i.e. ProbekB

i
(d) = Yes) conditioned on there being at least one node

expecting an ack to packet d (i.e. ∃j ∈ {0, . . . , K}, ProbekB
j
(d) = Yes).7

Note that when Ri estimates the average failure rate on the path from Ri to
Bob, she is unable to distinguish between dropped packets and dropped acks.
Also, it is possible that Di > Di+1 or Ci > Ci+1 for two adjacent uncorrupted
nodes because of congestion. In the absence of adversarial behavior at Ri, the
expectation of the estimator Vi that Alice receives in the onion report is 1

T (Di +
p′

p Ci). Finally, notice that the average failure rate on link (i, i+1) is 1
T (Di−Di+1).

Set γ = β−α
2(K+1) . If T = O( K2

p(β−α)2 ln K
δ ) then we have the following lemmata:

Lemma 1 (Deviation of the estimator Vi). For each i /∈ E where E is the
set of nodes corrupted by Eve it holds (up to negligible error) that

Pr
[∣∣∣Vi − 1

T (Di + p′

p Ci)
∣∣∣ > 1

4γ
]

< δ
4(K+1)

Lemma 2 (Acks dropped due to congestion). For each i, i + 1 /∈ E, it
holds (up to negligible error) that

Pr
[

p′

p
Ci−Ci+1

T > γ
2

]
< δ

2(K+1)

7 This quantity is the probability that a node Ri samples an ack that was dropped
between Ri and RB , since at least one node must have sampled the corresponding
packet in order for the ack to be transmitted at all.
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The proofs of these lemmata are technical, but not difficult. We defer them
to the full version. Both proofs are applications of the Chernoff bound under
the assumption that the Probe function is implemented with a truly random
function; the negligible error refers the difference between a PRF and a truly
random function. The proof of Lemma 1 relies on the fact that Eve cannot bias
node Ri’s estimate of Ci by selectively dropping acks because (1) acks destined
for different nodes look identical, and they all originate at Bob (so that an
adversary cannot use timing to distinguish between them), and (2) acks are onion
MAC’d, so the adversary cannot selectively tamper with an ack intended for an
upstream node. The proof of Lemma 2 also relies on the fact that β − α � Kρ.

Few false positives: To prove this, we consider an interval where all the nodes
on the path behave honestly, and show that, with probability at least 1−δ, Alice
will not raise an alarm during this “honest interval”.

Consider link � = (i, i + 1) where the average failure rate is less than the false
alarm threshold so 1

T (Di −Di+1) < α
K+1 . We now show that Alice will not raise

an alarm for this link � by proving that Alice’s estimate of the failure rate for �,
i.e. Vi − Vi+1, does not exceed her alarm decision threshold, i.e. α+β

2(K+1) . We do
this by proving that

Pr
[∣∣(Vi − Vi+1) − 1

T (Di − Di+1)
∣∣ > α+β

2(K+1) − α
K+1 = γ

]
< δ

K+1 (3.1)

Notice that “Few false positives” condition follows from (3.1) by a union bound
over all K + 1 links.

To prove (3.1), we start with the expression below, and apply the triangle
inequality, and then Lemma 1:

Pr[|(Vi − Vi+1) − (Di−Di+1
T + p′

p
Ci−Ci+1

T )| > γ/2]

≤ Pr[|Vi − 1
T (Di + p′

p Ci)| > γ/4] + Pr[|Vi+1 − 1
T (Di+1 + p′

p Ci+1)| > γ/4]

≤ δ
2(K+1) (3.2)

Next, from Lemma 2 we know that Pr[p′

p
Ci−Ci+1

T > γ/2] ≤ δ
2(K+1) , and so a

union bound over this expression and (3.2) proves (3.1).

Secure localization: We now show that if Eve drops more than a β fraction
of packets in any interval, then Alice will catch her with probability at least
1−δ. Since the actual failure rate on the path is 1

T DA > β, we start by applying
Lemma 1 to find that Alice’s estimate of the failure rate is VA > β − γ

4 with
probability at least 1− δ

4(K+1) . We now use an averaging argument to claim that

there exists some link � = (i, i + 1) such that Vi − Vi+1 > α+β
2(K+1) . To see why,

suppose for the sake of contradiction that for all i we had Vi − Vi+1 ≤ α+β
2(K+1) .

Then, it follows that

VA =
K∑

i=0

(Vi − Vi+1) ≤
∑

�

α+β
2(K+1) = α+β

2 < β − γ
4
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where VK+1 = 0 (Bob’s estimate of drops to himself is 0). But this contradicts
our condition that VA > β − γ

4 , so there is at least one link � = (i, i + 1) with
Vi − Vi+1 > α+β

2(K+1) so that Alice raises an alarm.
Next, recall that we assume that for any link where the true failure rate due

to congestion less than α
K+1 , we have from our proof of the “Few false positives”

condition that with probability δ
K+1 , Alice does not raise an alarm for link �

between two honest nodes. Then, Alice must have raised the alarm for a link
adjacent to Eve with probability at least 1− δ (by a union bound) or a link with
actual failure rate larger than α

K+1 , and secure localization follows.

4 Lower Bounds

We now argue that in any secure per-packet FL scheme Alice requires shared keys
with Bob and the intermediate nodes, and Alice, Bob and each intermediate node
must perform cryptographic operations. We only argue for intermediate nodes
R2, . . . , RK ; R1 is a border case which requires neither keys nor crypto because
we assume Alice is always honest.

4.1 Failure Localization Needs Keys at Each Node

Since FL provides strictly stronger security guarantees than path-quality mon-
itoring, it follows from the results in [9] that in any secure FL protocol, Alice
and Bob must have shared keys. We also have the following theorem that proves
that in any secure FL protocol, each intermediate node must share keys with
some Alice:

Theorem 3. Suppose Init generates some auxiliary information auxi for each
node Ri for i = 1, ..., K, Alice, Bob. A FL protocol cannot be (per-packet or sta-
tistical) secure if there is any node i ∈ {2, . . . , K} such that (auxAlice, aux1, . . . ,
auxi−1) and auxi are independent.

Proof. Suppose Ri has auxi that is independent of (auxAlice, . . . , auxi−1). Then,
the following two cases are indistinguishable from Alice’s view: (a) Node Ri+1is
malicious and blocks communication on link (i, i+1), and (b) Eve occupies node
Ri−1, and drops packets while simulating case (a) by picking an independent aux′i
and running Ri(aux′i) while pretending as if (i, i + 1) is down. These two cases
are indistinguishable because auxi is independent of (auxAlice, . . . , auxi−1), and
so Alice will localize the failure to the same link in both case (a) and (b). But
this breaks security, since Ri+1, Ri−1 do not share a common link.

4.2 Failure Localization Needs Crypto at Each Node

In [9], we give a reduction from one-way functions to secure PQM, proving:

Theorem 4 (From [9]). The existence of a per-packet secure PQM protocol
implies the existence of an infinitely-often one-way function (i.o.-OWF).
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Since one-way functions are equivalent to many cryptographic primitives (in the
sense that these primitives exist if and only if one-way functions exist [13]), this
result can be interpreted to mean that nodes participating in any secure PQM
protocol must perform cryptographic computations. Since FL gives a strictly
stronger security guarantee than PQM, we also have that in any FL protocol,
some node on the data path must perform cryptography. However, Theorem 4
only implies that the entire system performs cryptography. We want to prove
that any secure FL protocol requires each intermediate node R1, . . . , RK to per-
form cryptography. Because it is not clear even how to formalize this in full
generality, we instead apply the methodology of Impagliazzo and Rudich [14] to
do this for black-box constructions of FL protocols from a random oracle RO.
We model “performing cryptography” as querying the random oracle, and show
that in such a secure FL protocol each node must query the RO.

In [14], Impagliazzo and Rudich showed that there can be no secure black-
box construction of key agreement (KA) from a random oracle. They argued
that if any such KA construction is secure, then it must also be secure in a
relativized world where every party has access to a random oracle RO, and a
PSPACE oracle. (A PSPACE oracle solves any PSPACE-complete problem, e.g.
True Quantified Boolean Formulae (TQBF)). Intuitively, in this (PSPACE, RO)
world, every computation is easy to invert except for those computed by the RO.
They obtain their result by showing, for every possible black-box construction
of KA from a random oracle, that there exists an efficient algorithm (relative to
(PSPACE, RO)) that breaks the security of KA. Using the the same reasoning,
any secure black-box FL protocol constructed from a RO must remain secure
even relative to a (RO, PSPACE) oracle. Then, to obtain our result, it suffices to
exhibit an efficient algorithm (relative to (PSPACE, RO)) that breaks security of
any black-box FL protocol where one node does not call RO. We do this below.

We will use the notion of an exchange to denote a data packet and all the
FL-protocol-related messages associated with that packet. Because our game is
sequential (see Section 2), Alice’s must decide to localize a link � or output

√

before the next exchange begins. We now prove that a per-packet FL protocol
with r = O(log n)messages per exchange must invoke the random oracle at every
node. We note that protocols where number of messages per packet grows with
n are impractical and so “practical” protocols should use r = O(1) messages
per exchange. (See Remark 1 below on the possibility of extending this result to
statistical security and/or protocols with ω(log n) messages per exchange.)

Theorem 5. Fix a fully black-box per-packet FL protocol that uses access to a
random oracle RO, where at least one node Ri for i ∈ {2, . . . , I} never calls
the RO and where the maximum number of messages per exchange is O(log n).
Then there exists an efficient algorithm relative to (PSPACE, RO) that breaks the
security of the scheme with non-negligible probability over the randomness of RO
and the internal randomness of the algorithm.

The proof of Theorem 5 is quite technical and is deferred to the full version. We
sketch the proof, which resembles that of Theorem 3. Eve controls node Ri−1
and impersonates Ri, but now auxi is secret, so Eve must first learn auxi:
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1. Learning to impersonate. Sitting at Ri−1, Eve observes t exchanges (t is poly-
nomial in n), where Eve asks Source to transmit a uniformly random data
packet. She then uses the learning algorithm of Naor and Rothblum [20] to
obtain a pair of impersonator algorithms A′, B′, whose interaction generates
a distribution over transcripts for the t + 1’th exchange. A′ impersonates
nodes Alice, R1, . . . , Ri−1 and B′ impersonates nodes Ri, . . . , RK , Bob.

2. Dropping and impersonating. On the t + 1’th exchange, for each message m
going from Ri−1 to Ri, Eve computes a response m′ herself using algorithm
B′ and returns m′ to Ri−1; she does not send any messages to Ri.

Now, Eve at Ri−1 will break security if she manages to use B′ to impersonate
an honest exchange during which link (i, i + 1) is down. (This breaks security
since link (i, i+1) is not adjacent to Ri−1.) The crucial observation is that here,
Eve need only impersonate node Ri, and that Ri does not “protect” its secret
keys by calling the RO. Intuitively, Eve should be able to impersonate Ri since
any computations that Ri does are easy to invert in the (PSPACE, RO) world.
We now argue that Eve can break security with non-negligible probability.

Recall (Section 2) that Alice is allowed to use information from past exchanges
to help her decide how to send messages in new exchanges. Fortunately, the
algorithm of Naor and Rothblum [20] is specifically designed to deal with this,
and guarantees that observing t = poly(n/ε) many exchanges (in Step 1) Eve can
obtain, with probability 1 − ε, algorithms A′, B′ that generate an impersonated
transcript that is ε-statistically close to the “honest” transcript of messages on
the link (i − 1, i) (generated by interactions of honest Alice, R1, ..., RK , Bob.)

Suppose Eve obtained an A′, B′ that satisfy the guarantee above. Our first
challenge is that the Naor-Rothblum algorithm does not guarantee that A′, B′

generates an impersonated transcript that is statistically close to the “honest”
transcript of messages on (i − 1, i) when the observer has access to the RO. For-
tunately, with probability ρr all the messages sent from Ri to Ri−1 are computed
without access the RO. This happens when congestion causes link (i, i+1) to go
down for the duration of an exchange (so that Ri, who never calls the RO, has
to compute all his upstream messages on his own).

Our next challenge is that Eve has no control, or even knowledge, of when
congestion causes this event to occur. Indeed, the distribution generated by
A′, B′ is only guaranteed to be close to the honest transcript overall; there is no
guarantee that it is close to the honest transcript conditioned on congestion on
(i, i+1). Fortunately, we can show that with probability ρr, A′, B′ will generate
a “useful” impersonated transcript that is ε/ρr-statistically close to the honest
transcripts conditioned on the event that link (i, i + 1) is down. Eve does not
necessarily know when she impersonates a useful transcript; she simply has to
hope that she is lucky enough for this to happen.

The last challenge is that even when Eve is lucky enough to obtain a useful
transcript, we still need a guarantee that (a) conditioned on B′ generating a
useful transcript, using B′ to interact with the honest algorithm Ri−1 results
in a transcript that is statistically close to (b) the transcript between honest
algorithms Ri−1 and Ri conditioned on link (i, i+1) being down. Unfortunately,
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the Naor-Rothblum algorithm does not give any guarantees when an honest
algorithm interacts with an impersonated algorithm for more than 1 round.
Thus, we prove that, with probability at least (ρ/2)r, the impersonator algorithm
B′ interacting with honest Alice, ...Ri−1 still generates a useful transcript such
that the statistical distance between (a) and (b) is at most 1/100. (This assumes
we take ε small enough; ε = (ρ/10)4r = 1/poly(n) suffices.)

To summarize, with probability ≥ 99/100 Eve obtains algorithms A′, B′ from
the Naor-Rothblum algorithm that can successfully impersonate all the honest
algorithms. Then, with probability roughly (ρ/2)r, she can use B′ to interact
with Ri−1 as in Step 2 to drop a packet at Ri−1 and generate a useful imperson-
ated transcript that is 1/100-statistically close to the honest transcript produced
when Ri−1 and Ri interact conditioned on link (i, i+1) being down. This breaks
security with non-negligible probability, since link (i, i + 1) is not adjacent to
Eve at Ri−1.

Statistical security. Our negative results in the statistical setting are more
subtle. First of all, from [9, 8] the analog of Theorem 4 also holds, showing
that the entire system needs to “perform cryptography”. However, we run into
trouble when we try to show that cryptography is required at each intermediate
node. It turns out that Definition 3 does not inherently require complexity-based
cryptography at intermediate nodes. We sketch a statistically secure FL proto-
col where the intermediate nodes R1, . . . , RK use only information-theoretically
secure primitives (although Alice and Bob still use regular MAC’s). While this
protocol is completely impractical in terms of communication and storage over-
head, we present it here to demonstrate the subtleties of Definition 3.8

Remark 1 (Impractical “crypto-free” statistical FL protocol.). The protocol uses
one-time MACs (OTMAC), information-theoretic objects that have the same
properties as regular MACs except that they can only be used a single time.
(OTMACs and can be constructed from Carter-Wegman hashing.) Each node
Ri shares pairwise keys with Alice. All the intermediate nodes and Bob store each
packet that Alice sends to Bob. For each packet, Bob replies with an ack signed
using a regular MAC. At the end of the interval, Alice counts the number of acks
that she either fails to receive, or are invalid. The first time this count exceeds a β-
fraction, Alice sends a “report request” message that is signed using a OTMAC
to R1, . . . , RK , RK+1. Each node R1, . . . , RK responds with a report of every
single packet they have witnessed, that is “onion signed” using the OTMAC (as
in Section 3.1). Alice uses these reports in the usual way to localize link � adjacent
to Eve. From this point onwards Alice simply counts valid acknowledgments from
Bob, and blames link � each time the count exceeds a β fraction.

8 In concurrent work, Wong et al. [24] propose a statistical FL scheme where no cryp-
tography is performed during an interval. Instead, they precompute shared secrets
that are appended to packets over the course of an interval and are used guarantee
security. The secrets must refreshed periodically, which requires cryptographic par-
ticipation by the intermediate nodes. This contrasts with the impractical scheme we
describe here, which truly never requires any intermediate node to perform crypto.
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The protocol satisfies Definition 3 because the probability that the failure rate at
any link exceeds β by congestion alone is negligible. Since we do not allow Eve to
move during the security game, if Alice successfully localizes Eve to link � once,
it means it must have been Eve’s fault, and so from then on Alice can always
blame all failures on link �. As noted above, similar “impractical” protocols exist
for per-packet protocols with ω(log n) additional messages per packet (since all
ω(log n) messages are lost to congestion with only negligible probability), except
that we replace the idea of “exceeding β fraction of failures” with “losing an
entire exchange due to congestion”. We may interpret this as follows:

1. It is unreasonable to assume that the failure rate at a link exceeds β only
due to adversarial behaviour (i.e. Eve). For example, occasionally congestion
might spike, or a router might malfunction or go down due maintenance,
causing more than a β-fraction of packets to be dropped. If we assume such
events happen with non-negligible probability, we can adapt the proof of
Theorem 4 to show that cryptography is necessary at intermediate nodes
for statistical security. As a corollary, if Eve can control congestion at links
she does not occupy, then we need cryptography at every intermediate node.
Our FL protocols remain secure even under the strongest such definition,
where the failure rate on a link not occupied by Eve can exceed β.

2. We can take this issue outside of our model. If we say that it is reasonable
that Eve cannot move during the security game, and that the failure rate can-
not exceed β on a link that Eve does not control, then, as we showed above,
there exist protocols where the intermediate nodes do not use complexity-
based cryptography. However, we must be cognizant that in the real world
there can be multiple adversaries that we would like to localize correctly, or
the adversary may be able to move from one link to another. If protocols
that do not use cryptography at intermediate nodes are to remain secure af-
ter Eve moves (and learns the key of previous nodes she occupied), then the
keys at each node should be refreshed periodically. This key refresh process
would require each intermediate node to use cryptography.

5 Open Problems

We gave lower bounds on the key-management and cryptographic overhead of
secure FL protocols. The problem of bounding the storage requirements in an
FL protocol is also still open. Furthermore, our results here only apply to FL
on single symmetric paths between a single sender-receiver pair. An interesting
question would be to consider FL for asymmetric paths, where the packets Bob
sends back to Alice may take a different path than the packets that Alice sends to
Bob. Another interesting direction is to consider FL in networks where packets
can travel simultaneously on multiple paths, as in the SMT framework [6].
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A Vulnerabilities of Other FL Protocols

We sketch why the protocols of [21, 4, 2] do not satisfy our security definition.

An On-demand Secure Routing Protocol Resilient to Byzantine Fail-
ures [4]: Awerbuch, Holmer, Nita-Rotaru and Rubens present a statistical FL
protocol in which Alice and Bob run a secure failure detection protocol, where
Bob sends out authenticated acks for each packet he receives. Once the number
of Packet delivery failures exceeds some threshold, say β, then Alice appends
a encrypted list of “probed nodes” to each new packet that she sends out. If
a node is included in the list of probed nodes, it is expected to send Alice an
ack when it receives the packet containing the list. The acks are formed as our
“onion reports”. To localize failures, Alice chooses probed nodes according to a
binary search algorithm, until she localizes a single link.

Now, consider an adversary Eve that sits at Ri and, for every sent packet
where Ri is not included in the list of probed nodes, Eve happily causes failures.
Eve stops causing failures whenever Ri is included in the list of probed nodes.
Alice will never be able to localize such an Eve to a single link; as long as Eve
behaves herself when she is part of the list of probed nodes, Alice has no way to
find her. Our protocols avoid this problem by running their “detection phases”
and “localization phases” on the same set of packets.

Furthermore, care must be taken in implementing this protocol in the presence
of both adversarial behaviour and benign congestion. To see why, suppose that
Eve causes the protocol to enter the localization phase. In [4], the binary search
algorithm proceeds by one step each time failures are detected. It is important
to ensure that normal congestion (on a link that is not adjacent to Eve) cannot
cause the binary search algorithm to search for Eve in the wrong part of the path.
To do this, the binary search algorithm should proceed by one step only when
the failure rate exceeds some carefully chosen false alarm threshold (related to
loss rate caused by normal congestion and the length of the portion of path that
is currently being searched).
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Packet Obituaries [2]: Argyraki, Maniatis, Cheriton, and Shenker propose
an FL protocol that is similar to our Optimistic Protocol of Section 3.1. Each
node locally stores digests of the packets they see, and at the end of some time
interval, nodes send out reports to Alice that contain these packet digests. Alice
then uses the information from these reports to localize failures on the path.
The designers of this protocol focused on the benign setting, but mentioned that
reports should also be individually authenticated. However, because these reports
are not formed in a onion manner (as in our Optimistic Protocol) an adversarial
node can implicate a innocent downstream node by selectively dropping the
innocent node’s reports.

Secure Traceroute [21]: We sketch attacks in the full version; this protocol
has many of the same problems as [4, 2].
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