1. The vertex cover problem (VC) is defined below.

Show that the VC problem is in NP.

Vertex Cover Problem:
A vertex cover C of a graph G is a set of vertices of G where every edge of G contains at least
one vertex from C. The size of C is just the number of vertices in the set C.

\[VC = \{(G,k) \mid G \text{ is a graph and } k \text{ is an integer and } G \text{ has a vertex cover of size at most } k\} \]

First state what you need to do to show VC is in NP. Then show it.

ANSWER: We need to exhibit a polynomial time verifier V (i.e. an algorithm) which uses a
witness w together with a possible element of VC to verify if the VC instance is true or false.

Specifically for the VC problem, V takes as input a possible element of VC, \((G,k)\) and a string
w, a possible witness to the fact that that \((G,k)\) has a vertex cover of size at most k.

V then checks if w is a list of \(\leq k\) vertices and if that set of vertices w in fact covers every edge
in G. If this is true then V accepts \(((G,k),w)\). If not, it rejects.

2. Show that NP is closed under intersection.

Answer: The proof of this fact is very similar to that of closure of P under intersection which
is proved in the previous HW. It is omitted here.

3. This problem concerns the question of whether NP is closed under complement, meaning
that if L is in NP is it also true that \(\overline{L}\) = the complement of L is in NP.

In class we showed that P is closed under complement. This was done by noting that Time
\((n^k)\) is closed under complement for any integer k. And this followed from the fact that if we
simple reverse accept and reject for the output of a Time\((n^k)\) algorithm we get a Time\((n^k)\) for \(\overline{L}\)
= complement of L.

Here is the same attempt to show that NP is closed under complement:
We show that $\text{NTIME}(n^k)$ is closed under complement for any integer k. This follows from the fact that if we simple reverse accept and reject for the output of a $\text{NTIME}(n^k)$ algorithm we get a $\text{NTIME}(n^k)$ for the complement of L.

This argument, which works for P and $\text{Time}(n^k)$, does not work for $\text{NTIME}(n^k)$. Explain why.

Answer: Let N be a NTM that runs in $\text{NTIME}(n^k)$ and accepts a language L. If we reverse the accepting and rejecting states in N then this does not always result in the complement of L being the language accepted.

That is, let N be a NTM that runs in NP-time and accepts a language L.

What strings are accepted by an NTM R where R’s program duplicates N’s except that R has N’s accepting and rejecting states switched in its program?

Consider some input string x which is accepted by N. Then $R(x)$ might either be accepted or rejected. (it would be rejected only if EVERY computation path of $N(x)$ accepted).

Now consider some input y which N rejected. In this case $R(y)$ accepts, it cannot reject since it halts in the accepting state on the computation path or paths on which $N(y)$ rejects.

So, in general the set of string accepted by R includes all string that N rejected and also some that N accepted. That is L complement $\subset \{ s \mid s$ is a string accepted by NTM $R \}$, and is generally not equal to it. And also $\{ s \mid s$ is a string rejected by NTM $R \}$ $\subset L$, but not always equal to it.

4. Prove that \leq_P is transitive.
This means: Prove that if $A \leq_P B$ and $B \leq_P C$ then $A \leq_P C$.

Answer: From $A \leq_P B$ we know that there is a polynomial time function f where $x \in A$ if and only if $f(x) \in B$.

From $B \leq_P C$ we know that there is a polynomial time function g where $x \in B$ if and only if $g(x) \in C$.

We need to show: $A \leq_P C$, that is we show that there is a polynomial time function h where $x \in A$ if and only if $h(x) \in C$.

We define h as $h(x) = g(f(x))$. From this definition we have $x \in A$ if and only if $f(x) \in B$ if and only if $g(f(x)) \in C$. Finally as we saw in the last homework problem in HW 4, $h(x) = g(f(x))$ is polynomial time computable since f and g are.

5. (Question of whether NP is closed under the relation \leq_P)

Assume that $A \leq_P B$ and B is in NP. Is it true that then A is in NP?

If true, give a proof, if false, say why it is false.

Answer: This is true. Briefly the proof is: B has a verifier V since B is in NP.

Let f be the function reducing A to B. To prove A is in NP we need to find a verifier V' for A. Here is how the algorithm: V' runs on an inputs (x,w), where x is a possible element of A and w is a possible witness for V, the verifier for B.

$V'(x,w)$ computes $f(x)$ and then runs V on input $(f(x),w)$.

If $V(f(x),w)$ accepts then V' accepts (x,w), else if rejects.

Clearly V' runs in P and it is straightforward to check that V' is a verifier for A, so A is in NP.
6. Show that the problem max-cut, as defined in problem 7.25 on page 296 is in NP.

First state what you need to do to show this. Then show it.
Answer: To show it is in NP we need to define a verifier V for max-cut.

This verifier V takes as input $((G,k), w)$ where (G,k) is an instant of max-cut and w, the witness, is a set of vertices forming the cut for G (which may have size at least k).

V checks if w forms a cut in G whose size is bigger than or equal to k, if so it accepts, else it rejects. Hence V is a verifier for max-cut and it is not difficult to check it is computable in polynomial time.