Section I. Examples: For each of the following problems give examples of the languages J, K, L that are described in the problems. In each case briefly say why the example is a correct one for the stated problem. Each problem is worth 5 points

1. Give examples of two languages J and K both of which are NOT decidable but whose union is decidable.

 Answer: Let J = the halting problem H and let K = the complement of the halting problem, \overline{H}. Both are undecidable.

 Then $J \cup K = L$ is the set of all pairs $<M,w>$ where M is any legal TM and w is a string of symbols form M’s input alphabet (since for any $<M,w>$ either $M(w) \in J$ halts or $M(w)$ does not halt, so $M(w) \in K$.

 The set L is infinite and decidable.

2. Let $I = \{x \mid |x| \text{ is odd}\}$. (So I is decidable.) Give an example of a language $K \subseteq I$ with K undecidable.

 Answer: Start with the halting problem H (or any other undecidable problem we have looked at will do as well). An element of H is of the form $<M,w>$. Let c be a symbol which is not in H’s tape alphabet.

 We construct a set H_{odd} which looks like a copy of H only with every element in the language having an odd length. To do this let $H_{\text{odd}} = \{ <M,w>c <M,w> \mid <M,w> \in H \}$. Clearly all strings in H_{odd} are of odd length and H_{odd} is undecidable since H is.

 Now let $K = H_{\text{odd}}$ the desired subset of I.

3. Give examples of two languages J and L both of which are NOT decidable but where $J \cap L$ is infinite and decidable.

 Answer: Let A be the accepting problem, and let $J = A \cup \{v\}^*$. (Note: I am assuming here that v is not in the alphabet of A, and also that as usual that A itself is made up of elements of the form $<M,w>$ and so no elements of A is a binary string as it has a comma in it for example.

 Now let $L = \overline{A} \cup \{v\}^*$. Where here \overline{A} is the complement of A, so it is all pairs $<M,w>$ where $M(w)$ does not accept. Then $J \cap L$ is just $\{v\}^*$ which is infinite and decidable.
4. Give an example of an infinite decidable set L where $L \subseteq \{M \mid M$ is a Turing machine that does not accept any string$\}$

Answer: Let T be a fixed Turing machine which has input alphabet $\{0,1\}^*$ and tape alphabet $\{0,1,B\}^*$ works as follows. On any binary string x, $T(x)$ moves right staying in its start state and goes into its rejecting state. So clearly Turing machine T that does not accept any string.

Not for each integer $i = 1,2,3,...$, let TM_{T_i} be the TM T but with tape alphabet $\{0,1,2,...,i+1,B\}^*$, but otherwise the same as T. So in particular T_i works just like T and does not accept any strings. Also, since each T_i has a different tape alphabet each is a different TM. Now let $L = \{T_i | i \in N \}$. Clearly L is the desired infinite decidable subset.

Section II: For each of the following problems 5,6,7 use a reduction to prove that the language J, K or L is undecidable.

In each case you must;

- State precisely what problem you are reducing to the problem J, K, or L and also state precisely what you need to show to establish the reduction, (2 points each), and then
- Give the reduction (4 points each).

5. Show that it is not decidable to determine if a TM M on input w ever goes into the specific state q_9 during the computation of $M(w)$. That is, show $J=\{ < M, w > \mid$ the TM M on input w goes into state q_9 during its computation $\}$ is undecidable.

Answer: The accepting problem A will be reduced to problem J. (That is, we prove $A \leq J$.) Since A is undecidable this implies that J is too.

Recall that $A =\{ < M, w > \mid M(w)$ accepts $\}$.

To show this reduction we need to start with a pair $< M, w >$, an input to H and produce a pair $< T, w >$ with the property that $< M, w > \in H$ if and only if $< T, w > \in J$. Note that the input w is the same for both M and T.

Reduction: Our reduction f will just be $f(< M, w >) = < T, w >$, so the function f has to construct T from M.

The idea for the reduction f is that we want to construct $T(w)$ so that for any w, T goes into state q_9 at some time during its computation if and only if $M(w)$ accepts.

This is quite easy to arrange as we just let $T(w)$ be a TM that exactly simulates M on input w but whenever M would accept, T first goes into the specific state q_9 and then accepts. In T’s program we basically add a transition that causes T to go into q_9 before any transition of M that goes into q_a.

One final detail. We also need to ensure that the ONLY time T goes into state q_9 is when $M(w)$ accepts, that is goes into state q_a. To do this we remove the state q_9 from M’s program replacing it with a new state not originally in M. This new state replaces M’s state q_9 in T’s program.
So the result is as we needed, T goes into state q_9 at some time during its computation if and only if M goes into state q_a and so accepts.

6. Let $K= \{ M \mid M$ is a Turing machine with input alphabet Σ and M accepts every string in $\Sigma^* \}$. Prove K is undecidable.

Answer: We will reduce the accepting problem A to K.

To do this we need to produce a computable function F such that $< M, w >$ is in A if and only if $f(< M, w >)$ is a Turing machine T such that T accepts every one of its input strings.

Reduction.

The idea for the reduction f is that we want to construct T so that for any input z, T accepts z if and only if M accepts the specific string w.

This is quite easy to arrange as we just let T be a TM which depends on the machines M and input w to M. T, on any that on any input z, ignores z and overwrites z with w, putting w on its tape. T then simulates M on the input w and does whatever M does on w, either accepting, rejecting or never halting.

So in fact T either accepts every one of its inputs, rejects them all or never halts on any of them, depending on what $M(w)$ does.

And T accepts all its input if and only if $M(w)$ accepts. So if we could decide if T accepts every input then we could decide if $M(w)$ accepts, and the reductions works as needed.

7. Let $L= \{ M \mid M$ is a Turing machine with input alphabet $\{0,1\}$ and M accepts the string 001\}. Prove L is undecidable.

Answer: We reduce the accepting problem A to problem J.

To do this we need to produce a computable function F such that $< M, w >$ is in A if and only if $f(< M, w >)$ is a Turing machine T such that T accepts the string 001.

Reduction (in brief). Given M and w, we construct a TM T with input alphabet $\{0,1\}$ as follows.

The idea for the reduction f is that we want to construct T so that T accepts the string 001 if and only if $M(w)$ accepts.

This is quite easy to arrange, similar to the reduction of the previous problem. In fact we can use the same reduction and the same machine T, however assign 0 and 1 to T’s input alphabet if it these two symbols aren’t already in this alphabet.

If $< M, w >$ accepts them T accepts every input string over its input alphabet, and specifically T accepts the string 001. If $< M, w >$ does not accept (rejects or loops) then T does so on every one of its inputs, including 001.

So the resulting reduction works as needed, that is $M(w)$ accepts if and only if T accepts 001.