Reduction Example - Giving a reduction from A_{TM} to E

In this example we consider how to prove the language $E = \{<M> | L(M) = \phi\}$ is not decidable. Recall ϕ = the empty set.

Here $L(M)$ is the collection of inputs that M accepts and so E is the set of all algorithms (or TM's) which do not accept any of their inputs.

To prove E undecidable we use a reduction showing that $A_{TM} \leq E$. (That is, A_{TM} is computably reducible to E.) Since we have already proved that A_{TM} is undecidable, this reduction implies that E is also undecidable.

So how do we prove that $A_{TM} \leq E$? Following the definition of a reduction, we ASSUME that there is an algorithm E which decides the language E above.

Then our GOAL is to use find an algorithms A which uses the assumed algorithms E as a subroutine and which decides A_{TM}.

So let’s start by explaining our assumption that E exists. E decides E, this means E takes some $<M>$ as input, computes this input $<M>$ and always halts. $E (<M>)$ accepts if and only if $<M>$ is in E which is true exactly when $L(M) = \phi$, the empty set.

Now given an input (M,w) to the A_{TM} problem (or language) we first construct an algorithm M' from M as follows:

1. M' will have the same input alphabet as M.
2. For any input z to M', $M'(z)$ first checks if $z = w$.
3. If $z = w$ then $M'(z)$ simply simulates $M(w)$ and does whatever does (accepts, rejects or loops).
4. If $z \neq w$ then $M'(z)$ halts and rejects z.

So in summary, given (M,w), the M' we construst either accepts no strings at all or it accepts the string w.

And (M,w) is in A_{TM} if and only if the M' has $L(M') = \{w\}$.
Now it is easy to state the algorithm A. Here is what A does on an input (M,w).

1. First we use (M,w) to construct the machine M' as above.

2. Now use the algorithm E which we assume exists. Input $<M'>$ to E.
As E is a decider $E(<M'>)$ will halt and either accept or reject. This tells us whether $L(M')$ is non-empty or empty.

3. If $L(M')$ is non-empty then we know that $M(w)$ accepts and so we have A halt and accept.
If $L(M')$ is empty then we know that $M(w)$ does not accept, so we halt A and it rejects.

Hence we have $(M,w) \in A_{TM}$ if and only if A accepts, and so A decides the language A_{TM}, contradicting its undecidability.