This homework will be graded. A couple of these problems are taken from J. Finkelstein.

1. Prove by induction that $n! > 2^n$ for all $n \geq 4$.
 Your proof must specify the variable on which the induction occurs, the base case, and the inductive hypothesis.

2. Let A be any fixed finite set of 4 or more elements. Prove that the number of subsets of elements in A is less than the number of permutations of elements of A.

3. Let $A = \{0, 1, 2\}$, and let language L be defined by $L = \{waw^Rbw|w \in A^*\}$.
 (i). What is $|A^3|$ (that is, the number of elements in $|A^3|$) ?
 What is $|A^n|$? What is $|A^*|$?

 (ii). Thinking of L as a language, what is its alphabet ?
 How many elements are there in L which have length 8 ?
 Give two examples of strings that are in the language L and two examples of strings that are not in the language. Give an English language description of the elements of L.

4. (i). How many functions are there with domain $\{0, 1, 2\}$ and range $\{4, 5\}$

 (ii). How many 1-1 functions are there with domain $\{0, 1, 2\}$ and range $\{4, 5\}$
 I don’t expect a proof here but I do expect an answer and some explanation of why your answer is right.

5. Rank the order of growth of the following functions from smallest to largest.
 $6n^2$, $n(\sqrt{n})$, $n^2 \log \log n$, $5n$, 3^n, $n^2 \log 6n$, $n \log n$, $n^2 \log n$

6. Consider the following 2 step procedure P and explain why it is not a legitimate algorithm of the kind we discussed in class.
 The input is three natural numbers a,b,c.

 1. Try all possible assignments of natural numbers to a,b,c and for each of these possible settings test if $a^3 + b^3 = c^3$

 2. If the test you make of the equation in 1 is ever true, then P outputs true, if it all of the tests you make in 1 are false then P outputs false.